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Outline

• Multigrid for symmetric positive definite Toeplitz
and multilevel Toeplitz systems

• Problems caused by anisotropic BTTB systems
• Anisotropy along coordinate axes
• Anisotropy in other directions



Toeplitz matrices and generating functions



BTTB matrices and generating functions



Example



Multigrid for the BTTB matrix Tmn



Multigrid for the generating function f



Convergence of multigrid for BTTB



Anisotropic problems: Examples



Problems with multigrid methods

• If the anisotropy is strong, i.e. if α¿ 1 , 
f(x,0) becomes close to zero for all x ∈ [0,2π]  
⇒ standard multigrid fails

• Weak coupling in x-direction, i.e. level curves are 
extremely flat. 
Example: f(x,y)=0.01 for α = 1, 0.1, 0.01



Anisotropic problems and solution methods

o Different types of anisotropies:
● along coordinate axes, e.g.

f(x,y)=α·(1-cos(x))+(1-cos(y))
● along other directions, e.g.

f(x,y)=α·(1-cos(x+y))+(1-cos(x-y))

o Strategies for solving anisotropic systems:
● Semicoarsening
● Use of line smoothers, e.g. block-GS



Anisotropy along coordinate axes



Semicoarsening, a two-level method



Semicoarsening and level curves

f(x,y)=0.05·(1-cos(x))+(1-cos(y))



A two-level convergence result



Semicoarsening, a multilevel method

Heuristic: 
Apply semicoarsening steps until the 
system is not anisotropic anymore, 
i.e. until level curves are circles. Then 
switch to full coarsening.

Example: 
f(x,y)=(1-cos(x))+0.01·(1-cos(y))
b(x,y)=1+cos(x)  three times

Level curves: f(x,y)=0.01
f2(x,y)=0.01
f3(x,y)=0.01
f4(x,y)=0.01



Numerical Results



The use of line smoothers
Multigrid for moderately anisotropic problems:

Standard coarsening, e.g.
b(x,y)=(1+cos(x))·(1+cos(y))

and line smoother such as the block-Jacobi or the block-
Gauss-Seidel method (all blocks have size n)



Numerical Results



Anisotropy in other directions



Examples

f(x,y)=α·(1-cos(x+y)) + (1-cos(x-y))
g(x,y)=(1-cos(2·x+y)) + α·(1-cos(x-2·y))

f(x,y)=0.01

α=0.01

g(x,y)=0.01

α=0.01



Coarsening in other directions

New coordinate system:
s=x+y
t=x-y

f(s,t)=α·(1-cos(s))+(1-cos(t))
Semicoarsening with

b(s,t)=1+cos(t)
Full coarsening with
b(s,t)=(1+cos(s))·(1+cos(t))



Semicoarsening in matrix notation

• Permutation of Tnn and 
partitioning into blocks, 
one block for each 
diagonal

• BS=diag(B1,…,Bn,…,B1) 
with 
B1=2 , Bk=tridiag(1,2,1)

• Coarse grid matrix 
computed by BS·Tnn·BS
and then by eliminating 
every second row/column 
within each block



Full coarsening in matrix notation

• BF=BS+BT , where BT has 
blocks Blk=tridiagk(0.5,1,0.5)
in the second lower block 
diagonal

• Coarse grid matrix computed 
by BF·Tnn·BF and then by 
eliminating every second 
row/column within each block 
and every second block 
row/column

• Multilevel method:
Apply semicoarsening until the 
level curves are circles, then 
proceed with full coarsening



Numerical results



Standard coarsening and line smoothing

Coarsening: b(x,y)=(1+cos(x))(1+cos(y))
Smoothing: Block-Jacobi or block-GS with blocks of 

variable size (one for each diagonal)
Problem: f(x,y) has zeros at (0,0) and (π,π)
Solution: For computation of the coarse grid matrix con-

sider Tnn as a block-BTTB matrix with blocks of size 2
Example: f(x,y)=0.05·(1-cos(x))+(1-cos(y)) 


