Modules in model theory

Alessandro Achille, Luca Ghidelli

July 27, 2014

1 pp-definable groups

We study the left modules over a given associative ring R with identity (we do not require commutativity). From our point of view an R-module will be a structure over the language $L_{R}=\{0,+,-, r\}_{r \in R}$, so that a module is effectively an abelian group endowed with a family of endomorphism for every element of R.

Notation In the following text x, y, z will denote single variables, \boldsymbol{x} will denote a tuple of variables x_{1}, \ldots, x_{n} and in this case we define $|\boldsymbol{x}|:=n$ to be the length of the tuple. r, r_{1}, \ldots will denote elements of R.

Definition We call equation an atomic formula:

$$
r_{1} x_{1}+r_{2} x_{2}+\cdots+r_{n} x_{n}=0
$$

and positive primitive formula (ppf) a formula of type:

$$
\exists \boldsymbol{z} \gamma_{1}(\boldsymbol{x}, \boldsymbol{z}) \wedge \cdots \wedge \gamma_{n}(\boldsymbol{x}, \boldsymbol{z})
$$

where the γ_{i} are equations.
The concept of pp-formula is most important, so we would like to give an alternative interpretation. Suppose we have the pp-formula:

$$
\varphi(\boldsymbol{x}) \equiv \exists \boldsymbol{z} \gamma_{1} \wedge \cdots \wedge \gamma_{n}
$$

given \boldsymbol{x} we can look at it as a proposition about the existence of a solution \boldsymbol{z} to a system of equations, or, alternatively, we ask if for a given vector \boldsymbol{x} is there a solution \boldsymbol{z} to the equation:

$$
A \boldsymbol{z}=B \boldsymbol{x}
$$

where A e B are matrices with coefficients in R.
Before moving on with the theory, let's look at some of examples and some properties of pp-formula:

Example Suppose $R=k$ is a field and $M={ }_{k} k$. We want to study the set defined by the formula $\varphi(\boldsymbol{x})$ with $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$. As we said this is the set of vectors \boldsymbol{x} for which the system $A \boldsymbol{z}=B \boldsymbol{x}$ has a solution \boldsymbol{z}. By a change of basis (Gauss) we can rewrite it as:

$$
\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)\binom{\boldsymbol{z}_{1}}{\boldsymbol{z}_{2}}=\left(\begin{array}{ll}
B_{11}^{\prime} & B_{12}^{\prime} \\
B_{21}^{\prime} & B_{22}^{\prime}
\end{array}\right)\binom{\boldsymbol{x}_{1}}{\boldsymbol{x}_{2}}
$$

We now see that the set defined by the equation is:

$$
\varphi\left(k^{n}\right)=\operatorname{ker}\left(\begin{array}{ll}
B_{21}^{\prime} & B_{22}^{\prime}
\end{array}\right)
$$

Note that this is not the same as considering $M=k^{n}$, in fact in this case the only pp-definable set turns out to be M and 0 .

Example Let $\varphi(x)$ be as in the previous example, but suppose now that R is a PID. This time we can't use Gauss reduction, but we can still use Smith normal form to rewrite the equation as:

$$
D \boldsymbol{z}=B^{\prime} \boldsymbol{x}
$$

where D is a diagonal matrix. This means that the formula $\varphi(\boldsymbol{x})$ is equivalent to $\varphi^{\prime}(\boldsymbol{x}) \equiv \exists \boldsymbol{z} \gamma_{1}^{\prime} \wedge \cdots \wedge \gamma_{n}^{\prime}$ where each $\gamma_{i}^{\prime}(\boldsymbol{x}, \boldsymbol{z})$ is of type:

$$
d_{i} z_{i}=b_{i 1}^{\prime} x_{1}+\cdots+b_{i n}^{\prime} x_{n}
$$

We can also take Smith normal form of B and rewrite the equation as

$$
A^{\prime} \boldsymbol{z}=\tilde{D} \boldsymbol{x}
$$

where \tilde{D} is a diagonal matrix. In this case each $\gamma_{i}^{\prime}(\boldsymbol{x}, \boldsymbol{z})$ is of type:

$$
a_{i 1}^{\prime} z_{1}+\cdots+a_{i n}^{\prime} z_{n}=\tilde{d}_{i} x_{i}
$$

In general we can't give a more explicit description of a pp-definable set. Still we can prove some important properties.

Proposition 1.1. Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a pp-formula. The set $\varphi\left(M^{n}\right)$ is a subgroup of M^{n}. If moreover R is commutative then it is a submodule.

Proof. Let $A \boldsymbol{z}=B \boldsymbol{x}$ be the equation associated with φ. The zero is in $\varphi\left(M^{n}\right)$, because the equation $A \boldsymbol{z}=B \mathbf{0}$ always has the trivial solution $\boldsymbol{z}=\mathbf{0}$. Let now \boldsymbol{x}_{1} and \boldsymbol{x}_{2} be in $\varphi\left(M^{n}\right)$. This means that we can find \boldsymbol{z}_{1} and \boldsymbol{z}_{2} such that $A \boldsymbol{z}_{1}=B \boldsymbol{x}_{1}$ and $A \boldsymbol{z}_{2}=B \boldsymbol{x}_{2}$. The vector $\boldsymbol{x}_{1}-\boldsymbol{x}_{2}$ is then in $\varphi\left(M^{n}\right)$, because the equation $A \boldsymbol{z}=B\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)$ has a solution (take $\left.\boldsymbol{z}=\boldsymbol{z}_{1}-\boldsymbol{z}_{2}\right)$. The last point follow immediately from $A r \boldsymbol{z}=r A \boldsymbol{z}=r \boldsymbol{x}$, for any $r \in R$.

We can easily see that, for a pp-formula $\varphi(\boldsymbol{x}, \boldsymbol{y})$, the formula $\varphi(\boldsymbol{x}, \mathbf{0})$ still defines a group. The following proposition gives a characterization of the set defined by $\varphi(\boldsymbol{x}, \boldsymbol{a})$.

Proposition 1.2. Let $\varphi(\boldsymbol{x}, \boldsymbol{y})$ be a pp-formula and $\boldsymbol{a}=\left(a_{1}, \ldots, a_{m}\right)$ be a sequence of elements in M. Then the set $\varphi\left(M^{n}, \boldsymbol{a}\right)$ is empty or a coset of $\varphi\left(M^{n}, \mathbf{0}\right)$.

Proof. If $\varphi\left(M^{n}, \boldsymbol{a}\right)$ is not empty, fix \boldsymbol{x}_{0} in $\varphi\left(M^{n}, \boldsymbol{a}\right)$. If \boldsymbol{x}_{1} is in $\varphi\left(M^{n}, \mathbf{0}\right)$ then $\boldsymbol{x}_{0}+\boldsymbol{x}_{1}$ is in $\varphi\left(M^{n}, \boldsymbol{a}\right)$ because the associated system:

$$
A \boldsymbol{z}=B\binom{\boldsymbol{x}_{0}+\boldsymbol{x}_{1}}{\boldsymbol{a}}
$$

is easily seen to have a solution. On the other hand if \boldsymbol{x}_{0} and \boldsymbol{x}_{1} are in $\varphi\left(M^{n}, \boldsymbol{a}\right)$ then $\boldsymbol{x}_{1}-\boldsymbol{x}_{0}$ is in $\varphi\left(M^{n}, \mathbf{0}\right)$.

Last we note that pp-definable subgroups are closed under \cap and + . In fact we can see any equation $\gamma(\boldsymbol{x}, \boldsymbol{y})$ in some variables as an equation $\tilde{\gamma}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ relating more variables, simply attaching zero coefficients to the new variables. Hence we can combine two pp-formulas without mixing up existentials:

$$
\begin{aligned}
(\varphi \cap \psi)(\boldsymbol{x}) & =\varphi(\boldsymbol{x}) \wedge \psi(\boldsymbol{x}) \\
(\varphi+\psi)(\boldsymbol{x}) & =\exists \boldsymbol{y}, \boldsymbol{z} \varphi(\boldsymbol{y}) \wedge \psi(\boldsymbol{z}) \wedge \boldsymbol{x}=\boldsymbol{y}+\boldsymbol{z}
\end{aligned}
$$

Example Let $M={ }_{R} R$. Is easy to see that every pp-definable subgroup of M is a right ideal.

Conversely every finitely generated right ideal is pp-definable. In fact let g_{1}, \ldots, g_{n} be the generators of the ideal, then the $x \in R$ such that

$$
\exists \boldsymbol{z} \in R^{n}\left(g_{1}, \ldots, g_{n}\right) \boldsymbol{z}=x
$$

are precisely the elements of the ideal. It follows that every right ideal of a noetherian ring is pp-definable and these are the only pp-definable subgroups. The converse, that is, if every right ideal is pp-definable then R is noetherian, is also true if we assume R to be weakly saturated (the proof is quite simple).

Example Let M be an R module. A definable subgroup of M is closed under endomorphism of M. In fact if $x \in M$ is such that $\exists z(a z=b x)$ then we also have $\exists z^{\prime}\left(a z^{\prime}=b(x \varphi)\right)$, take $z^{\prime}=z \varphi$.

Let then $R=\mathbb{Z}$ and $M=\mathbb{Q}$. The \mathbb{Z}-endomorphisms of \mathbb{Q} act transitively, so by what we just said the only pp-definable subsets of \mathbb{Q} are 0 and \mathbb{Q}.

The same is true if we let $R=k$ be a field (or more generally a division algebra) and M a k-vector space.

2 Quantifier elimination

We want to prove the following weak form of quantifier elimination.
Theorem 2.1. For every module M, every L_{R}-formula is equivalent to a boolean combination of positive primitive formulas. That is, given a formula $\psi(\boldsymbol{x})$ we can find $\varphi(\boldsymbol{x})$ a boolean combination of pp-formulas so that:

$$
M \models \psi(\boldsymbol{x}) \leftrightarrow \varphi(\boldsymbol{x})
$$

for every \boldsymbol{x} in M^{n}.
Let's first introduce some convenient terminology. Fix a group G. We say that a subset X of G is G-big if a finite number of translations of X cover G, else we say that X is G-small. Note that a subgroup H of G is G-big if and only if G / H is finite. We leave to the reader to verify that a finite union of small sets is small.

Lemma 2.2 (B.H. Neumann). Let H_{i} be subgroups of an abelian group G. If $H_{0}+a_{0} \subset \bigcup_{i=1}^{n} H_{i}+a_{i}$ and $H_{i} \cap H_{0}$ is small in H_{0} for $i>k$, then $H_{0}+a_{0} \subset$ $\bigcup_{i=1}^{k} H_{i}+a_{i}$

Proof. Translating everything by $-a_{0}$ and taking the intersection with H_{0}, the hypothesis reads $H_{0}=\bigcup_{i=1}^{n} H_{i}+a_{i}$ with $H_{i} \subset H_{0}$ and H_{i} is H_{0}-small for $i>k$. We must prove that we can throw away the small set. Let $C=H_{0} \backslash \bigcup_{i=1}^{k} H_{i}+a_{i}$. If C is empty we have finished. If it is not empty then C is necessarily H_{0}-big. In fact H_{1}, \ldots, H_{k} are H_{0}-big (e.g. H_{0} / H_{i} is finite) and by basic group theory we deduce that $H_{1} \cap \cdots \cap H_{k}$ too is H_{0}-big. Let now c be an element in C, then $\left(H_{1} \cap \cdots \cap H_{k}\right)+c$ is G-big and is contained in C, because $\left(\bigcap_{j=1}^{k} H_{j}+c\right) \cap\left(H_{i}+\right.$ $\left.a_{i}\right) \subset\left(H_{i}+c\right) \cap\left(H_{i}+a_{i}\right)=\emptyset$ for $i \leq k$. But by hypothesis $C \subset \bigcup_{i=k+1}^{n} H_{i}+a_{i}$ and the latter is a finite union of small set, so it can't contain a big set.

Lemma 2.3. Let A_{i} be sets. If A_{0} is finite, then $A_{0} \subset \bigcup_{i=1}^{k} A_{i}$ iff

$$
\sum_{\Delta \subset\{1, \ldots, k\}}(-1)^{|\Delta|}\left|A_{0} \cap \bigcap_{i \in \Delta} A_{i}\right|=0
$$

Proof. A simple application of the inclusion-exclusion principle.
We are now ready to prove the theorem.
Proof of Theorem 2.1. The only thing we have to prove is that if $\varphi(x, \boldsymbol{y})$ is equivalent to a boolean combination of pp-formulas, so is $\psi(\boldsymbol{y}) \equiv \forall x \varphi(x, \boldsymbol{y})$. Note that pp-formulas are closed under conjunction, so we can write:

$$
\varphi \equiv \neg \varphi_{0} \vee \varphi_{1} \vee \cdots \vee \varphi_{k} \equiv \varphi_{0} \rightarrow \varphi_{1} \vee \cdots \vee \varphi_{k}
$$

where φ_{i} are pp-formulas. Set-wise this means that $M \neq \psi(\boldsymbol{y})$ iff $\varphi_{0}(M, \boldsymbol{y}) \subset$ $\varphi_{1}(M, \boldsymbol{y}) \cup \cdots \cup \varphi_{k}(M, \boldsymbol{y})$. Setting $H_{i}=\varphi_{i}(M, 0)$, by Proposition 1.2 we can rewrite this as $H_{0}+a_{0} \subset \bigcup_{i=1}^{n} H_{i}+a_{i}$ for some a_{i} in M^{n}. By Lemma 2.2 we can assume $H_{0}+a_{0} \subset \bigcup_{i=1}^{k} H_{i}+a_{i}$ and $H_{0} / H_{i} \cap H_{0}$ finite. We now have to find a boolean combination of pp-formulas that express this inclusion, but being H_{0} infinite this isn't a simple task (if it were finite we could simply impose the inclusion element by element). However if we take the quotient by $H_{0} \cap \cdots \cap H_{k}$ (a H_{0}-big set) we are left with the inclusion of a finite set:

$$
\begin{equation*}
H_{0} /\left(H_{0} \cap \cdots \cap H_{k}\right)+a_{0} \subseteq \bigcup_{i=1}^{k} H_{i} /\left(H_{0} \cap \cdots \cap H_{k}\right)+a_{i} \tag{1}
\end{equation*}
$$

We can now apply Lemma 2.3 to (1). Let N_{Δ} be

$$
N_{\Delta}=\left|\left(H_{0} \cap \bigcap_{i \in \Delta} H_{i}\right) /\left(H_{0} \cap \cdots \cap H_{k}\right)\right| .
$$

The set $\left(\left(H_{0}+a_{0}\right) \cap \bigcap_{i \in \Delta}\left(H_{i}+a_{i}\right)\right) /\left(H_{0} \cap \cdots \cap H_{k}\right)$ is empty or it has N_{Δ} elements (Proposition 1.2), so Lemma 2.3 reads:

$$
\begin{equation*}
M \models \forall x \varphi \Leftrightarrow \sum_{\Delta \in \mathcal{N}}(-1)^{|\Delta|} N_{\Delta}=0 \tag{2}
\end{equation*}
$$

where

$$
\mathcal{N}=\left\{\Delta \subset\{1, \ldots, k\} \mid \exists x\left(\varphi_{0}(x, \boldsymbol{y}) \wedge \bigwedge_{i \in \Delta} \varphi_{i}(x, \boldsymbol{y})\right)\right\}
$$

We have to prove that the sum in (2) can be written as a boolean combination of pp-formulas. To do this, list all the (finite) \mathcal{N} for which the sum is zero and write a formula that says that we are in one of those cases. It is easily seen that this can be done with boolean combination of pp-formulas.

Corollary 2.4. Two R-modules M_{1} and M_{2} are elementary equivalent iff for every ppf $\varphi \subseteq \psi$ we have

$$
\varphi / \psi\left(M_{1}\right)=\varphi / \psi\left(M_{2}\right)
$$

where by $\varphi / \psi(M)$ we mean $[\varphi(M): \psi(M)]$ if it is finite, or else ∞.

References

[1] Mike Prest. Model Theory and Modules. London Mathematical Society Lecture Note Series. Cambridge University Press, 1988.

