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Hyperbolic manifolds

A hyperbolic n-manifold M is:
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Hyperbolic manifolds

A hyperbolic n-manifold M is:
@ a complete riemannian manifold with sectional curvature —1,

o M =H"/r with ' < Isom(H") discrete subgroup acting freely on H".

Isom(H") = O4(n, 1)

For instance:

=04(n,1)NSL(n+1,Z)
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Hyperbolic manifolds

A hyperbolic n-manifold M is:
@ a complete riemannian manifold with sectional curvature —1,

o M =H"/r with ' < Isom(H") discrete subgroup acting freely on H".

Isom(H") = O4(n, 1)
For instance:
=04(n,1)NSL(n+1,Z)

More precisely: some finite-index
subgroup of T.
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More models of the hyperbolic space H":
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More models of the hyperbolic space H":

Disc model
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More models of the hyperbolic space H":

Disc model Half-space model

Pictures created by Claudio Rocchini and Kilom691
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Hyperbolic pairs-of-pants:
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Hyperbolic pairs-of-pants:
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Hyperbolic surfaces:
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Pants with cusps:

SEAA
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Pants with cusps:
c C C
@ @) Z \ A

Surfaces of finite type, possibly with geodesic boundary and/or cusps:
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Thick-thin decomposition for finite-volume hyperbolic manifolds:

Points with injectivity radius < &, form tubes (tubular neighbourhoods of
simple closed geodesics) and cusps.
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Thick-thin decomposition for finite-volume hyperbolic manifolds:

Points with injectivity radius < &, form tubes (tubular neighbourhoods of
simple closed geodesics) and cusps.

A cusp is isometric to
M x [0, 4+00)

with M flat (n — 1)-manifold, rescaled by e~2 at time t € [0, +0c0).
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Thick-thin decomposition for finite-volume hyperbolic manifolds:

Points with injectivity radius < &, form tubes (tubular neighbourhoods of
simple closed geodesics) and cusps.

A cusp is isometric to
M x [0, 4+00)
with M flat (n — 1)-manifold, rescaled by e~2 at time t € [0, +0c0).

Vol(M)

Vol(cusp) = —— 1

Bruno Martelli Geometrisation of three-manifolds 17 november 2016 6 /18



Regular polyhedra:

&
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Regular polyhedra:

polyhedron 0=3 0= 2% 0=7% 0= 2%
tetrahedron | ideal H3 s3 s3 s3
cube ideal H?3 H3 R3 s3
octahedron ideal H?3 S3
icosahedron H3
dodecahedron | ideal H3 H3 H3 S3

The right picture was created by Win
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Every regular polyhedron with dihedral angle 6 = 27” gives rise to a
tessellation of S3,R3, or H3:
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Every regular polyhedron with dihedral angle 6 = 27” gives rise to a
tessellation of S3,R3, or H3:

Pictures created by Roice3
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Pictures created by Roice3
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A finite-volume hyperbolic orientable 3-manifold is M = int(N) with N
compact and 9N made of tori. At every boundary torus we have a cusp

T x [0, +00).
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A finite-volume hyperbolic orientable 3-manifold is M = int(N) with N
compact and 9N made of tori. At every boundary torus we have a cusp

T x [0, +00).

The complements in S3 of the figure-eight knot and the borromean link
are hyperbolic:

They decompose in regular ideal octahedra and tetrahedra, respectively.
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Geometrisation

Let M be a compact orientable 3-manifold, with boundary empty or
consisting of tori.
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o (Kneser, Milnor, Jaco — Shalen, Johansson '60) There is a canonical
way to decompose M along spheres and tori.
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Geometrisation

Let M be a compact orientable 3-manifold, with boundary empty or
consisting of tori.
o (Kneser, Milnor, Jaco — Shalen, Johansson '60) There is a canonical
way to decompose M along spheres and tori.
@ (Thurston '80 - Perelman '00) Every piece of the decomposition has a
finite-volume complete locally homogeneous riemannian metric.
@ There are 8 types of such metrics:

e~

S3, RS, H3 S?xR, H2xR, Nil, Sol, SLy(R).
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@ There are 8 types of such metrics:
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@ The manifolds with the 7 non-hyperbolic metrics all have some
particular fibrations and are topologically classified (Seifert '30).
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Geometrisation

Let M be a compact orientable 3-manifold, with boundary empty or
consisting of tori.

o (Kneser, Milnor, Jaco — Shalen, Johansson '60) There is a canonical
way to decompose M along spheres and tori.

@ (Thurston '80 - Perelman '00) Every piece of the decomposition has a
finite-volume complete locally homogeneous riemannian metric.

@ There are 8 types of such metrics:

P

S3, RS, H3 S?xR, H2xR, Nil, Sol, SLy(R).

@ The manifolds with the 7 non-hyperbolic metrics all have some
particular fibrations and are topologically classified (Seifert '30).

@ (Mostow rigidity) The hyperbolic metric is unique.
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The six orientable flat three-manifolds:
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The six orientable flat three-manifolds:
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There are three types of knots:
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There are three types of knots:

toric
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There are three types of knots:
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There are three types of knots:
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satellite hyperbolic
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There are three types of knots:

_ satellite hyperbolic
toric
crossings |[3 4 5 6 7 8 9 10 11 12 13 14
toric 10101 1 1 1 1 0 1 1
satelite (O 0 0 0 0O 0 0 0O O 0 2 2
hyperbolic |[ 0 1 1 3 6 20 48 164 551 2176 9985 46969
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Consequences of geometrisation:
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Consequences of geometrisation:

Let M be a closed 3-manifold (compact, no boundary).
e Poincaré conjecture: m (M) = {e} = M = S3.

@ Spherical space-form conjecture: |71(M)| < +00 = M = S3/r is
elliptic
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Consequences of geometrisation:

Let M be a closed 3-manifold (compact, no boundary).
e Poincaré conjecture: m (M) = {e} = M = S3.
@ Spherical space-form conjecture: |71(M)| < +00 = M = S3/r is
elliptic
@ Hyperbolisation: |71(M)| = oo, indecomposable and without Z x Z
— M = H3/r is hyperbolic.
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What's next?
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What's next?

Classify all finite-volume hyperbolic 3-manifolds.
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What's next?

Classify all finite-volume hyperbolic 3-manifolds.
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What's next?

Is there a geometrisation perspective in dimension four?
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Is there a geometrisation perspective in dimension four?

@ Schonflies: is every S3 ¢ S* standard?
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What's next?

Is there a geometrisation perspective in dimension four?

@ Schonflies: is every S3 ¢ S* standard?
@ There is no canonical decomposition whatsoever.

@ There are plenty of smooth manifolds: for instance the K3 surface
has infinitely many distinct smooth structures.
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What's next?

Is there a geometrisation perspective in dimension four?

Schonflies: is every S3 C S* standard?

There is no canonical decomposition whatsoever.

There are plenty of smooth manifolds: for instance the K3 surface
has infinitely many distinct smooth structures.

There are plenty of exotic aspherical four-manifolds.
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What's next?

Is there a geometrisation perspective in dimension four?

Schonflies: is every S3 C S* standard?

There is no canonical decomposition whatsoever.

There are plenty of smooth manifolds: for instance the K3 surface
has infinitely many distinct smooth structures.

There are plenty of exotic aspherical four-manifolds.

What is the role of hyperbolic geometry in dimension four?
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Hyperbolic four-manifolds
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Hyperbolic four-manifolds

@ In even dimensions, the volume is roughly the Euler characteristic:

e
Vol(M) = TX(M)'
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V [Wang 72]
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Hyperbolic four-manifolds

@ In even dimensions, the volume is roughly the Euler characteristic:

e
Vol(M) = TX(M)'

@ For every V there are finitely many hyperbolic manifolds with volume
V [Wang 72]

@ Those with x =1 are at least 1171, and probably many more
[Ratcliffe — Tschanz 00]
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Hyperbolic four-manifolds

@ In even dimensions, the volume is roughly the Euler characteristic:

e
Vol(M) = TX(M)'

@ For every V there are finitely many hyperbolic manifolds with volume
V [Wang 72]

@ Those with x =1 are at least 1171, and probably many more
[Ratcliffe — Tschanz 00]

@ There are manifolds with any number ¢ > 0 of cusps [Kolpakov —
Martelli 13]
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Hyperbolic four-manifolds

@ In even dimensions, the volume is roughly the Euler characteristic:

e
Vol(M) = TX(M)'

@ For every V there are finitely many hyperbolic manifolds with volume
V [Wang 72]

@ Those with x =1 are at least 1171, and probably many more
[Ratcliffe — Tschanz 00]

@ There are manifolds with any number ¢ > 0 of cusps [Kolpakov —

Martelli 13]
@ There are many non-arithmetic hyperbolic manifolds [Gelander — Levit
14]
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Some open questions:
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Some open questions:

@ Can we find a closed hyperbolic four-manifold with odd intersection
form?
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@ Are there infinitely many hyperbolic four-manifolds M with bounded
bi(M)?
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@ Can we find a closed hyperbolic four-manifold with odd intersection
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@ Are there infinitely many hyperbolic four-manifolds M with bounded
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Some open questions:
@ Can we find a closed hyperbolic four-manifold with odd intersection
form?
@ Are there infinitely many hyperbolic four-manifolds M with bounded
bi(M)?
e Can we classify all the hyperbolic four-manifolds M with xy(M) = 17

@ Can we construct some hyperbolic four-manifolds M that fiber in
some nice way?
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