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Outline

Multigrid for symmetric positive definite Toeplitz
and multilevel Toeplitz systems

Problems caused by anisotropic BTTB systems
Anisotropy along coordinate axes
Anisotropy in other directions



Toeplitz matrices and generating functions

The 2n-periodic generating function

f@)= > tre"™
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corresponds to a series of Toeplitz matrices (T, ),en With
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The coefficients are computed by
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BTTB matrices and generating functions

In two dimensions, the generating function
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corresponds to a series of BTTB matrices (Thn)mnen
with
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where each matrix T} is itself a Toeplitz matrix.
The coefficients are computed by
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Example

f(x,y) =4 —2cos(x) —2cos (y)
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with the identity matrix I and Ty = tridiag(—1,4,—1)



Multigrid for the BTTB matrix T,

Let 7,,, be an spd and ill-conditioned BT TB matrix,
corresponding to a generating function f(x,y) > 0 with
f(xo0,50) = 0.
The prolongation is defined by P =B - F
B: defined to deal with the zero (xg,yg) of f
E: elementary projection matrix E,,, = F,, K F,

with E, =I1(;,2:2:n)
T he coarse grid matrix Ty is computed with the Galerkin
approach:

Toe = PTTP = ET(BTB)E



Multigrid for the generating function f

e Product T = B-T - B translated into functions
f(xay) — f(xvy) ’ b(xay)z

e Elementary projection E: picks every second row/co-
lumn and every second block row / block column.

Then, To = ET .- T - E corresponds to
= L FE Y D2 Y P, Y
fo(z,y) = -1/ (5: DT/ G+m DG, S+m)+/(G+m S+m) ]

f> is obtained by picking every second coefficient in
x and every second coefficient in y.

e Possible choices for B, i.e. b(x,y):
b(x,y) = (1 + cos(z — o)) - (1 + cos(y —yo))
b(z,y) = f(z,y+7) - fle+my) fe+my+m)



Convergence of multigrid for BTTB

o If b(x,y) is spd and if it has three zeros at
(CUO +7T7y0)7 (xO,yO +7T)7 (CUO +7T7y0 +7T) ’
then fao(z,y) > 0 with f2(2x0,2y0) = 0.

e Convergence proofs by S. Serra-Capizzano and R.
Chan

e Multigrid fails if f(x,y) has another zero at (xg +
7, y0) , (xo,yo + ), or (w0 + m,yo + m). Even if f is
close to zero at one of these points, convergence is
extremely slow.



Anisotropic problems: Examples

Anisotropic model PDE:

—a Uz —Uyy =17 (K1)
Discretization leads to an anisotropic BT TB
system with generating function

flz,y) =a-(1-cos(z))+(1—-cos(y)) (a<K1)

T he following function belongs to a denser ma-

trix: 5 5
f(z,y) =a- -z +y~.
Its Fourier expansion is

72 = (—1)J
fan=a+nT +a. 3¢ j? (acos (jz) + cos (jy))
j=1




Problems with multigrid methods

 If the anisotropy is strong, i.e. ifa < 1,
f(x,0) becomes close to zero for all x € [0,2~7]

= standard multigrid fails
« Weak coupling in x-direction, i.e. level curves are

extremely flat.
Example: f(x,y)=0.01 fora =1, 0.1, 0.01
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Anisotropic problems and solution methods

o Different types of anisotropies:

e along coordinate axes, e.qg.
f(x,y)=a-(1-cos(x))+(1-cos(y))

e along other directions, e.g.
f(x,y)=a-(1-cos(x+y))+(1-cos(x-y))

o Strategies for solving anisotropic systems:
e Semicoarsening
e Use of line smoothers, e.g. block-GS



Anisotropy along coordinate axes
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Semicoarsening, a two-level method

Tmn . sSpd, ill-cond., anisotropic along z=, e.g.

flz,y) = a- (1 —cos(x))+ (1 —cos(y))

Functions for prolongation and coarse grid rep-

resentation:
b(xz,y) =1+ cos(y) or
b(z,y) = f(z,y + )

f(aja y) — f(at,y) ) b(aj,y)Q

_ 1/ y s Y
fa(a) =5 (F@ ) + Fa, 2 +m)

Tc, which belongs to fo, has n/2 blocks of
Size n .



Semicoarsening and level curves

f(x,y)=0.05-(1-cos(x))+(1-cos(y))
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A two-level convergence result

T heorem:

Let Tn be a spd BT TB matrix whose gener-
ating function is real-valued even and satisfies

min (@, y) =C >0 .
(z,y)€[-m,m]2 1 — cos (y)
Furthermore, let the prolongation matrix cor-

respond to the generating function

b(x,y) =14 cos(y).

Then the two-level method converges.



Semicoarsening, a multilevel method

Heuristic: 154,
Apply semicoarsening steps until the Br
system is not anisotropic anymore, 8
i.e. until level curves are circles. Then y Jf;ﬁl
switch to full coarsening. E'TJ%"\

Example: ff"f;‘ 1 \y
f(x,y)=(1-cos(x))+0.01-(1-cos(y)) K v wipi
b(x,y)=1+cos(x) three times gk ; T H&{

A1

Level curves: f(x,y)=0.01 ”’|{
f2(x,y)=0.01 1]
f3(x,y)=0 01 i
f,(x,y)=0.01 1.59




Numerical Results

Iteration numbers for the matrix 7T,, corresponding to
the generating functions

f(z,y) = (1 —cos(z)) +0.01-(1—-cos(y)) .

coarsening || n=26—1 | n=2"—-1 | n=28-1
X, XY, XY 63 65 66
X, X, X, XY 16 17 17
X, X, X, X, X 20 20 19

f(z,y) = (1 —cos(z)) +0.001- (1 —cos(y)) .

coarsening || n=26—1 | n=2"—1 | n=28—1
X, XY, XY 125 181 > 200
X, X, X, XY 32 45 50
X, X, X, X, X 15 15 15

Size of T on the coarsest level: Z-by-Z



The use of line smoothers

Multigrid for moderately anisotropic problems:
Standard coarsening, e.g.
b(x,y)=(1+cos(x))-(1+cos(y))
and line smoother such as the block-Jacobi or the block-
Gauss-Seidel method (all blocks have size n)




Numerical Results

Iteration numbers for Ty, corresponding to

f(z,y) = (1 —cos(x)) + 0.005- (1 —cos(y))

b(x,y) = (1 +cos(zx)) - (1 + cos(y))

Smoothing: block-Jacobi with blocks of size n

levels | n=2°—1 | n=20—-1 | n=27-1 | n=2%-1

2 12 14 14 14
3 15 16 17 17
4 18 19 19 19




Anisotropy in other directions



Examples

f(x,y)=a-(1-cos(x+y)) + (1-cos(x-y))
g(x,y)=(1-cos(2-x+y)) + a-(1-cos(x-2-y))
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Coarsening in other directions

New coordinate system:
S=X+y
t=x-y
f(s,t)=a-(1-cos(s))+(1-cos(t))
Semicoarsening with
b(s,t)=1+cos(t)
Full coarsening with
b(s,t)=(1+cos(s))-(1+cos(t))




Semicoarsening in matrix notation

* Permutation of T, and
partitioning into blocks,
one block for each
diagonal

« Bg=diag(B,,...,B,,...,B)
with
B,=2, B,=tridiag(1,2,1)

» Coarse grid matrix
computed by Bg-T,,-Bg
and then by eliminating

every second row/column
within each block




Full coarsening in matrix notation

 B=Bgs+B;, where B; has
blocks Bl =tridiag,(0.5,1,0.5)
in the second lower block
diagonal

» Coarse grid matrix computed
by Be-T,,-Be and then by
eliminating every second
row/column within each block
and every second block
row/column

« Multilevel method:
Apply semicoarsening until the
level curves are circles, then
proceed with full coarsening




Numerical results

Iteration numbers for the matrices T, corresponding to
the generating functions

f(x,y) =0.01-(1—cos(z+y))+ (1 —cos(z—y))

coarsening || n=20—1 | n=2"—1 | n=2%—1
t,st,st 43 45 45
t,t t,st 17 18 18
tt,t,tt 21 21 21

f(z,y) =0.001- (1 —cos(z+y))+ (1—cos(z—y))

coarsening || n=20—1 | n=2"—1 | n=28—1
t,st,st 82 o7 104

t,t,t,st 28 32 34
£ttt 17 17 17




Standard coarsening and line smoothing

Coarsening: b(x,y)=(1+cos(x))(1+cos(y))

Smoothing: Block-Jacobi or block-GS with blocks of
variable size (one for each diagonal)

Problem: f(x,y) has zeros at (0,0) and (rt, =)

Solution: For computation of the coarse grid matrix con-
sider T,, as a block-BTTB matrix with blocks of size 2

Example: f(x,y)=0.05-(1-cos(x))+(1-cos(y))

levels || n=25-1 | n=26—1 | n=27—1 | n=28—1
2 13 14 14 13
3 21 25 26 25




