
1/32

Kauffman brackets on surfaces

Kauffman brackets on surfaces

Francis Bonahon

University of Southern California

Geometric Topology in Cortona, June 2013



2/32

Kauffman brackets on surfaces

Joint work with Helen Wong



2/32

Kauffman brackets on surfaces

Joint work with Helen Wong (busy with another project)

Grace Tsapsie Hibbard, born March 22, 2013



3/32

Kauffman brackets on surfaces

SL2(C)–characters

S = closed oriented surface of genus g > 0

group homomorphism ρ : π1(S) → SL2(C)



3/32

Kauffman brackets on surfaces

SL2(C)–characters

S = closed oriented surface of genus g > 0

group homomorphism ρ : π1(S) → SL2(C)



3/32

Kauffman brackets on surfaces

SL2(C)–characters

S = closed oriented surface of genus g > 0

A group homomorphism ρ : π1(S) → SL2(C) defines its character

Kρ : {closed curves in S} −→ C

K 7−→ Tr ρ(K )



3/32

Kauffman brackets on surfaces

SL2(C)–characters

S = closed oriented surface of genus g > 0

A group homomorphism ρ : π1(S) → SL2(C) defines its character

Kρ : {closed multicurves in S} −→ C

K =

n
⋃

i=1

Ki 7−→ (−1)n
n
∏

i=1

Tr ρ(Ki )
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Theorem (Helling 1967)

A function K : {closed multicurves in S} −→ C is the character of
a group homomorphism ρ : π1(S) → SL2(C) if and only if:
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SL2(C)–characters

Theorem (Helling 1967)

A function K : {closed multicurves in S} −→ C is the character of
a group homomorphism ρ : π1(S) → SL2(C) if and only if:

◮ (Homotopy Invariance) K(K ) depends only on the homotopy
class of K

◮ (Superposition Rule) K(K1 ∪ K2) = K(K1)K(K2)

◮ (Skein Relation) K(K1) = −K(K0) −K(K∞) if K1, K0, K∞

are the same everywhere, except in a small box where

K1 = , K0 = and K∞ =

The Skein Relation just rephrases the classical trace relation of SL2(C):
TrM TrN = TrMN + TrMN−1, ∀M , N ∈ SL2(C)
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SL2(C)–characters

Definition
An SL2(C)–character is a function

K : {closed multicurves in S} −→ C

such that:

◮ (Homotopy Invariance) K(K ) depends only on the homotopy
class of K

◮ (Superposition Rule) K(K1 ∪ K2) = K(K1)K(K2) for any
multicurves K1 and K2

◮ (Skein Relation) K(K1) = −K(K0) −K(K∞) if K1, K0, K∞

are the same everywhere, except in a small box where

K1 = , K0 = and K∞ =
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Kauffman brackets

Definition
For q = e2πi~ ∈ C − {0}, a Kauffman q–bracket is a function

K : {framed links in S × [0, 1]} −→ End(E )

for a finite-dimensional vector space E, such that:

◮ (Isotopy Invariance) K(K ) depends only on the isotopy class
of K in S × [0, 1]

◮ (Superposition Rule) K(K1 ∪ K2) = K(K1) ◦ K(K2) whenever
K = K1 ∪ K2 with K1 ⊂ S × [0, 1

2 ] and K2 ⊂ S × [12 , 1]

◮ (Skein Relation) K(K1) = q
1
2K(K0) + q− 1

2K(K∞) if K1, K0,
K∞ are the same everywhere, except in a small box where

K1 = , K0 = and K∞ =
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1. When S = the sphere and End(E ) = End(C) = C, this is the
classical Kauffman bracket (∼= Jones polynomial)

K : {framed links in R
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framework of a topological quantum field theory, mathematicalized
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Kauffman brackets

Historic examples

1. When S = the sphere and End(E ) = End(C) = C, this is the
classical Kauffman bracket (∼= Jones polynomial)

K : {framed links in R
3} −→ C

2. Witten’s interpretation (1987) of the Jones polynomial in the
framework of a topological quantum field theory, mathematicalized
by Reshetikhin-Turaev, provides a Kauffman q–bracket

KWRT : {framed links in S × [0, 1]} −→ End(E )

for every q that is an N–root of unity with N odd.

The skein relation appears as a consequence of a property of the
quantum trace in the quantum group Uq(sl2)

Goal of this talk: Construct other examples of Kauffman brackets
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Kauffman brackets

Conceptual motivation

When q = 1 and q
1
2 = −1, a Kauffman 1–bracket is the same thing

as an SL2(C)–character, namely as a point of the character variety

RSL2(C)(S) = {homomorphisms ρ : π1(S) → SL2(C)}//SL2(C)



8/32

Kauffman brackets on surfaces

Kauffman brackets

Conceptual motivation

When q = 1 and q
1
2 = −1, a Kauffman 1–bracket is the same thing

as an SL2(C)–character, namely as a point of the character variety

RSL2(C)(S) = {homomorphisms ρ : π1(S) → SL2(C)}//SL2(C)

Turaev (1987), Frohman, Bullock, Kania-Bartoszýnska, Przytycki,
Sikora (around 2000), Charles, Marché:
Interpretation of a Kauffman q–bracket as a “point” in a
quantization of the character variety RSL2(C)(S), namely as a
quantum SL2(C)–character.
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Construction of SL2(C)–characters

How to construct a group homomorphism ρ : π1(S) → SL2(C)?

Pick a triangulation Γ of S , with vertex set VΓ

Assign a weight xi ∈ C − {0} to each edge ei of Γ

This defines a pleated surface with shear-bend coordinates xi , and
with monodromy ρ : π1(S − VΓ) → PSL2(C) = SL2(C)/ ± Id

which, after choices of square roots x
1
2
i and of a spin structure,

defines a homomorphism ρ : π1(S − VΓ) → SL2(C)

Main Point: The construction is classical and, for a curve
K ⊂ S − VΓ, gives a very explicit formula for Tr ρ(K )
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Kauffman brackets on surfaces

Construction of SL2(C)–characters

More precisely, if K crosses the edges ei1 , ei2 , . . . , ein ,

Tr ρ(K ) = ±Tr

[

M1

(

x
1
2

i1
0

0 x
−

1
2

i1

)

M2

(

x
1
2

i2
0

0 x
−

1
2

i2

)

. . .Mn

(

x
1
2

in
0

0 x
−

1
2

in

)]

= ±
∑

±±···±

(0 or 1) x
±

1
2

i1
x
±

1
2

i2
. . . x

±
1
2

in

where

Mk =



























(

1 1

0 1

)

if

(

1 0

1 1

)

if
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Problem: This defines an SL2(C)–character on the punctured
surface S − VΓ, not necessarily on the closed surface S
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Construction of SL2(C)–characters

Problem: This defines an SL2(C)–character on the punctured
surface S − VΓ, not necessarily on the closed surface S

ei1

ei2ei3

ein

ein−1

K

K ′

Tr ρ(K ) = Tr ρ(K ′)?

Fact
The edge weights xi define an SL2(C)–character on the closed
surface S if and only if, for every vertex,















x
1
2
i1
x

1
2
i1

. . . x
1
2
i1

= −1

1 + xi1 + xi1xi2 + xi1xi2xi3 + · · · + xi1xi2 . . . xin−1 = 0
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2
i ∈ C − {0} for each edge ei of the
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Kρ(K ) = ±
∑

±±···±
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2
i1

x
± 1

2
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± 1

2
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3. This character induces a character for the closed surface S if
and only if
{

x
1
2
i1
x

1
2
i2

. . . x
1
2
in

= −1

1 + xi1 + xi1xi2 + xi1xi2xi3 + · · · + xi1xi2 . . . xin−1 = 0

for each vertex
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Construction of Kauffman brackets

Fix q ∈ C with qN = 1, N odd

Want to construct a Kauffman q–bracket

K : {framed links in S × [0, 1]} −→ End(E )

namely such that:

◮ (Isotopy Invariance) K(K ) depends only on the isotopy class
of K in S × [0, 1]

◮ (Superposition Rule) K(K1 ∪ K2) = K(K1) ◦ K(K2) whenever
K = K1 ∪ K2 with K1 ⊂ S × [0, 1

2 ] and K2 ⊂ S × [12 , 1]

◮ (Skein Relation) K(K1) = q
1
2K(K0) + q− 1

2K(K∞) if K1, K0,
K∞ are the same everywhere, except in a small box where

K1 = , K0 = and K∞ =
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Construction of Kauffman brackets

Step 1. Choose an invertible operator (= matrix) X
1
2

i ∈ End(E ) for
each edge ei of the triangulation Γ, for an appropriate finite-dimensional
vector space E and in such a way that

X
1
2

i X
1
2

j = qX
1
2

j X
1
2

i whenever

ei ej
This is the same thing as a representation of the Chekhov-Fock algebra
of the triangulation Γ (= quantum Teichmüller space of the punctured
surface S − VΓ)

Proposition (FB + Xiaobo Liu, 2007, relatively easy)
If qN = 1 with N odd, smallest dimensional choices of such operators

X
1
2

i ∈ End(E ) are classified by

◮ edge weights xi ∈ C∗ such that X
N
2

i = x
1
2

i IdE

◮ choices of N–roots for numbers x
1
2

i1
x

1
2

i2
. . . x

1
2

in
∈ C∗ associated to the

vertices
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2
i2

. . . x
± 1

2
in

3. This character induces a character for the closed surface S if
and only if
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x
1
2
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x

1
2
i2

. . . x
1
2
in

= −1

1 + xi1 + xi1xi2 + xi1xi2xi3 + · · · + xi1xi2 . . . xin−1 = 0

for each vertex
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for the punctured surface S − VΓ

Remark Much harder. Need to worry about the order in which to

multiply the operators X
1
2
i ∈ End(E ), which requires the

introduction of correction factors q related to the classical
Kauffman bracket in R

3.

FB + Qingtao Chen, 2013 More conceptual approach based on the
representation theory of the quantum group Uq(sl2)
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Construction of Kauffman brackets

Problem: This defines a Kauffman bracket

K : {framed links in (S − VΓ) × [0, 1]} −→ End(E )

on the punctured surface S − VΓ, not necessarily on the closed
surface S

ei1

ei2ei3

ein

ein−1

K

K ′

K(K ) = K(K ′)?
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Construction of Kauffman brackets

In Step 1, we associated to the edges of the triangulation Γ

operators X
1
2
i ∈ End(E ) such that X

N
2

i = x
1
2
i IdE

Step 3a. If x
1
2
i1
x

1
2
i2

. . . x
1
2
in

= −1 at a vertex, the corresponding

operators X
1
2
i ∈ End(E ) can be chosen so that

X
1
2
i1

X
1
2
i2

. . . X
1
2
in

= −q
n+2
4 IdE
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i ∈ C − {0} for each edge ei of the
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2. This defines an SL2(C)–character for the punctured surface
S − VΓ by an explicit formula

Kρ(K ) = ±
∑

±±···±

(0 or 1) x
± 1
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± 1

2
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. . . x
± 1

2
in

X

3. This character induces a character for the closed surface S if
and only if
{

x
1
2
i1
x

1
2
i2

. . . x
1
2
in

= −1 X

1 + xi1 + xi1xi2 + xi1xi2xi3 + · · · + xi1xi2 . . . xin−1 = 0

for each vertex
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Construction of Kauffman brackets

Step 3b. For a vertex v =

ei1

ei2ei3

ein

ein−1

of the triangulation Γ for

the operators X
1
2
ij
∈ End(E ) associated to the edges, set

Fv = ker
(

1+qXi1+q2Xi1Xi2+q3Xi1Xi2Xi3+ · · · +qn−1Xi1Xi2 . . . Xin−1

)

and
F =

⋂

vertices v

Fv ⊂ E
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Construction of Kauffman brackets

Theorem

1. The linear subspace F ⊂ E is invariant under the image of the
Kauffman bracket

K : {framed links in (S − VΓ) × [0, 1]} −→ End(E )

constructed in Step 2 (but not invariant under the Xi !!)

2. If K , K ′ ⊂ (S − VΓ) × [0, 1] are isotopic in S × [0, 1], then
K(K )|F = K(K ′)|F ei1

ei2ei3

ein

ein−1

K

K ′Corollary

K induces a Kauffman q–bracket

K̄ : {framed links in S × [0, 1]} −→ End(F )

for the closed surface S
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Proposition

dimF >











N3(g−1) if g > 2

N if g = 1

1 if g = 0

with equality for generic (all?) Kρ ∈ RSL2(C)(S)

Theorem
Up to isomorphism, the Kauffman bracket

K̄ : {framed links in S × [0, 1]} −→ End(F )

depends only on the (classical) SL2(C)–character Kρ ∈ RSL2(C)(S)
associated to the same edge weights xi ∈ C

∗. In particular, it is
independent of the triangulation Γ
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The Kashaev-Baseilhac-Benedetti topological quantum field theory

For qN = 1 with N odd, the Kashaev-Baseilhac-Benedetti
topological quantum field theory associates

◮ a vector space ZKBB

S to each surface S endowed with a
triangulation Γ and edge weights xi ∈ C

∗ satisfying

{

xi1xi2 . . . xin = 1

1 + xi1 + xi1xi2 + xi1xi2xi3 + · · · + xi1xi2 . . . xin−1 = 0

at each vertex of Γ, plus preferred determinations for the log xi

◮ a linear map ZKBB

(M,L) : ZKBB

S1
→ ZKBB

S2
to each 3–dimensional

cobordism M from S1 to S2, endowed with a framed link
L ⊂ M and an PSL2(C)–character Kρ ∈ RPSL2(C)(M)
compatible with the boundary data (plus a little more
topological data)
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Speculations

The Kashaev-Baseilhac-Benedetti topological quantum field theory

Problem The vector space ZKBB

S depends on the triangulation Γ

dimZKBB

S = N#faces of Γ

This creates technical and conceptual drawbacks

Good point Well behaved under cut-and-paste
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The Kashaev-Baseilhac-Benedetti topological quantum field theory

Fact In our construction of a Kauffman q–bracket, the operators
Xi associated to the edges of the triangulation can be chosen to to
be in End(ZKBB

S )

Proposal Define FS ⊂ ZKBB
S as the set of vectors v ∈ ZKBB

S such
that, for every vertex of Γ,







X
1
2
i1

X
1
2
i2

. . . X
1
2
in

(v) = −q
n+2
4 v

(

1+qXi1+q2Xi1Xi2+q3Xi1Xi2Xi3+ · · · +qn−1Xi1Xi2 . . . Xin−1

)

(v) = 0



31/32

Kauffman brackets on surfaces

Speculations

The Kashaev-Baseilhac-Benedetti topological quantum field theory

Wish list
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Speculations

The Kashaev-Baseilhac-Benedetti topological quantum field theory

Wish list

1. dimFS = N4g−3 if g > 2, N2 if g = 1, 1 if g = 0

2. FS ⊂ ZKBB
S depends only on S and on the SL2(C)–character

Kρ ∈ RSL2(C)(S) associated to the same edge weights
xi ∈ C − {0}

3. The linear map ZKBB

(M,L) : ZKBB

S1
→ ZKBB

S2
associated to a

cobordism (M,L) from S1 to S2 sends FS1
to FS2

This would improve the Kashaev-Baseilhac-Benedetti TQFT, by
making it more independent of choices (while maintaining the
good behavior under cut-and-paste)
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The birthday boy

But we cannot improve Riccardo! He’s perfect

Happy Birthday!!
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