ANNO ACCADEMICO 2016-17

SCIENZE GEOLOGICHE E SCIENZE NATURALI E AMBIENTALI

$\begin{tabular}{ll} $MATEMATICA$ \\ TERZO COMPITINO $--$ TESTO B \\ \end{tabular}$

PROFF. MARCO ABATE E FILIPPO DISANTO

30 Maggio 2017

Nome e cognome	
Matricola	
Corso di laurea	

ISTRUZIONI: Si possono utilizzare libri di testo, dispense e appunti. Non si possono invece utilizzare calcolatrici, cellulari, computer, palmari, tablet e simili.

Giustificare tutte le risposte: risposte che si limitano a qualcosa del tipo "0.5" o "No" non saranno valutate anche se giuste.

Il compitino consiste di due parti. Per superare la prima parte non bisogna sbagliarne più di un terzo; se la prima parte è insufficiente l'intero compitino è insufficiente (e la seconda parte non viene corretta). Una volta superata la prima parte, perché il compitino sia sufficiente occorre che ne sia stato risolto correttamente almeno metà, comprendendo sia la prima sia la seconda parte.

In caso di copiatura accertata durante il compito o in fase di correzione, sono annullati sia il compito di chi ha copiato sia quello di chi ha fatto copiare.

Scrivere le risposte negli spazi appositamente bianchi, o sul retro dei fogli. Se serve altro spazio, si possono consegnare ulteriori fogli purché sia ben chiaro dove si trovano le risposte alle varie domande.

Scrivere nome, cognome e numero di matricola su tutti i fogli che si consegnano!

PRIMA PARTE

Esercizio 1. Trova l'intervallo della retta reale in cui la funzione $h:\mathbb{R}\to\mathbb{R},$ data da

$$h(x) = x^3 + x^2 + 2x + 1,$$

è convessa.

Esercizio 2. Calcola il seguente integrale definito:

$$\int_0^{\sqrt{\pi}} x \, \cos(x^2 + \pi) dx.$$

Esercizio 3. Trova il valore della costante k>0 tale che la funzione $\sin(k\,t)$ soddisfi l'equazione differenziale:

$$y'' = -9y.$$

Nome e cognome	Matricola	3

SECONDA PARTE

Esercizio 4. Una popolazione di batteri cresce secondo la legge

$$B(t) = \frac{2t}{1 - e^{-t - 1}},$$

dove B(t) è il numero di batteri presenti al tempo t.

- a) Studia la funzione B(t) arrivando a disegnarne un grafico approssimato considerando anche valori di t < 0. [Nota che $\forall x \in \mathbb{R}$ si ha $e^x > x$].
- b) Per valori di t sufficientemente grandi, la crescita di B(t) è lineare, quadratica oppure esponenziale?

4 Nome e cognome	Matricola

Esercizio 5. Gara sul ghiaccio: due slitte, s_1 ed s_2 , percorrono un rettilineo su due corsie parallele, partendo da ferme dalla linea di partenza. La velocità di s_1 in funzione del tempo è data da $v_1(t)=8\,t-t^2$ (m/sec), la velocità di s_2 è $v_2(t)=8\,t^2-t^3$ (m/sec). Dopo 8 secondi, entrambe le slitte sono ferme $(v_1(8)=v_2(8)=0)$. Determina:

- a) lo spazio percorso da s_1 ed s_2 negli 8 secondi di gara.
- b) la velocità media tenuta da s_1 ed s_2 negli 8 secondi.
- c) l'istante in cui s_2 supera s_1 . [Considera che $\sqrt{5} \approx 2.24$].

Nome e cognome Matricola 5

Esercizio 6. Una popolazione di zebre consiste di 40 individui al tempo t=0 (N(0)=40). A causa di un' epidemia, la popolazione decresce secondo l'equazione

$$N' = -N^2 - 16,$$

dove N = N(t) indica il numero di individui presenti al tempo t (misurato in anni).

- a) Risolvi l'equazione differenziale data trovando una espressione esplicita per N(t).
- b) Trova l'istante $t^* \in (0,0.5)$ in cui la popolazione si estingue, cioè quando $N(t^*)=0$. [Considera che $\arctan(10)\approx 1.47$].