STRUTTURE MINIMALI E CHIUSURA ALGEBRICA

FRANCESCO PARENTE

Notazione. Per ogni $n < \omega$ e per ogni formula ϕ , introduciamo le abbreviazioni $\exists_{\leq n} x \phi$ e $\exists_{=n} x \phi$, che significano rispettivamente: "esistono al più n elementi x tali che ϕ " ed "esistono esattamente n elementi x tali che ϕ ". Ogni espressione di questo tipo può essere trasformata in una vera formula del primo ordine.

Definizione 1. Sia \mathcal{M} una L-struttura, $X \subseteq M$ e $a \in M$. Diremo che a è algebrico su X se esistono una L-formula $\phi(x, y)$ e dei parametri b in X tali che

$$\mathcal{M} \models (\phi(a, \mathbf{b}) \land \exists_{\leq n} x \phi(x, \mathbf{b}))$$

per qualche $n < \omega$. L'insieme degli elementi algebrici su X si indica con acl(X).

Definizione 2. Una struttura \mathcal{M} è *minimale* se, per ogni $D \subseteq M$ definibile, D è finito oppure $M \setminus D$ è finito.

Teorema 3. Sia \mathcal{M} una L-struttura minimale. Per ogni $X, Y \subseteq M$ abbiamo:

- (1) $X \subseteq \operatorname{acl}(X)$.
- (2) Se $X \subseteq acl(Y)$, allora $acl(X) \subseteq acl(Y)$.
- (3) Se $a \in \operatorname{acl}(X \cup \{b\}) \setminus \operatorname{acl}(X)$, allora $b \in \operatorname{acl}(X \cup \{a\})$.
- (4) Se $a \in \operatorname{acl}(X)$, allora esiste $X' \subseteq X$ finito tale che $a \in \operatorname{acl}(X')$.

Dimostrazione. (1) Se $a \in X$, basta prendere la formula (x = y) e, come parametro, lo stesso a.

(2) Supponiamo che $a \in \operatorname{acl}(X)$. Dunque, esistono una L-formula $\phi(x, y)$ e dei parametri $\boldsymbol{b} = (b_1, \ldots, b_k)$ in X tali che

$$\mathcal{M} \models (\phi(a, \mathbf{b}) \land \exists_{\leq n} x \phi(x, \mathbf{b})).$$

Per ogni $1 \le i \le k$ si ha $b_i \in X \subseteq \operatorname{acl}(Y)$; quindi esistono delle *L*-formule $\psi_1(x, \mathbf{z}), \dots, \psi_k(x, \mathbf{z})$ e dei parametri \mathbf{c} in Y tali che

$$\mathcal{M} \models (\psi_1(b_1, \mathbf{c}) \land \cdots \land \psi_k(b_k, \mathbf{c}))$$

e gli insiemi $\{d \in M \mid \mathcal{M} \models \psi_i(d, c)\}$ sono finiti. Ora, basta considerare la formula

$$\exists y (\psi_1(y_1, z) \land \cdots \land \psi_k(y_k, z) \land \phi(x, y) \land \exists \leq_n w \phi(w, y))$$

per ottenere che $a \in acl(Y)$.

(3) Non è restrittivo supporre $X=\emptyset$: il caso generale segue da questo aggiungendo a L una costante per ogni elemento di X. Sia $a\in\operatorname{acl}(\{b\})\setminus\operatorname{acl}(\emptyset)$ e supponiamo per assurdo che $b\notin\operatorname{acl}(\{a\})$. Poiché $a\in\operatorname{acl}(\{b\})$, esistono una L-formula $\phi(x,y)$ e un numero naturale n tali che

$$\mathcal{M} \models (\phi(a,b) \land \exists_{=n} x \phi(x,b)).$$

Inoltre, $b \notin \operatorname{acl}(\{a\})$ implica che l'insieme

$$\{b' \in M \mid \mathcal{M} \models (\phi(a,b') \land \exists_{=n} x \phi(x,b'))\}$$

Data: 19 aprile 2014.

Esercizio per il corso di Teoria dei modelli.

è infinito; dunque il suo complementare ha cardinalità $l < \omega$ (qui abbiamo usato il fatto che \mathcal{M} è minimale). Infine, da $a \notin \operatorname{acl}(\emptyset)$ segue che l'insieme

$$\{ a' \in M \mid \mathcal{M} \models \exists_{=l} y \neg (\phi(a', y) \land \exists_{=n} x \phi(x, y)) \}$$

è infinito. Quindi possiamo trovare al suo interno n+1 elementi distinti, chiamiamoli a_1,\ldots,a_{n+1} . Ma allora esiste un $b'\in M$ tale che

$$\mathcal{M} \models (\phi(a_1, b') \land \cdots \land \phi(a_{n+1}, b') \land \exists_{=n} x \phi(x, b')),$$

assurdo.

(4) Segue dal fatto che ogni formula può avere solo un numero finito di parametri. $\hfill\Box$