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Hyperbolic manifolds

A hyperbolic n-manifold M is:

a complete riemannian manifold with sectional curvature −1,

M = Hn/Γ with Γ < Isom(Hn) discrete subgroup acting freely on Hn.

Isom(Hn) = O+(n, 1)

For instance:

Γ = O+(n, 1) ∩ SL(n + 1,Z)

More precisely: some finite-index
subgroup of Γ.
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More models of the hyperbolic space Hn:

Disc model Half-space model

Pictures created by Claudio Rocchini and Kilom691
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Hyperbolic pairs-of-pants:

a b

c
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Hyperbolic surfaces:
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Pants with cusps:

a b

c

b

c c

Surfaces of finite type, possibly with geodesic boundary and/or cusps:
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Thick-thin decomposition for finite-volume hyperbolic manifolds:

Points with injectivity radius < εn form tubes (tubular neighbourhoods of
simple closed geodesics) and cusps.

A cusp is isometric to
M × [0,+∞)

with M flat (n − 1)-manifold, rescaled by e−2t at time t ∈ [0,+∞).

Vol(cusp) =
Vol(M)

n − 1
.
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Regular polyhedra:

polyhedron θ = π
3 θ = 2π

5 θ = π
2 θ = 2π

3

tetrahedron ideal H3 S3 S3 S3

cube ideal H3 H3 R3 S3

octahedron ideal H3 S3

icosahedron H3

dodecahedron ideal H3 H3 H3 S3

The right picture was created by Win
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Every regular polyhedron with dihedral angle θ = 2π
n gives rise to a

tessellation of S3,R3, or H3:

angle π
2

angle 2π
5 angle π

3

Pictures created by Roice3
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A finite-volume hyperbolic orientable 3-manifold is M = int(N) with N
compact and ∂N made of tori. At every boundary torus we have a cusp

T × [0,+∞).

The complements in S3 of the figure-eight knot and the borromean link
are hyperbolic:

They decompose in regular ideal octahedra and tetrahedra, respectively.
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Geometrisation

Let M be a compact orientable 3-manifold, with boundary empty or
consisting of tori.

(Kneser, Milnor, Jaco – Shalen, Johansson ’60) There is a canonical
way to decompose M along spheres and tori.

(Thurston ’80 - Perelman ’00) Every piece of the decomposition has a
finite-volume complete locally homogeneous riemannian metric.

There are 8 types of such metrics:

S3, R3, H3, S2 × R, H2 × R, Nil, Sol, S̃L2(R).

The manifolds with the 7 non-hyperbolic metrics all have some
particular fibrations and are topologically classified (Seifert ’30).

(Mostow rigidity) The hyperbolic metric is unique.
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The six orientable flat three-manifolds:

L

L

P

P

P
P

PP

P

P P

P

F

F

Bruno Martelli Geometrisation of three-manifolds 17 november 2016 12 / 18



The six orientable flat three-manifolds:

L

L

P

P

P
P

PP

P

P P

P

F

F

Bruno Martelli Geometrisation of three-manifolds 17 november 2016 12 / 18



There are three types of knots:

toric
satellite hyperbolic

crossings 3 4 5 6 7 8 9 10 11 12 13 14

toric 1 0 1 0 1 1 1 1 1 0 1 1
satellite 0 0 0 0 0 0 0 0 0 0 2 2

hyperbolic 0 1 1 3 6 20 48 164 551 2176 9985 46969
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Consequences of geometrisation:

Let M be a closed 3-manifold (compact, no boundary).

Poincaré conjecture: π1(M) = {e} =⇒ M = S3.

Spherical space-form conjecture: |π1(M)| < +∞ =⇒ M = S3/Γ is
elliptic

Hyperbolisation: |π1(M)| =∞, indecomposable and without Z× Z
=⇒ M = H3/Γ is hyperbolic.
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What’s next?

Classify all finite-volume hyperbolic 3-manifolds.
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What’s next?

Is there a geometrisation perspective in dimension four?

Schönflies: is every S3 ⊂ S4 standard?

There is no canonical decomposition whatsoever.

There are plenty of smooth manifolds: for instance the K3 surface
has infinitely many distinct smooth structures.

There are plenty of exotic aspherical four-manifolds.

What is the role of hyperbolic geometry in dimension four?
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Hyperbolic four-manifolds

In even dimensions, the volume is roughly the Euler characteristic:

Vol(M) =
4π2

3
χ(M).

For every V there are finitely many hyperbolic manifolds with volume
V [Wang 72]

Those with χ = 1 are at least 1171, and probably many more
[Ratcliffe – Tschanz 00]

There are manifolds with any number c > 0 of cusps [Kolpakov –
Martelli 13]

There are many non-arithmetic hyperbolic manifolds [Gelander – Levit
14]
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Some open questions:

Can we find a closed hyperbolic four-manifold with odd intersection
form?

Are there infinitely many hyperbolic four-manifolds M with bounded
b1(M)?

Can we classify all the hyperbolic four-manifolds M with χ(M) = 1?

Can we construct some hyperbolic four-manifolds M that fiber in
some nice way?
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