\qquad
\qquad

Convex Hyperbolic 4-manitolds
joint with S.Riolo \& L. Slavish

A HYPERBOLIC n-MANIFOLD is (equivalently):
a) a Riemannian manifold with $K \equiv-1$
b) a Riemannian manifold locally isometric $x\left\|\|^{n}\right.$
c) (if complete) $\|-\|^{n} / \Gamma$ with $\Gamma<\operatorname{Isom}\left(\mathbb{H} \|^{n}\right)$ acting freely (ie. no elliptics) and properly discontinuously (i.e. 「diruete)

$$
\operatorname{Isom}\left(\|H\|^{n}\right) \cong O^{+}(n, 1)
$$

How can we construct hyperbolic n-manifoldr?

3g-3 lengths $3 g-3$ torion panameters Teichmüller Space $\cong \mathbb{R}^{6 g-6}$

$n=3:$

Compatibility equations: $\quad z_{1} \cdot z_{2} \cdot z_{3} \cdot z_{4} \cdot z_{5}=1$

Edges have valence 6

$$
z=e^{\frac{2 \pi i}{3}}
$$

IDEAL REGULAR TETRAHEDRON

Completeness equations:

Thurston's geometization:
1.1. Conjecture. The interior of every compact 3-manifold has a canonical decomposition into pieces which have geometric structures.

Bull Ans 1982

Thurston proved it for Haken manifolds. His proof uses hyperbolic 3-manifolds with infinite volume.

Later proved by Perelman with Ricci flow for all 3 -manifolds.

A hyperbolic n-manifold wITH BOUNDARY is equivalently
a) a Riemannian manifold with boundary and $K \equiv-1$
b) a Riemannian manifold locally isometric to a n-submanifold of $\| H^{n}$ with boundary

If M complete, then M convex \Leftrightarrow locally convex hyperbolic
Examples: ()M complete with yeoderic boundary
(-) A closed ball in H^{n}

Nice properties:

 submanifold $C \subseteq H^{n}$

If M is compact, then \hat{M} is GeOMETRICALLY FINITE and diffeomorphic to int (M)

If $M \leq W$ compact convex submanifold
in complete hyperbolic W without boundary

Then $\pi, M \underset{\text { injective }}{\longrightarrow} \pi_{1} W$
and covering is isometric to \hat{M}

A hyperbolic n-manifold with RIGHT-ANGLED CORNERS is a topological manifold with an atlas in and isometries as transition maps
Examples: \odot Hyperbolic n-mfold with geodesic boundary
-) Right-anyled polyhedron

120 -cell

Prop: Every compact hyperbolic M with right-anyled corners and embedded faces is contained in a closed hyperbolic W

MIRRORING

Mis convex after smoothing corners

(non-emply)
Question: Which compact n-manifolds with (non-emply) admit a hyperbolic structure with right-angled corners? (and embedded faces)
n=2: All surfaces with boundary
n=3: Irreducible and algebraically atoroidal 3-manifolds no essential $\underline{\mathbb{Z}} \times \mathbb{Z} \Varangle \pi_{1} M$ spheres
ie. no immersed essential to i
$n=4:[$ MRS $]$ Many plumbings do

A plumbing graph: $\left(e_{2}, g_{2}\right)$

$$
g_{i}, e_{i} \in \mathbb{Z} \quad y_{i} \geqslant 0
$$

$$
\varepsilon_{j}= \pm 1
$$

$\left(e_{i}, g_{i}\right) \longrightarrow$ Disc bundle over oriented genus-gisurface with Euler number e_{i}

The: If $g_{i} \geqslant 2\left(\left|e_{i}\right|+\underset{a}{v_{i}}+1\right)$ at every vertex $\begin{array}{ccc}\hat{i} & \hat{i} \\ \text { genus } & \imath_{\text {valence of }} & \\ \text { Euler }\end{array}$
then M has hyperbolic structure with right-angled corners (and embedded faces)

Cor: For every symmetric \mathbb{Z}-matrix Q there ir a convex compact hyperbolic M with $Q_{M}=Q$ that embeds in a cloned hyperbolic 4 -manifold W
Cor: For every symmetric \mathbb{Z}-matrix Q there ir a geometrically finite hyperbolic M with $Q_{M}=Q$ that covers a closed hyperbolic 4 -manifold W

Cor: There are (many) closed hyperbolic 4-manifolds that are not spin.

Cor: There are (many) closed hyperbolic n-manifolds that are not spin for all $n \geqslant 4$.
[use embedding theorem for arithmetic manifolds of simple type from Kolpakor-Ried. Slavich]

Cor: There are closed hyperbolic 4-manifolds such that
(.) $H_{2}(M, \mathbb{Z})$ is not generated by immerued surfaces
(-) are covered by nontrivial bundles over surfaces

Idea of the proof:

inspired by trisection of $\mathbb{C} \mathbb{P}^{2}$ Gromov-Lawson-Thurston formula for e

