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Introduction

These lectures consist of three parts. In the first one we review some results about
the dynamics of differentiable flows with hyperbolic rest points, in a Banach space
setting. In particular, we prove the local stable manifold theorem, the Grobman –
Hartman linearization theorem, and we describe the global stable and unstable
manifolds in the case of a flow admitting a Lyapunov function.

In the second part we study the Morse complex of gradient-like flows on
Banach manifolds, assuming that all the rest points have finite Morse index. We
introduce this chain complex as the cellular chain complex of a suitable cellu-
lar filtration of the underlying manifoldM. In particular, the homology of the
Morse complex is isomorphic to the singular homology ofM (or to the singular
homology of the pair (̂M,A), in the relative case, in which we consider a gra-
dient like flow on M̂, with a positively invariant open setA, and we consider
the rest points inM = M̂ \ Ā in the construction of the Morse complex). Then
we describe the chain boundary operator in terms of the intersection numbers of
the unstable and stable manifolds of pairs of rest points with index difference
equal to 1. Finally, we specialize the analysis to the negative gradient flow of a
Morse function on a Riemannian Hilbert manifold. In this case, we prove that the
Morse – Smale transversality assumption holds for generic perturbations of the
metric, and that the isomorphism class of the Morse complex does not depend on
the metric. These results provide an alternative approach to infinite dimensional
Morse theory, as developed by Palais and Smale in the sixties, see Palais (1963)
and Smale (1964a; 1964b).

The third part is an exposition of recent results by the authors (see Abbon-
dandolo and Majer, 2003b) about the Morse complex approach for gradient-like
flows whose rest points have infinite Morse index and co-index. The framework is
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that of a Hilbert manifoldM with a fixed infinite-dimensional and -codimensional
subbundleV of the tangent bundle. When the gradient-like flow satisfies suitable
compatibility conditions with respect toV, each rest pointxcan be given a relative
Morse indexm(x,V), and the unstable and stable manifolds of pairs of critical
pointsx, y intersect in submanifolds of finite dimensionm(x,V) − m(y,V). The
study of the Hilbert Grassmannian, and in particular of the determinant bundle
on the space of Fredholm pairs of subspaces of a Hilbert space, allow to prove
that these intersections carry coherent orientations. Finally, suitable integrability
assumptions onV, together with compactness assumptions on the flow, imply that
the above intersections have compact closure inM. These facts allow to define the
Morse complex.

The first two parts contain fairly detailed proofs of all the statements, most
of which — especially in the second part — are folklore results, for which we
could not find appropriate reference in the literature. The style of the third part
is different: proofs are only sketched, or given in a simplified framework. We
refer to Abbondandolo and Majer (2003b) for a more complete presentation.

1. A few facts from hyperbolic dynamics

1.1. ADAPTED NORMS

Let E be a real Banach space. A bounded linear operatorL onE is saidhyperbolic
if its spectrum does not meet the imaginary axis1: σ(L) ∩ iR = ∅. In this case,
the decomposition of the spectrum ofL into the disjoint closed subsetsσ+(L) =

σ(L)∩{Rez> 0} andσ−(L) = σ(L)∩{Rez< 0} induces the splittingE = Eu⊕Es

into L-invariant closed linear subspaces, such thatσ(L|Eu) = σ+(L) andσ(L|Es) =

σ−(L), with projectorsPu = χ{Rez>0}(L), Ps = χ{Rez<0}(L). The spacesEu = Eu(L)
and Es = Es(L) are often called thepositive(or unstable) and thenegative(or
stable) eigenspaces ofL (although they may not consist of eigenvectors).

An L-adapted normis an equivalent norm‖ · ‖ on E such that:

‖ξ‖ = max{‖Puξ‖, ‖Psξ‖}, ∀ξ ∈ E, (1)

and there isλ > 0 such that for everyt ≥ 0

‖etLξ‖ ≤ e−λt‖ξ‖ ∀ξ ∈ Es, ‖e−tLξ‖ ≤ e−λt‖ξ‖ ∀ξ ∈ Eu. (2)

As a consequence, also

‖e−tLξ‖ ≥ eλt‖ξ‖ ∀ξ ∈ Es, ‖etLξ‖ ≥ eλt‖ξ‖ ∀ξ ∈ Eu, (3)

1 In the framework of discrete dynamical systems, a hyperbolic operator is a bounded operator
whose spectrum does not meet the unit circle. In that context, an operatorL satisfyingσ(L)∩iR = ∅
should be calledinfinitesimally hyperbolic.
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for everyt ≥ 0. Such an adapted norm exists. Actually, for everyλ in the interval
]0,min |Reσ(L)|[ there is a norm‖ · ‖ satisfying (1), (2), and (3). The construction
is based on the following lemma, applied toL|Es and to−L|Eu.

LEMMA 1.1. Let L be a bounded operator on the Banach space(E, ‖ · ‖0), and
let λ be a real number such thatλ > max Reσ(L). Then there exists a norm‖ · ‖
on E equivalent to‖ · ‖0 such that‖etLξ‖ ≤ etλ‖ξ‖ for everyξ in E andt ≥ 0.

Proof. Up to replacingL by L − λI , we may assume thatλ = 0, soα :=
max Reσ(L) is negative, and we must find an equivalent norm‖ · ‖ for which
‖etLξ‖ ≤ ‖ξ‖, for everyξ ∈ E andt ≥ 0. Still denoting by‖ · ‖0 the operator norm
induced by‖ · ‖0, the spectral radius formula and the spectral mapping theorem
imply

lim
t→+∞ ‖e

tL‖1/t0 = max|σ(eL)| = max|eσ(L)| = eα < 1.

Therefore, there existsc0 > 0 such that‖etL‖0 ≤ c0eαt/2 for everyt ≥ 0, so

‖ξ‖ :=
∫ +∞

0
‖etLξ‖0 dt ≤ 2c0

α
‖ξ‖0 ∀ξ ∈ E,

defines a norm onE not finer than‖ · ‖0. On the other hand, by compactness
‖e−tL‖0 ≤ c1 for everyt ∈ [0,1], so

‖ξ‖ ≥
∫ 1

0
‖etLξ‖0 dt ≥ 1

c1
‖ξ‖0 ∀ξ ∈ E,

and the norm‖ · ‖ is equivalent to‖ · ‖0. Finally, for everyt ≥ 0 andξ ∈ E,

‖etLξ‖ =

∫ +∞

0
‖e(s+t)Lξ‖0 ds=

∫ +∞

t
‖esLξ‖0 ds≤ ‖ξ‖,

concluding the proof. ¤

EXERCISE 1.2. Find an adapted norm for the hyperbolic operator onE = R2

defined by the matrix

L =

(−1 µ
0 −1

)
,

whereµ ∈ R, and draw the corresponding unit ball whenµ is large.

EXERCISE 1.3. Prove that ifL is a normal operator on a Hilbert spaceH, that
is L commutes with its adjointL∗, then the Hilbert norm isL-adapted.
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1.2. LINEAR STABLE AND UNSTABLE SPACES OF AN ASYMPTOTICALLY
HYPERBOLIC PATH

Let A: [0,+∞] → L(E) be a continuous path of bounded linear operators on the
Banach spaceE, such thatA(+∞) is hyperbolic. LetXA: [0,+∞[ → L(E) be the
solution of the linear Cauchy problem

{
X′A(t) = A(t)XA(t),
XA(0) = I .

EXERCISE 1.4. Prove thatXA(t) is an isomorphism for everyt, and find a linear
Cauchy problem solved by its inverse.

The linear subspace ofE

Ws
A =

{
ξ ∈ E

∣∣∣ lim
t→+∞XA(t)ξ = 0

}

is said thelinear stable spaceof the asymptotically hyperbolic pathA. Similarly,
if A: [−∞, 0] → L(E) is a continuous path of operators such thatA(−∞) is
hyperbolic, the linear unstable space ofA is defined as

Wu
A =

{
ξ ∈ E

∣∣∣ lim
t→−∞XA(t)ξ = 0

}
.

EXERCISE 1.5. Prove that ifA(t) ≡ L is constant (and hyperbolic), thenWs
A =

Es(L), the negative eigenspace ofL, andWu
A = Eu(L), the positive eigenspace

of L.

A consequence of the hyperbolicity ofA(+∞) is that the linear subspacesWs
A

andWu
A are closed and complemented inE, and they are isomorphic toEs(A(+∞)

)
and toEu(A(−∞)

)
, respectively. Indeed, one can prove that ifA is close enough

to A(+∞) in the L∞ norm, thenWs
A is the graph of a bounded operator from

Es(A(+∞)
)

to Eu(A(+∞)
)
. The statement for a general asymptotically hyperbolic

pathA follows, because
Ws

A = XA(t)−1Ws
A(t+·).

See for instance Abbondandolo and Majer (2003c, Proposition 1.2) for a complete
proof (the case of a Hilbert space is treated in that reference, but the proof in the
Banach setting presents no difference).

Denote byCk
0([0,+∞[,E) the Banach space of allCk curvesu: [0,+∞[ → E

such that
lim

t→+∞ u(h)(t) = 0 ∀h ∈ {0, 1, . . . , k}.

PROPOSITION 1.6. Let A ∈ C0([0,+∞],L(E)
)

be a path of bounded linear
operators on the Banach spaceE such thatL = A(+∞) is hyperbolic.
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(i) The bounded linear operator

F+
A: C1

0([0,+∞[,E)→ C0
0([0,+∞[,E), u 7→ u′ − Au,

is a left inverse. Moreover,F+
A admits a right inverseR+

A such that

Ws
A +

{
R+

Av(0)
∣∣∣ v ∈ C0

0([0,+∞[,E), v(0) = 0
}

= E. (4)

(ii) The evaluation map
kerF+

A → E, u 7→ u(0),

is a right inverse.
Proof.We endowE with a Banach norm‖ · ‖ adapted toL.
(i) Let us start by considering the case of the constant pathA(t) ≡ L. By (2),

the operator valued piecewise continuous function

G:R→ L(E), G(t) = etL(1R+(t)Ps− 1R−(t)Pu),

satisfies‖G(t)‖ ≤ e−λ|t|, in particular it is integrable onR. Let v ∈ C0
0([0,+∞[,E).

It is readily seen that the curve

u(t) = (G ∗ v)(t) =

∫ +∞

0
G(t − τ)v(τ) dτ

is continuously differentiable and solves the equation

u′(t) − Lu(t) = v(t). (5)

Moreover, the inequality

‖u(t)‖ ≤ ‖G‖L1(R,L(E))‖v‖∞,[s,+∞[ + ‖G‖L1(]t−s,t[,L(E))‖v‖∞, (6)

shows thatu ∈ C0
0([0,+∞[,E), so by (5),u ∈ C1

0([0,+∞[,E). We conclude that
the operator

R+
L : C0

0([0,+∞[,E)→ C1
0([0,+∞[,E), v 7→ G ∗ v,

is a right inverse ofF+
L . Indeed, such a linear map is continuous by (5) and (6)

with s = 0. Let us check that the operatorv 7→ R+
Lv(0) mapsv ∈ C∞c (]0,+∞[,E)

onto Eu; sinceEu is a direct complement ofEs = Ws
L this implies that the right

inverseR+
L satisfies (4). Letϕ be a smooth real function with suppϕ ⊂ ]0,+∞[ so

small that the operator

U :=
∫ +∞

0
ϕ(τ)e−τL dτ ∈ L(E)
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is an isomorphism. The operatorU preserves the splittingE = Eu⊕ Es. If ξ ∈ Eu,
settingv = −ϕU−1ξ, there holds

R+
Lv(0) =

∫ +∞

0
e−τLPuϕ(τ)U−1ξ dτ =

(∫ +∞

0
ϕ(τ)e−τL dτ

)
U−1ξ = ξ,

proving the claim.
Let us now consider the general case. SettingAs(t) = A(s+ t), we have that

lim
s→+∞ F+

As
= F+

L

in the operator norm ofL(C1
0,C

0
0). Since the set of left inverses is open, by our

previous case we deduce thatF+
As

has a right inverseR+
As

for s large, such that
R+

As
→ R+

L in the operator norm fors → +∞. Since the space of surjective
operators is open,R+

As
satisfies (4) fors large.

Fix such a larges. We can now define a right inverseR+
A of F+

A by setting
R+

Av = u, whereu is the solution of the linear Cauchy problem
{

u′ − Au = v,
u(s) = R+

As
vs(0).

The continuity ofR+
A is easily seen by the formula

(R+
Av)(t) = XA(t)

(
XA(s)−1R+

As
vs(0) +

∫ t

s
XA(τ)−1v(τ) dτ

)
.

Finally, the fact thatR+
As

satisfies (4) implies that alsoR+
A satisfies (4). Indeed, let

ξ ∈ E, and letv ∈ C0
0([0,+∞[,E) with v(0) = 0 be such that

XA(s)ξ ∈ R+
As

v(0) + Ws
As
. (7)

Sincev(0) = 0, the curve

w(t) =

{
v(t − s) if t ≥ s,
0 if 0 ≤ t ≤ s,

belongs toC0
0([0,+∞[,E). Sincew vanishes on [0, s], R+

Aw solves the equation
u′ − Au = 0 on [0, s], so

R+
As

v(0) = R+
Aw(s) = XA(s)R+

Aw(0). (8)

By (7) and (8),

ξ ∈ R+
Aw(0) + XA(s)−1Ws

As
= R+

Aw(0) + Ws
A,

concluding the proof of (i).
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(ii) The kernel ofF+
A is

kerF+
A = {XA(t)ξ | ξ ∈Ws

A},
so if Q ∈ L(E) is a projector ontoWs

A, the linear map

E→ kerF+
A, ξ 7→ XA(·)Qξ,

is a left inverse of the evaluation at 0,

kerF+
A → E, u 7→ u(0). ¤

REMARK 1.7. If P is a projector ontoWs
A, it can be shown that

R+
Av(t) =

∫ +∞

0
XA(t)

(
1R+(t − τ)P− 1R−(t − τ)(I − P)

)
XA(τ)−1v(τ) dτ

defines a right inverse ofF+
A. See Abbondandolo and Majer (2003c) for a more

extensive discussion of the topics of this section.

We conclude this section by establishing some properties of the operatord/dt−
A(t) on the whole real line.

PROPOSITION 1.8.Assume thatA ∈ C0(R,L(E)
)

has hyperbolic asymptotic
operatorsA(−∞) and A(+∞), both with finite-dimensional positive eigenspace.
Then the bounded linear operator

FA: C1
0(R,E)→ C0

0(R,E), u 7→ u′ − Au,

is Fredholm of index

indFA = dimEu(A(−∞)
) − dimEu(A(+∞)

)
.

Moreover,Wu
A + Ws

A is closed and

kerFA � Wu
A ∩Ws

A, cokerFA � E/(Wu
A + Ws

A). (9)
Proof.SinceWu

A � Eu(A(−∞)
)

andWs
A � Es(A(+∞)

)
, the first space is finite-

dimensional and the second one is finite-codimensional, with

dimWu
A = dimEu(A(−∞)

)
, codimWs

A = dimEu(A(+∞)
)
. (10)

Therefore,Wu
A + Ws

A is (closed and) finite-codimensional, and

dimWu
A ∩Ws

A − codim(Wu
A + Ws

A) = dimWu
A − codimWs

A. (11)
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The kernel ofFA is the linear subspace

kerFA = {XA(t)ξ | ξ ∈Wu
A ∩Ws

A},
so

dim kerFA = dimWu
A ∩Ws

A. (12)

By Proposition 1.6(i), the operators

F+
A: C1

0([0,+∞[,E)→ C0
0([0,+∞[,E), u 7→ u′ − Au,

F−A: C1
0(]−∞,0],E)→ C0

0(]−∞, 0],E), u 7→ u′ − Au,

have right inversesR+
A andR−A. If v is an element ofC0

0(R,E), any solution of
u′ − Au = v has the form

u(t) = XA(t)
(
u(0)− R+

Av(0)
)

+ R+
Av(t), ∀t ≥ 0,

u(t) = XA(t)
(
u(0)− R−Av(0)

)
+ R−Av(t), ∀t ≤ 0.

Such a curveu belongs toC1
0(R,E) if and only if u(0)− R+

Av(0) ∈ Ws
A andu(0)−

R−Av(0) ∈ Wu
A. Therefore,v belongs to the range ofFA if and only if the affine

subspacesR+
Av(0) + Ws

A andR−Av(0) + Wu
A have nonempty intersection, that is if

and only ifR+
Av(0)− R−Av(0) belongs toWs

A + Wu
A. So the range ofFA is the linear

subspace

ranFA =
{
v ∈ C0

0(R,E)
∣∣∣ R+

Av(0)− R−Av(0) ∈Wu
A + Ws

A
}
.

Such a linear subspace is closed. By the second assertion in Proposition 1.6(i), the
operator

C0
0(R,E)→ E

Wu
A + Ws

A

, v 7→ [R+
Av(0)− R−Av(0)],

is onto, so
codim ranFA = codim(Wu

A + Ws
A). (13)

All the statements follow from (10) – (13). ¤

1.3. MORSE VECTOR FIELDS

Let M be a Banach manifold of classC2, i.e., a paracompact Hausdorff topolog-
ical space, locally homeomorphic to a Banach spaceE, endowed with an atlas
whose transition maps are of classC2. See Lang (1999) for foundational results
on Banach manifolds. AC1 tangent vector fieldX on M defines a local flowφ
solving

∂tφ(t, p) = X
(
φ(t, p)

)
, φ(0, p) = p, ∀p ∈ M, −∞ ≤ t−(p) < t < t+(p) ≤ +∞,
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where ]t−(p), t+(p)[ denotes the maximal interval of existence of the above
Cauchy problem. The functionst− and t+ are upper and lower semi-continuous,
respectively. Denote byΩ(X) the subset ofR × M which lies strictly between the
graph oft− and the graph oft+. ThenΩ(X) is an open neighborhood of{0} × M,
and the mapφ: Ω(X) → M is of classC1. The vector fieldX is saidcomplete
(resp.positively complete, resp.negatively complete) if Ω(X) = R × M (resp.
Ω(X) ⊃ [0,+∞[ × M, resp.Ω(X) ⊃ ]−∞, 0] × M).

Let A be apositively invariantsubset ofM: this means that ifp ∈ A then
φ(t, p) ∈ A for everyt ∈ [0, t+(p)[. The vector field is saidpositively complete with
respect toA if for every p ∈ M such thatt+(p) < +∞ there existst ∈ [0, t+(p)[
such thatφ(t, p) ∈ A. Similarly, one defines a negatively complete vector field
with respect to a negatively invariant subset.

A rest pointof X is a pointx ∈ M such thatX(x) = 0. The set of rest points of
X will be denoted by rest(X). TheJacobianof X at a rest pointx is the bounded
linear operator onTxM defined by∇X(x)ξ = [X,Y](x), whereξ ∈ TxM andY
is a tangent vector field onM such thatY(x) = ξ. Indeed, the fact thatX(x) = 0
implies that this definition does not depend on the choice of extensionY of ξ.

EXERCISE 1.9. Give an alternative definition of the Jacobian of a vector field
at a rest point in terms of a local chart: ifϕ: U → E maps a neighborhoodU of
x ∈ rest(X) diffeomorphically onto an open subset of the Banach spaceE, define
the operator∇X(x) onTxM by

ϕ∗(∇X(x)ξ) = D(ϕ∗X)
(
ϕ(x)

)
[ϕ∗ξ], ∀ξ ∈ TxM,

where, forη ∈ TpM, ϕ∗η is the vector inE defined byϕ∗η = Dϕ(p)[η]. Show that
such a definition does not depend on the choice of the chartϕ.

A rest pointx of X is saidhyperbolicif the Jacobian ofX at x is a hyperbolic
operator. The corresponding splitting of the tangent space atx will be denoted by
TxM = Eu

x ⊕ Es
x. By the inverse mapping theorem, the hyperbolic rest points are

isolated in rest(X). TheMorse indexm(x) ∈ N∪ {+∞} of the hyperbolic rest point
x is the dimension of the subspaceEu

x. TheMorse co-indexis the dimension of
Es

x. If all the rest points ofX are hyperbolic, the vector fieldX is said aMorse
vector field.

1.4. LOCAL DYNAMICS NEAR A HYPERBOLIC REST POINT

Let U be an open neighborhood of 0 in the Banach spaceE, and letX ∈ C1(U,E)
be a vector field having 0 as a hyperbolic rest point. Denote byφ: Ω(X) → U
the local flow ofX. Let L := ∇X(0) = DX(0), with splitting E = Eu ⊕ Es and
projectorsPu, Ps, and let us endowE with anL-adapted norm‖ · ‖. If V ⊂ E is a
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closed linear subspace,V(r) will denote the closed ball inV of radiusr centered
in 0, and∂V(r) will be the relative boundary ofV(r) in V. Consider the cones

Cu = {ξ ∈ E | ‖Psξ‖ ≤ ‖Puξ‖} ⊃ Eu, Cs = {ξ ∈ E | ‖Puξ‖ ≤ ‖Psξ‖} ⊃ Es.

We recall that ifA ⊂ B ⊂ U the setA is saidpositively(negatively) invariant with
respect toB if for every ξ ∈ A and for everyt > 0, φ([0, t] × {ξ}) ⊂ B implies
φ([0, t] × {ξ}) ⊂ A (resp. for everyξ ∈ A and for everyt < 0, φ([t,0] × {ξ}) ⊂ B
impliesφ([t,0] × {ξ}) ⊂ A).

LEMMA 1.10. For everyr > 0 small enough there holds:

(i) the setCu ∩ E(r) is positively invariant with respect toE(r);

(ii) the setCs∩ E(r) is negatively invariant with respect toE(r);

(iii) if ξ belongs to the setCu ∩ ∂E(r) = ∂Eu(r) × Es(r) then‖Puφ(t, ξ)‖ > r for
everyt ∈ ]0, 1], and‖Puφ(t, ξ)‖ < r for everyt ∈ [−1,0[;

(iv) if ξ belongs to the setCs ∩ ∂E(r) = Eu(r) × ∂Es(r) then‖Psφ(t, ξ)‖ < r for
everyt ∈ ]0, 1], and‖Psφ(t, ξ)‖ > r for everyt ∈ [−1, 0[.

Proof.Sincet+(0) = +∞ andt−(0) = −∞, we havet+(ξ) > 1 andt−(ξ) < −1
for ‖ξ‖ small enough. A first order expansion ofφ(t, ·) at 0 yields to

φ(t, ξ) = etLξ + o(ξ)t for ξ → 0,

uniformly in t ∈ [−1,1]. Therefore, ifr > 0 is small enough, for everyξ ∈
Cs∩ E(r) andt ∈ [0,1], (2) implies

‖Psφ(t, ξ)‖ = ‖PsetLξ‖ + o(ξ)t = ‖etLPsξ‖ + o(Psξ)t

≤ e−λt‖Psξ‖ + o(Psξ)t ≤ e−λt/2‖Psξ‖,
and similarly, for everyξ ∈ Cu ∩ E(r) andt ∈ [0,1], (3) implies

‖Puφ(t, ξ)‖ ≥ eλt/2‖Puξ‖.
All the statements follow from the above inequalities and from the analogous
inequalities holding fort ∈ [−1,0]. ¤

REMARK 1.11. In the language of Conley theory,E(r) is an isolating neighbor-
hood for the invariant set{0}, and∂Eu(r) × Es(r) is its exit set.
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1.5. LOCAL STABLE AND UNSTABLE MANIFOLDS

Given r > 0, thelocal unstable manifoldand thelocal stable manifoldof 0 are
the sets

Wu
loc,r (0) =

{
ξ ∈ E(r)

∣∣∣∣ t−(ξ) = −∞, φ(]−∞,0] × {ξ}) ⊂ E(r), lim
t→−∞ φ(t, ξ) = 0

}
,

Ws
loc,r (0) =

{
ξ ∈ E(r)

∣∣∣∣ t+(ξ) = +∞, φ([0,+∞[ × {ξ}) ⊂ E(r), lim
t→+∞ φ(t, ξ) = 0

}
.

Whenr is small, these sets are actually graphs of regular maps.

THEOREM 1.12 (Local (un)stable manifold theorem).Assume that0 is a hyper-
bolic rest point of theCk vector fieldX: U → E, k ≥ 1. For any r > 0 small
enough,Ws

loc,r (0) is the graph of aCk mapσs: Es(r)→ Eu(r) such thatσs(0) = 0

andDσs(0) = 0. Similarly,Wu
loc,r (0) is the graph of aCk mapσu: Eu(r) → Es(r)

such thatσu(0) = 0, Dσu(0) = 0.

See Shub (1987, Chapter 5) for a proof based on the graph transform method.
Here we will present a proof based on the study of the orbit space and on Propo-
sition 1.6.

Proof.We shall prove the conclusion for the local stable manifold, the case of
the unstable one following by considering the vector field−X. The map

Φ: C1
0([0,+∞[,U)→ C0

0([0,+∞[,E), u 7→ u′ − X ◦ u,

is of classCk, and its differential atu ∈ C1
0([0,+∞[,U) is

DΦ(u): C1
0([0,+∞[,E)→ C0

0([0,+∞[,E), v 7→ v′ − DX(u)v.

SinceDX
(
u(t)

)
converges toL = DX(0) for t → +∞, statement (i) of Proposi-

tion 1.6 implies thatDΦ(u) is a left inverse, soΦ is aCk submersion. In particular,
its set of zerosΦ−1({0}) is aCk submanifold ofC1

0([0,+∞[,U). The set of zeros is
nonempty, because it contains the curve 0. Actually

T0Φ−1({0}) = kerDΦ(0) = ker(v 7→ v′ − Lv) = {etLξ | ξ ∈ Es}. (14)

By statement (ii) of Proposition 1.6, the evaluation map ev0: u 7→ u(0) subor-
dinates an immersion

ev0: Φ−1({0})→ U,

which is injective by the uniqueness of the solution of Cauchy problems. There-
fore,

Ws(0) := ev0
(
Φ−1({0})) =

{
ξ ∈ U

∣∣∣∣ t+(ξ) = +∞, lim
t→+∞ φ(t, ξ) = 0

}
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is the image of an injectiveCk immersion. The point 0 belongs toWs(0), and by
(14),

T0Ws(0) = D ev0(0)T0Φ−1({0}) = ev0
(
T0Φ−1({0})) = Es.

By the implicit function theorem, ifr is small enough the path-connected compo-
nent ofWs(0)∩ E(r) containing 0 — call itZr — is the graph of aCk map

σs: Es(r)→ Eu(r)

such thatσs(0) = 0 andDσs(0) = 0.
We claim that ifr is so small that the conclusions of Lemma 1.10 hold, and

that the Lipschitz norm ofσs is less than 1, thenZr = Ws
loc,r (0), which concludes

the proof. Indeed, by definitionWs
loc,r (0) ⊂ Zr , a path connectingξ ∈ Ws

loc,r (0) to
0 within Ws(0)∩ E(r) being provided by the orbit ofξ. On the other hand, notice
that by definitionZr is positively invariant with respect toE(r). So if there exists
ξ ∈ Zr \Ws

loc,r (0), by Lemma 1.10 there is somet > 0 for whichφ(t, ξ) ∈ (
∂Eu(r)×

Es(r)
)

(the latter is the exit set ofE(r)) andφ(t, ξ) ∈ Zr (Zr is positively invariant
with respect toE(r)). ThereforeZr ∩ (

∂Eu(r) × Es(r)
)

is nonempty, contradicting
the fact thatZr is the graph of a map whose Lipschitz constant is less than 1, taking
value 0 at 0. ¤

1.6. THE GROBMAN – HARTMAN LINEARIZATION THEOREM

The Grobman – Hartman theorem says that up to a change of variables, the dynam-
ics near a hyperbolic point is the dynamics given by a linear vector field. We will
deduce this fact from the analogous statement for discrete dynamical systems. The
proof is adapted from Shub (1987). Let us start with a result about the existence,
uniqueness, and Ḧolder regularity of a semi-conjugacy between two perturbations
of a linear operator.

PROPOSITION 1.13.Let E = Eu ⊕ Es be an invariant splitting for the bounded
invertible operatorT. LetPu andPs be the corresponding projectors, and assume
that there existsµ < 1 such that

max{‖PsT Ps‖, ‖PuT−1Pu‖} ≤ µ.
Letϕ andψ be Lipschitz continuous maps fromE to E such that:

(i) ‖ϕ − ψ‖∞ < +∞;

(ii) lip ϕ < 1− µ;

(iii) lip ψ < 1/‖T−1‖.
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Then there exists a unique bounded mapg: E→ E such that

(T + ϕ) ◦ (I + g) = (I + g) ◦ (T + ψ). (15)

Moreover,

‖g‖∞ ≤ ‖ϕ − ψ‖∞
1− (µ + lip ϕ)

,

and setting

θ := max
{
‖T‖ + lip ψ,

‖T−1‖
1− ‖T−1‖ lip ψ

}
,

g is α-Hölder continuous for every

α <
− log(µ + lip ϕ)

logθ
.

Notice that if Eu , (0), then‖T‖ ≥ ‖PuT Pu‖ ≥ 1/µ, while if Es , (0),
then ‖T−1‖ ≥ ‖PsT−1Ps‖ ≥ 1/µ. Therefore logθ ≥ − logµ, so the quantity
− log(µ + lip ϕ)/ logθ appearing in the above proposition does not exceed 1. In
general, the mapg is not locally Lipschitz, even whenϕ andψ are smooth.

Proof. For anE-valued mapf , we denote byfu and fs its components with
respect to the splittingE = Eu ⊕ Es, that is fu := Pu f , fs := Ps f . By applying the
projectorsPu andPs, (15) is equivalent to

{
(Tu + ϕu) ◦ (I + g) = (Pu + gu) ◦ (T + ψ),
(Ts + ϕs) ◦ (I + g) = (Ps + gs) ◦ (T + ψ).

(16)

Since lipT−1ψ ≤ ‖T−1‖ lip ψ < 1, the mapT + ψ = T(I + T−1ψ) is a homeomor-
phism ofE ontoE. Actually, its inverse is Lipschitz continuous with

lip(T + ψ)−1 = lip
(
(I + T−1ψ)−1T−1) ≤ ‖T−1‖

1− ‖T−1‖ lip ψ. (17)

By a simple algebraic manipulation, (16) is equivalent to the fixed point problem
F(g) = g, where

F(g)u = T−1
u (gu ◦ (T + ψ) − ϕu ◦ (I + g) + ψu),

F(g)s = (Tsgs + ϕs ◦ (I + g) − ψs) ◦ (T + ψ)−1.

Since

‖F(g)u‖∞ ≤ µ
(
(1 + lip ϕ)‖g‖∞ + ‖ϕ − ψ‖∞)

≤ (µ + lip ϕ)‖g‖∞ + µ‖ϕ − ψ‖∞, (18)

‖F(g)s‖∞ ≤ (‖Ts‖ + lip ϕ)‖g‖∞ + ‖ϕ − ψ‖∞
≤ (µ + lip ϕ)‖g‖∞ + ‖ϕ − ψ‖∞, (19)
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F mapsB(E,E), the Banach space of bounded maps fromE to E, into itself.
Actually, (18) and (19) imply that if‖g‖∞ ≤ R, with

R :=
‖ϕ − ψ‖∞

1− (µ + lip ϕ)
,

then ‖F(g)‖∞ ≤ R. Moreover, the mapsFu = PuF: B(E,E) → B(E,Eu) and
Fs = PsF: B(E,E)→ B(E,Es) are Lipschitz with

lip Fu ≤ ‖Tu‖−1(1 + lip ϕ) ≤ µ(1 + lip ϕ) < 1,

lip Fs ≤ ‖Ts‖ + lip ϕ ≤ µ + lip ϕ < 1,

so F: B(E,E) → B(E,E) is a contraction, proving that there exists a uniqueg ∈
B(E,E) satisfying (15). SinceF maps the closedR-ball ofC0∩B(E,E) into itself,
the fixed pointg is continuous and bounded byR.

If h ∈ B(E,E) has modulus of continuity2 ω, then F(h)u has modulus of
continuity

t 7→ µω
(
(‖T‖ + lip ψ)t

)
+ µ lip ϕω(t) + µ(lip ϕ + lip ψ)t, (20)

while by (17),F(h)s has modulus of continuity

t 7→ (µ + lip ϕ)ω(σt) + (lip ψ + lip ϕ)σt, (21)

whereσ := ‖T−1‖/(1−‖T−1‖ lip ψ). Comparing (20) and (21), we find that setting

a := (lip ϕ + lip ψ)σ,

the function
t 7→ (µ + lip ϕ)ω(θt) + at

is a modulus of continuity forF(h). If moreover‖h‖∞ ≤ R, we have that‖F(h)‖∞ ≤
R, soF(h) has modulus of continuity

t 7→ min{(µ + lip ϕ)ω(θt) + at,2R}.
Therefore, if a modulus of continuityω satisfies

min{(µ + lip ϕ)ω(θt) + at,2R} ≤ ω(t) ∀t ∈ [0,+∞[, (22)

we deduce that the nonempty closed subset ofB(E,E)

{h ∈ B(E,E) | ‖h‖∞ ≤ R,h has modulus of continuityω}
2 Here, moduli of continuity are always assumed to be nondecreasing.
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is F-invariant, hence the fixed pointg has modulus of continuityω. A function of
the formω(t) = ctα satisfies (22) if

(µ + lip ϕ)θα < 1,

andc is large enough. The conclusion follows. ¤

If we symmetrize the assumptions of the above proposition, a standard argu-
ment involving uniqueness yields to the following global version of the Grob-
man – Hartman theorem for discrete dynamical systems.

COROLLARY 1.14. LetT be an invertible bounded operator onE satisfying the
same assumptions of Proposition1.13. Letϕ andψ be Lipschitz continuous maps
from E to E such that

(i) ‖ϕ − ψ‖∞ < +∞;

(ii) lip ϕ < min{1− µ,1/‖T−1‖}, lip ψ < min{1− µ,1/‖T−1‖}.
Then there exists a unique bounded mapg: E→ E such that

(T + ϕ) ◦ (I + g) = (I + g) ◦ (T + ψ).

Moreover,g is Hölder continuous, andI + g is homeomorphism ofE ontoE.
Proof. Applying Proposition 1.13 to the pair (ϕ, ψ) and to the pair (ψ, ϕ), we

find Hölder continuous bounded mapsg: E→ E andh: E→ E such that

(T + ϕ) ◦ (I + g) = (I + g) ◦ (T + ψ),

(T + ψ) ◦ (I + h) = (I + h) ◦ (T + ϕ).

It follows that (I +g)◦ (I +h), which is of the formI +k with k ∈ B(E,E), satisfies

(T + ϕ) ◦ (I + k) = (I + k) ◦ (T + ϕ).

By the uniqueness statement of Proposition 1.13 applied to the pair (ϕ, ϕ), k must
be the zero map, that is (I + g) ◦ (I + h) = I . Similarly, (I + h) ◦ (I + g) = I , soI + g
is a homeomorphism ofE ontoE with inverseI + h. ¤

Now we can derive a global version of the Grobman – Hartman theorem for
flows.

THEOREM 1.15. Let L be a hyperbolic operator onE. Let‖ · ‖ be anL-adapted
norm onE, satisfying(1) and(2) for some positiveλ. LetB1: E→ E andB2: E→
E be Lipschitz continuous maps such that

(i) ‖B1 − B2‖∞ < +∞;
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(ii) lip B1 < λ, lip B2 < λ.

Then the flowsφ1, φ2:R × E→ E of the vector fieldsX1(ξ) = Lξ + B1(ξ) and
X2(ξ) = Lξ + B2(ξ) are conjugated. More precisely, there is a unique bounded
mapg: E→ E such that

φ1
(
t, (I + g)(ξ)

)
= (I + g)

(
φ2(t, ξ

) ∀(t, ξ) ∈ R × E,

and I + g is a homeomorphism ofE ontoE. Moreover,g is α-Hölder continuous
for every

α <
λ − lip B1

‖L‖ + lip B2
.

Proof. A c-Lipschitz vector fieldX produces a globally defined flowφ, with
lip φ(t, ·) ≤ ec|t|. If two c-Lipschitz vector fieldsX1, X2 have bounded distance,
then

‖φ1(t, ·) − φ2(t, ·)‖∞ ≤ ‖X1 − X2‖∞|t|ec|t|.

Let ψi(t, ξ) = φi(t, ξ) − etLξ, for i = 1, 2. By our initial considerations, for everyt
the mapsψ1(t, ·) andψ2(t, ·) are Lipschitz and have bounded distance. The maps
ψi satisfy

ψi(t, ξ) =

∫ t

0
e(t−s)LBi(e

sLξ + ψi(s, ξ)) ds ∀(t, ξ) ∈ R × E. (23)

By (23),

lip ψi(t, ·) ≤ lip Bi

∣∣∣∣∣
∫ t

0
‖e(t−s)L‖(‖esL‖ + lip ψi(s, ·)) ds

∣∣∣∣∣

≤ |t| lip Bi sup
|s|≤|t|
‖esL‖

(
sup
|s|≤|t|
‖esL‖ + sup

|s|≤|t|
lip ψi(s, ·)

)

= |t| lip Bi

(
1 + sup

|s|≤|t|
lip ψi(s, ·)

)(
1 + o(1)

)
,

for t → 0. Taking the supremum for all|t| ≤ τ, we obtain

sup
|t|≤τ

lip ψi(t, ·) ≤ lip Bi |τ|(1 + o(1)
)

for τ→ 0. (24)

Since lipBi < λ, the last inequality implies that there existsτ > 0 such that

lip ψi(t, ·) < 1− e−λ|t|, lip ψi(t, ·) < 1/‖e−tL‖, ∀0 < |t| ≤ τ, i = 1,2.

By Corollary 1.14 applied toT = etL, µ = e−λ|t|, ϕ = ψ1(t, ·), andψ = ψ2(t, ·), for
every 0< |t| ≤ τ there exists a uniquegt ∈ B(E,E) such that

φ1
(
t, (I + gt)(ξ)

)
= (I + gt)

(
φ2(t, ξ)

)
, (25)
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andI +gt is a homeomorphism ofE ontoE. If n ∈ Z\{0} and|nt| ≤ τ, (25) implies

φ1
(
nt, (I + gt)(·)) = (I + gt)

(
φ2(nt, ·)),

so by uniquenessgt = gnt. If p,q are rational numbers in [−τ, τ] \ {0}, they have
a common sub-multiple, sogp = gq. Thereforegp = g for every rationalp ∈
[−τ, τ] \ {0}. By the continuity ofφ1 andφ2 with respect oft,

φ1
(
t, (I + g)(·)) = (I + g)

(
φ2(t, ·))

holds for every|t| ≤ τ, hence by taking iterates, for everyt ∈ R.
There remains to estimate the Hölder exponent ofg. Let 0 < t ≤ τ. By

Proposition 1.13gt is α-Hölder for every

α <
− log

(
e−λt + lip ψ1(t, ·))

logθ(t)
,

where

θ(t) = max
{
‖etL‖ + lip ψ2(t, ·), ‖e−tL‖

1− ‖e−tL‖ lip ψ2(t, ·)
}
.

Sincegt = g, g is α-Hölder for every

α < β := lim sup
t→0+

− log(e−λt + lip ψ1(t, ·))
logθ(t)

.

By (24),

− log
(
e−λt + lip ψ1(t, ·)) ≥ − log

(
e−λt + lip B1t + o(t)

)
= (λ − lip B1)t + o(t) (26)

for t → 0+. Since
‖e±tL‖ ≤ et‖L‖ = 1 + ‖L‖t + o(t),

for t → 0+, by (24) there holds

‖etL‖ + lip ψ2(t, ·) ≤ 1 + (‖L‖ + lip B2)t + o(t),

‖e−tL‖
1− ‖e−tL‖ lip ψ2(t, ·) ≤

1 + ‖L‖t + o(t)
1− lip B2t + o(t)

= 1 + (‖L‖ + lip B2)t + o(t),

for t → 0+. Therefore

logθ(t) ≤ log
(
1 + (‖L‖ + lip B2)t + o(t)

)
= (‖L‖ + lip B2)t + o(t), (27)

for t → 0+. The inequalities (26) and (27) imply that

β = lim sup
t→0+

− log
(
e−λt + lip ψ1(t, ·))

logθ(t)
≥ lim

t→0+

(λ − lip B1)t + o(t)
(‖L‖ + lip B2)t + o(t)

=
λ − lip B1

‖L‖ + lip B2
,

concluding the proof. ¤

It is then straightforward to deduce the following local linearization result.



54 A. ABBONDANDOLO AND P. MAJER

COROLLARY 1.16. Assume that0 is a hyperbolic rest point of theC1 vector
field X: U → E, and letL = DX(0). If r > 0 is small enough, the local flowφ
restricted toE(r) is conjugated to the linear flow(t, ξ) 7→ etLξ by a bi-Hölder
continuous homeomorphism. More precisely, there exists a bi-Hölder continuous
homeomorphismh: E(r)→ h

(
E(r)

) ⊂ E such that

h
(
φ(t, ξ)

)
= etLh(ξ) ∀(t, ξ) ∈ Ω(X|E(r)).

We conclude the discussion about the local dynamics at a rest point with the
following proposition.

PROPOSITION 1.17.For everyr > 0 small enough there holds: for every se-
quence(ξn) ⊂ E converging to 0 and for every sequence(tn) ⊂ [0,+∞[ such that
φ([0, tn] × {ξn}) ⊂ E(r) andφ(tn, ξn) ∈ ∂E(r), there holds

dist
(
φ(tn, ξn),Wu

loc,r (0)∩ ∂E(r)
)→ 0.

Proof. If the vector field is linear,X(ξ) = Lξ, the conclusion is immediate:
indeed in this caseWu

loc,r (0) = Eu(r), and for any (ξn) ⊂ E converging to 0 and
any (tn) ⊂ [0,+∞[, by (2) we have

lim sup
n→∞

dist(etnLξn,E
u) = lim sup

n→∞
‖PsetnLξn‖ ≤ lim sup

n→∞
e−tnλ‖Psξn‖ = 0.

By the Grobman – Hartman theorem, ifr0 > 0 is small enough the local flow
φ restricted toE(r0) is conjugated to its linearization (t, ξ) 7→ etLξ, by a bi-
uniformly continuous homeomorphism. By the local (un)stable manifold theorem,
we may also assume thatr0 is so small thatWu

loc,r0
(0) is the graph of a uniformly

continuous mapσu: Eu(r0)→ Es(r0).
Let r < r0 and setηn := φ(tn, ξn) ∈ ∂E(r), with ξn → 0 and tn ≥ 0. By

Lemma 1.10,‖Puηn‖ = r. By the linear case and by the uniform continuity of the
conjugacy, there exists (η′n) ⊂Wu

loc,r0
(0) such that‖ηn−η′n‖ is infinitesimal. Setting

η′′n =
(
Puηn, σ

u(Puηn)
) ∈ Wu

loc,r (0) ∩ ∂E(r), by the uniform continuity ofσu we
have

dist
(
ηn,W

u
loc,r (0)∩ ∂E(r)

)

≤ ‖ηn − η′′n ‖
≤ ‖ηn − η′n‖ + ‖Puη′n − Puη′′n ‖ + ‖Psη′n − Psη′′n ‖
= ‖ηn − η′n‖ + ‖Puη′n − Puηn‖ + ‖σu(Puη′n) − σu(Puηn)‖ → 0,

concluding the proof. ¤
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1.7. GLOBAL STABLE AND UNSTABLE MANIFOLDS

Let us assume thatX is aC1 tangent vector field on the Banach manifoldM, and
thatx is a hyperbolic rest point ofX. We shall identify a neighborhood ofx with a
neighborhood of 0 in the Banach spaceEx = TxM, identifying x with 0. We shall
consider a∇X(x)-adapted norm onEx, and we will use the notation introduced in
the above sections: for instance,Ex(r) ⊂ M will denote the closedr ball centered
in x.

Theunstableand thestable manifoldsof the rest pointx are the subsets ofM

Wu(x) =
{
p ∈ M

∣∣∣∣ t−(p) = −∞ and lim
t→−∞ φ(t, p) = x

}
,

Ws(x) =
{
p ∈ M

∣∣∣∣ t+(p) = +∞ and lim
t→+∞ φ(t, p) = x

}
.

THEOREM 1.18. Let x ∈ M be a hyperbolic rest point of theCk vector field
X, k ≥ 1, on the Banach manifoldM. ThenWu(x) and Ws(x) are the images
of injectiveCk immersions of manifolds which are homeomorphic toEu

x and Es
x,

respectively.
Proof. By Theorem 1.12, ifr is small enough the local unstable manifold

Wu
loc,r (x) is the graph of aCk mapσu: Eu(r)→ Es(r). Since

Wu(x) =
{
φ(t, p)

∣∣∣ p ∈Wu
loc,r (x), 0 ≤ t < t+(p)

}
,

the setWu(x) inherits the structure of aCk manifold from that ofWu
loc,r (x) by the

maps{φ(t, ·)}, and the inclusion ofWu(x) into M is aCk injective immersion.
If θ: Eu(r)→Wu

loc,r (x) is theCk diffeomorphismθ(ξ) = ξ + σu(ξ), the map

A :=
{
ξ ∈ Eu

x

∣∣∣ log‖ξ‖ < t+
(
θ(rξ/‖ξ‖))}→Wu(x), ξ 7→ φ

(
log‖ξ‖, θ(rξ/‖ξ‖)),

is a homeomorphism from a star-shaped open subset ofEu
x - thus homeomorphic

to Eu
x itself - ontoWu(x). The analogous results forWs(x) follow by considering

the vector field−X. ¤

REMARK 1.19. If M is a Hilbert manifold, then the regularity of the norm
implies thatWu(x) andWs(x) are actually images ofCk immersions ofEu

x andEs
x,

respectively.

In generalWu(x) and Ws(x) need not be embedded submanifolds: actually,
they need not be locally closed.

A Lyapunov functionfor X is aC1 function f : M → R such thatD f (p)[X(p)]
< 0 for everyp ∈ M \ rest(X). In this case, of course crit(f ) ⊂ rest(X). If X is
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a Morse vector field, the two sets actually coincide. Indeed, we can assume that
M = E is a Banach space, so ifx ∈ rest(X) andt ∈ R we have

D f (x+tv)[X(x+tv)] = D f (x)[X(x+tv)]+o(t) = tD f (x)[DX(x)v]+o(t) for t → 0.

The principal part of the right-hand side is an odd function oft. Since the above
quantity has to be negative for everyt , 0, such a principal part has to be
identically zero. SinceDX(x) is an isomorphism, we deduce thatD f (x) = 0.

THEOREM 1.20. Assume thatX admits a Lyapunov functionf , and that for
everyr0 > 0 small enough there holds

sup
{
f (p)

∣∣∣ p ∈Wu
loc,r0

(x) ∩ ∂Ex(r0)
}
< inf

{
f (p)

∣∣∣ p ∈Ws
loc,r0

(x) ∩ ∂Ex(r0)
}
. (28)

Then ifr > 0 is small enough:

(i) for everyp ∈ M, the closed setI = {t ∈ ]t−(p), t+(p)[ | φ(t, p) ∈ Ex(r)} is an
interval, and its interior is{t ∈ ]t−(p), t+(p)[ | φ(t, p) ∈ E̊x(r)};

(ii) if I is upper bounded, thenφ(maxI , p) ∈ ∂Eu
x(r) ∩ Es(r); conversely, if

φ(t, p) ∈ ∂Eu
x(r) ∩ Es(r), thent = maxI ;

(iii) if I is lower bounded, thenφ(min I , p) ∈ Eu
x(r) ∩ ∂Es(r); conversely, if

φ(t, p) ∈ Eu
x(r) ∩ ∂Es(r), thent = min I ;

(iv) Wu(x) ∩ Ex(r) = Wu
loc,r (x), andWs(x) ∩ Ex(r) = Ws

loc,r (x);

(v) Wu(x) andWs(x) are submanifolds ofM.
Proof. Let r0 be so small that (28) and the conclusions of Lemma 1.10, The-

orem 1.12, and Proposition 1.17 hold. Sincef is of classC1, up to choosing a
smallerr0 we may also assume thatf is uniformly continuous onEx(r0).

We shall prove the first assertion in (i) arguing by contradiction. In fact, as-
sume that there exist an infinitesimal sequence of positive numbers (ρn), ρn < r0,
a sequence of points (ξn) ∈ ∂Ex(ρn), and a sequence of positive numbers (tn) such
thatφ(tn, ξn) ∈ ∂Ex(ρn) andφ(]0, tn[×{ξn})∩Ex(ρn) = ∅. Lemma 1.10(iv) implies
that (at least forn large)ξn ∈ ∂Eu

x(ρn)×Es
x(ρn) ⊂ Cu∩Ex(r0). By Lemma 1.10(i),

Cu ∩ Ex(r0) is positively invariant with respect toEx(r0), and by (iii) if t > 0
andφ([0, t] × {ξn}) ⊂ Cu ∩ Ex(r0) thenφ(t, ξn) < Ex(ρn). Therefore, there exists
an ∈ ]0, tn[ such thatφ([0, an] × {ξn}) ⊂ Ex(r0) andφ(an, ξn) ∈ ∂Ex(r0). Similarly,
there existsbn ∈ [an, tn[ such thatφ(bn, ξn) ∈ ∂Ex(r0) andφ([b,tn]×{ξn}) ⊂ Ex(r0).

Sinceξn→ 0 andφ(tn, ξn)→ 0, Proposition 1.17 implies that

dist
(
φ(an, ξn),Wu

loc,r0
(x)∩∂Ex(r0)

)→ 0, dist
(
φ(bn, ξn),Ws

loc,r0
(x)∩∂Ex(r0)

)→ 0.

Therefore, by (28), taking into account the fact thatf is uniformly continuous on
Ex(r0),

lim sup
n→∞

f (φ(an, ξn)) ≤ sup
Wu

loc,r0
(x)∩∂Ex(r0)

f < inf
Ws

loc,r0
(x)∩∂Ex(r0)

f ≤ lim inf
n→∞ f (φ(bn, ξn)),



MORSE COMPLEX FOR INFINITE-DIMENSIONAL MANIFOLDS 57

a contradiction becausean ≤ bn implies f
(
φ(an, ξn)

) ≥ f
(
φ(bn, ξn)

)
.

The second statement in (i), and statements (ii), (iii) are immediate conse-
quences of Lemma 1.10. The inclusions

Wu
loc,r (x) ⊂Wu(x) ∩ Ex(r), Ws

loc,r (x) ⊂Ws(x) ∩ Ex(r),

are obvious. The opposite inclusions follow from statement (i). ThenWu(x) and
Ws(x) are submanifold ofM, because

Wu(x) = {φ(t, p) | p ∈Wu(x) ∩ E(r), 0 ≤ t < t+(p)},
Ws(x) = {φ(t, p) | p ∈Ws(x) ∩ E(r), t−(p) < t ≤ 0},

and becauseφ(t, ·) is a diffeomorphism. ¤

REMARK 1.21. The weak inequality always holds in (28). The strict inequality
holds if either:

(i) x has finite Morse index;

(ii) M is a Hilbert manifold,f is twice differentiable atx and the second differ-
ential of f at x satisfiesD2 f (x)[ξ, ξ] ≤ −λ‖ξ‖2 for everyξ ∈ Eu

x, for some
positive constantλ.

Indeed, in the first caseWu
loc,r0

(x) is a compact set, so

sup
Wu

loc,r0
(x)∩∂Ex(r0)

f = max
Wu

loc,r0
(x)∩∂Ex(r0)

f < f (x) ≤ inf
Ws

loc,r0
(x)∩∂Ex(r0)

f .

In the second case, a second order expansion off at x yields to the same conclu-
sion.

2. The Morse complex in the case of finite Morse indices

2.1. THE PALAIS – SMALE CONDITION

Assume thatf is a Lyapunov function for the vector fieldX on the Banach man-
ifold M. A Palais – Smale(PS)sequence at levelc is a sequence (pn) ⊂ M such
that (f (pn)) converges toc and (D f (pn)[X(pn)]) is infinitesimal. We shall say that
(X, f ) satisfies thePalais – Smale(PS)condition at levelc if every Palais – Smale
sequence at levelc is compact.

If (X, f ) satisfies the (PS) condition at everyc ∈ [a,b], then rest(X)∩ f −1([a, b])
is compact, so ifX is also Morse this set is finite.
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REMARK 2.1. Assume thatJn = φ([0, tn] × {pn}), tn > 0, is contained in a strip
{a ≤ f ≤ b}, and that

lim
n→∞

f (pn) − f (φ(tn, pn))
tn

= 0. (29)

Then there is a (PS) sequenceqn ∈ Jn. Indeed, by the mean value theorem there is
sn ∈]0, tn[ such that

D f
(
φ(sn, pn)

)[
X
(
φ(sn, pn)

)]
=

f (pn) − f
(
φ(tn, pn)

)
tn

,

and by (29),qn = φ(sn, pn) is a (PS) sequence.

Actually, the above observation could be used to give a weaker formulation
of the (PS) condition, which does not requiref to be differentiable, and could be
used to study flows in the continuous category.

2.2. THE MORSE – SMALE CONDITION

We recall that two closed linear subspacesV1, V2 of a Banach spaceE are said
transverseif V1+V2 = E andV1∩V2 is complemented inE. TwoC1 submanifolds
M1 andM2 of the Banach manifoldM are saidtransverseif for every p ∈ M1∩M2

the closed linear subspacesTpM1 andTpM2 are transverse inTpM.
Let X be a Morse vector field having only rest points with finite Morse index

and admitting a Lyapunov function. We will say thatX satisfies theMorse –
Smale condition up to orderk ∈ N if for every pair of rest pointsx, y satisfying
m(x) − m(y) ≤ k, the submanifoldsWu(x) andWs(y) are transverse. In this case,
the implicit function theorem implies thatWu(x) ∩Ws(y) — if nonempty — is a
submanifold of dimensionm(x) −m(y).

Notice that the presence of a Lyapunov function implies thatWu(x)∩Ws(x) =

{x}, and such an intersection is always transverse. Notice also that the fact that
φ(t, ·) is a diffeomorphism implies that ifWu(x) ∩ Ws(y) meet transversally at
somep ∈ M, they meet transversally at every point of the orbit ofp.

2.3. THE ASSUMPTIONS

Let M be an open subset of the Banach manifoldM̂, and letX̂ be aC1 vector field
on M̂ (possibly,M = M̂). Denote byA the open subset̂M \ M, and denote byX
the restriction of̂X to M.

We shall construct the Morse complex forX on M under the following as-
sumptions:

(A1) A is positively invariant with respect to the flow of̂X, andX̂ is positively
complete with respect toA;
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(A2) X is a Morse vector field onM;

(A3) every rest point ofX has finite Morse index;

(A4) X admits a Lyapunov functionf ∈ C1(M) ∩C0(M);

(A5) f is bounded below onM;

(A6) (X, f ) satisfies the (PS) condition at every levelc ∈ f (M);

(A7) X satisfies the Morse – Smale condition up to order 0.

The local flow ofX̂ will be denoted byφ. By (A1), the local flow ofX is just
the restriction ofφ to

Ω(X) =
{
(t, p) ∈ Ω(X̂)

∣∣∣ p ∈ M, φ(t, p) ∈ M
}
.

In most applicationsf is actually defined on the wholêM andA is a sublevel
of f .

Notice that (A6) and the fact thatf ∈ C0(M) imply that there are no rest points
on the boundary ofM: such a rest point would be the limit of a (PS) sequence in
M, which does not converge inM.

Notice also that (A7) means asking thatWu(x) does not meetWs(y) whenever
x , y are rest points withm(x) ≤ m(y).

2.4. FORWARD COMPACTNESS

The (PS) condition plays a crucial role in the following compactness result.

PROPOSITION 2.2.Assume(A1) – (A7). Then

(i) for everyp ∈ M, φ(t, p) either converges to a rest point ofX for t → +∞ or
eventually entersA;

(ii) if (pn) ⊂ M converges top ∈ M̂, (tn) ⊂ [0,+∞[, and
(
φ(tn, pn)

) ⊂ M, then
the sequence

(
φ(tn, pn)

)
is compact inM̂.

Proof. (i) Let p ∈ M. Assume thatφ(t, p) never entersA: by (A1) this implies
thatt+(p) = +∞. By Remark 2.1, withpn = p, tn→ +∞, a = inf f , b = f (p), and
by (PS) we can find a sequencesn → +∞ such thatφ(sn, p) converges to a rest
point x ∈ M. The functiont 7→ f

(
φ(t, p)

)
converges fort → +∞, being monotone,

therefore
lim

t→+∞ f
(
φ(t, p)

)
= lim

n→∞ f
(
φ(sn, p)

)
= f (x).

Assume by contradiction thatφ(t, p) does not converge tox for t → +∞. Then we
can findr > 0 (as small as we like), two sequencesan ≤ bn ≤ an+1, an → +∞,
such thatφ(an, p) ∈ ∂Ex(r), φ(bn, p) ∈ ∂Ex(2r), φ([an,bn] × {p}) ⊂ Ex(2r) \ Ex(r).
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Choosingr so small thatX is bounded onEx(2r) ⊂ M, one has thatbn − an is
bounded away from 0. Since

lim
n→∞ f

(
φ(an, p)

)
= lim

n→∞ f
(
φ(bn, p)

)
= lim

t→+∞ f
(
φ(t, p)

)
= f (x),

we have

lim
n→∞

f
(
φ(bn, p)

) − f
(
φ(an, p)

)
bn − an

= 0,

so by Remark 2.1 there is a (PS) sequence inEx(2r) \ Ex(r), converging by (PS)
to a rest point. Sincer is arbitrarily small,x is not isolated in rest(X), contradicting
(A2).

(ii) If ( tn) is bounded, then

lim sup
n→∞

tn < t+(p). (30)

Indeed, if by contradictiont+(p) ≤ lim supn→∞ tn, t+(p) is finite, so by (A1) there
existss ∈ [0, t+(p)[ such thatφ(s, p) ∈ A. Thenφ(s, pn) eventually belongs toA,
sos> tn for n large, and lim supn→∞ tn ≤ s< t+(p), a contradiction.

When (tn) is bounded, the continuity ofφ and (30) imply that
(
φ(tn, pn)

)
is

compact inM̂, so we may assume thattn→ +∞.
By Remark 2.1 and (PS) there exists a sequencean ∈ [0, tn] such that, up to

a subsequence,φ(an, pn) converges to a rest pointx ∈ M, with inf f ≤ f (x) ≤
f (p). Since there are finitely many rest points in this strip, we may assume that
f (x) is minimal, that is for no sequencea′n ∈ [0, tn], φ(a′n, pn) has a subsequence
converging to a rest pointy ∈ M with f (y) < f (x).

If φ(tn, pn) converges tox then there is nothing to prove, otherwise up to a
subsequence we can findr > 0 (as small as we like) andbn ∈ [an, tn] such
thatφ(bn, pn) ∈ ∂Ex(r) andφ([an,bn] × {pn}) ⊂ Ex(r). By Proposition 1.17, the
sequence

(
φ(bn, pn)

)
is compact, since its distance from the compact setWu

loc,r (x)∩
∂Ex(r) tends to 0 (here we are using the fact thatx has finite Morse index). So a
subsequence of

(
φ(bn, pn)

)
converges to a pointq with

f (q) ≤ max
Wu

loc,r (x)∩∂Ex(r)
f < f (x).

The sequencetn − bn is bounded: otherwise by Remark 2.1 and (PS) there would
existcn ∈ [bn, tn] such that a subsequence of

(
φ(cn, pn)

)
converges to a rest point

y with f (y) ≤ f (q) < f (x), contradicting the minimality off (x). Therefore
φ(tn, pn) = φ

(
tn − bn, φ(bn, pn)

)
is compact inM̂. ¤

The above result has the following immediate consequence.

COROLLARY 2.3. For everyx ∈ rest(X), Wu(x)∩M has compact closure in̂M.
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Another consequence is the following convergence result for forward orbits:
if ( pn) ⊂ M converges top ∈ M, up to a subsequence the forward orbit ofpn

converges to a “broken orbit” consisting ofh + 1 flow lines,h ≥ 0, matching at
h rest pointsxh, . . . , x1. The first of these flow lines is the forward orbit ofp, the
last one either converges to a rest pointx0, which is also the common limit of
φ(t, pn) for t → +∞, or eventually entersA, together with all the orbits ofpn.
More precisely, the situation is described by the following corollary.

COROLLARY 2.4. Assume that(pn) ⊂ M converges to somep ∈ M. Then there
exists a subsequence(pkn) such that one of the following two alternatives holds:

(a) t+(pkn) = +∞, and there existsx0 ∈ rest(X) such thatφ(t, pkn) converges to
x0 for t → +∞, for everyn ∈ N;

(b) for everyn ∈ N, φ(t, pkn) eventually entersA.

Moreover, there existh ∈ N, a set{x j}1≤ j≤h ⊂ rest(X), with f (x1) < · · · <
f (xh), sequences of real numberstn0 > tn1 > · · · > tnh = 0, and pointsq0, q1, . . . ,
qh = p in M such that:

(i) q j ∈Ws(x j) ∩Wu(x j+1) for every1 ≤ j ≤ h− 1;

(ii) qh = p ∈ Ws(xh), unless case(b) holds andh = 0, in which caseφ(t, qh) =

φ(t, p) eventually entersA;

(iii) q0 ∈ Wu(x1) if h ≥ 1; in case(a) q0 ∈ Ws(x0), in case(b) φ(t,q0) eventually
entersA;

(iv) limn→∞ φ(t j
n, pkn) = q j for every0 ≤ j ≤ h.

The proof is an easy application of Proposition 2.2, together with an induction
argument. Details are left to the reader.

2.5. CONSEQUENCES OF COMPACTNESS AND TRANSVERSALITY

Given a subsetB ⊂ M̂, we will denote byφ([0,+∞[ × B) its forward evolution,
although this set should more properly be indicated by

φ
(
([0,+∞[ × B) ∩Ω(X̂)

)
.

The Morse – Smale condition up to order zero, assumption (A7), has the following
consequence.

LEMMA 2.5. Assume(A1) – (A7). Let x, y be distinct rest points ofX, with
m(x) ≤ m(y). Then there existsr > 0 such that

φ
(
[0,+∞[ × Ex(r)

) ∩ Ey(r) = ∅.



62 A. ABBONDANDOLO AND P. MAJER

Proof. Assume the contrary: there exist a sequence (pn) ⊂ M converging to
x and a sequence (tn) ⊂ [0,+∞[ such that

(
φ(tn, pn)

)
converges toy. By Corol-

lary 2.4, a subsequence of the sequence of forward orbits ofpn converges to a
“broken orbit” passing throughx andy. In particular, there are pairwise distinct
rest pointsz1 = x, z2, . . . , zk = y, k ≥ 2, such thatWu(zi) ∩ Ws(zi+1) , ∅ for
every 1≤ i ≤ k − 1. The Morse – Smale condition up to order zero implies that
m(x) = m(z1) > · · · > m(zk) = m(y), a contradiction. ¤

In particular, the closure of the unstable manifold of a rest pointx of indexk
does not contain rest points of index greater than or equal tok, other thanx itself.
Let us state a stronger assumption, which will be later removed:

(A8) every rest pointy does not belong to the closure of the union of the unstable
manifolds of rest pointsx , y with m(x) ≤ m(y):

y <
⋃

x ∈ rest(X) \ {y}
m(x) ≤ m(y)

Wu(x).

Since the closure of a finite union is the union of the closures, by Lemma 2.5
condition (A8) is implied by the Morse – Smale condition up to order zero (A7)
whenX has finitely many rest points of indexk, for everyk ∈ N. In general it is
strictly more restrictive.

Assumption (A8) implies the following result.

PROPOSITION 2.6. Assume(A1) – (A8). Then there exists a positive function
ρ: rest(X)→ ]0,+∞[ such that

φ
(
[0,+∞[ × Ex

(
ρ(x)

)) ∩ Ey
(
ρ(y)

)
= ∅

for all pairs of rest pointsx , y with m(x) ≤ m(y).
Proof.By (A8) there exists a functionσ: rest(X)→ ]0,+∞[ such that

Ey
(
σ(y)

) ∩
⋃

x ∈ rest(X) \ {y}
m(x) ≤ m(y)

Wu(x) = ∅ ∀y ∈ rest(X). (31)

Let us prove that for everyx ∈ rest(X) there is a positive numberθ(x) such that

φ
(
[0,+∞[ × Ex

(
θ(x)

)) ∩ Ey
(
σ(y)

)
= ∅ ∀y ∈ rest(X) \ {x}, m(y) ≥ m(x). (32)

Then the functionρ(x): rest(X) → ]0,+∞[, x 7→ min{σ(x), θ(x)}, will satisfy the
requirements.

We argue by contradiction, assuming that there existsx ∈ rest(X) for which
(32) does not hold, no matter how smallθ(x) is. Since there are finitely many rest
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points in {p ∈ M | f (p) ≤ f (x)}, we can find a sequence (pn) ⊂ M converging
to x and a sequence (tn) ⊂ [0,+∞[ such thatφ(tn, pn) ∈ Ey(σ(y)), for somey ∈
rest(X)\{x} with m(y) ≥ m(x). By Corollary 2.4, a subsequence of the sequence of
the forward orbits ofpn converges to a “broken orbit” starting fromx and passing
throughEy

(
σ(y)

)
. In particular, there are rest pointsz1 = x, . . . , zk , y, k ≥ 1, such

thatWu(zi) ∩Ws(zi+1) , ∅ for 1 ≤ i ≤ k− 1, and

Wu(zk) ∩ Ey
(
σ(y)

)
, ∅. (33)

By the Morse – Smale condition up to order 0,m(zk) ≤ m(x) ≤ m(y), and since
zk , y, (33) contradicts (31). ¤

2.6. CELLULAR FILTRATIONS

Cellular filtrations are a useful tool to compute the singular homology of a topo-
logical space. See Dold (1980, Section V.1) for a more extensive discussion and
for the proof of the results stated in this section.

Let T be a topological space. A sequenceF = {Fn}n∈Z of subsets ofT is said
acellular filtration ofT if:

(i) Fn ⊂ Fn+1 for everyn ∈ Z;

(ii) every singular simplex inT is a simplex inFn for somen;

(iii) the k-th singular homology groupHk(Fn, Fn−1) vanishes for everyk , n.

Notice that (ii) is fulfilled whenT is the union of the family{Fn} and eachFn

is open. The spaceF−1 may be empty. The spacesFn for n ≤ −2 will be actually
irrelevant in the construction. Singular homology is always meant to have integer
coefficients.

If F = {Fn}n∈Z is a cellular filtration ofT, we denote byWkF the Abelian
group

WkF := Hk(Fk, Fk−1).

The homomorphism∂k: WkF →Wk−1F is given by the composition

Hk(Fk, Fk−1)→ Hk−1(Fk−1)→ Hk−1(Fk−1, Fk−2),

where the first map is the boundary homomorphism of the pair (Fk, Fk−1), and the
second map is induced by the inclusion. It is readily seen that∂k∂k+1 = 0, soW∗F
is a chain complex of Abelian groups, said thecellular complex of the filtration
F .

A cellular mapg: (T,F ) → (T′,F ′) is a continuous map fromT to T′ map-
ping eachFn into F′n. Such a map induces homomorphisms

Wkg: WkF →WkF ′, Wkg = g∗: Hk(Fk, Fk−1)→ Hk(F
′
k, F

′
k−1),
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which are readily seen to form a chain mapW∗g: W∗F →W∗F ′. This makesW a
functor from the category of cellular filtrations and cellular maps to the category
of chain complexes of Abelian groups and chain maps.

THEOREM 2.7. If F = {Fn}n∈Z is a cellular filtration of the topological space
T, then there is an isomorphism

Hk({W∗F , ∂∗}) � Hk(T, F−1).

Such isomorphisms form a natural transformation between the functorHW and
the singular homology functorH, in the sense that ifg: (T,F ) → (T′,F ′) is a
cellular map, then the diagram

Hk({W∗F , ∂∗}) � //

HkWkg
²²

Hk(T, F−1)

g∗
²²

Hk({W∗F ′, ∂∗}) � // Hk(T′, F′−1)

commutes.

A cellular homotopyh between two cellular mapsg0,g1: (T,F )→ (T′,F ′) is
cellular maph: ([0,1] × T, F̂ ) → (T′,F ′), F̂ being the cellular filtration{[0, 1] ×
Fn}n∈Z, such thath(0, ·) = g0 andh(1, ·) = g1. If there is a cellular homotopy
betweeng and g′, the homotopy invariance of singular homology implies that
W∗g = W∗g′.

A cellular mapg: (T,F ) → (T′,F ′) is said acellular homotopy equivalence
if there are a cellular mapg′: (T′,F ′)→ (T,F ), said acellular homotopy inverse
of g, and cellular homotopiesh betweeng′ ◦ g and id(T,F ) andh′ betweeng ◦ g′

and id(T′,F ′). By functoriality and homotopy invariance, ifg is a cellular homotopy
equivalence thenW∗g is an isomorphism.

2.7. THE MORSE COMPLEX

Denote by restk(X) the set of rest points ofX of Morse indexk, and letCk(X) be
the free Abelian group generated by the elements of restk(X).

Let ρ: rest(X)→ ]0,+∞[ be a function satisfying

φ
(
[0,+∞[ × Ex

(
ρ(x)

)) ∩ Ey
(
ρ(y)

)
= ∅, ∀x , y ∈ rest(X), m(x) ≤ m(y), (34)

whose existence is established by Proposition 2.6. Consider the subsets ofM̂

Mk = Mk(ρ) := A∪
⋃

x ∈ rest(X)
m(x) ≤ k

φ([0,+∞[ × E̊x(ρ(x))) ∀k ≥ 0, Mk = A ∀k < 0,
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andM∞ = M∞(ρ) :=
⋃

k∈Z Mk. EachMk is open and positively invariant.
We shall denote byDk the closed unit ball ofRk, and byωk the generator

of Hk(Dk, ∂Dk) corresponding to the standard orientation ofRk. Here is the main
result of this second part.

THEOREM 2.8. Assume(A1) – (A8). Letρ: rest(X)→]0,+∞[ be a function sat-
isfying(34), and letMk be the sets defined above. Then:

(i) The inclusion(M∞,A) ↪→ (M̂,A) is a homotopy equivalence.

(ii) M =M(ρ) := {Mk}k∈Z is a cellular filtration ofM∞, with

WkM = Hk(Mk,Mk−1) � Ck(X), ∀k ∈ N.
More precisely, the choice of an orientation of each unstable manifoldWu(x)
determines an isomorphism

Θk(ρ): Ck(X) � WkM(ρ), x 7→ θx
∗(ωk), ∀x ∈ restk(X),

whereθx: (Dk, ∂Dk)→ (Mk,Mk−1) is a map of the formθx(ξ) = φ
(
t(ξ),w(ξ)

)
,

with w an orientation preserving embedding ofDk onto an open neighbor-
hood ofx in Wu(x), and0 ≤ t < t+ so large thatφ

(
t(ξ),w(ξ)

) ∈ Mk−1 for
everyξ ∈ ∂Dk.

(iii) If ρ′ ≤ ρ, then the inclusionj = jρ′ρ: M∞(ρ′) ↪→ M∞(ρ) is a cellular ho-
motopy equivalence with respect to the cellular filtrations{Mk(ρ′)}k∈Z and
{Mk(ρ)}k∈Z. Moreover, the diagram

WkM(ρ′)

Wk j
² ²

Ck(X)

Θk(ρ′)
99ssssssssss

Θk(ρ)
// WkM(ρ)

(35)

commutes.

By (iii), the isomorphism class of the cellular chain complexWkM(ρ) does not
depend on the choice of the functionρ satisfying (34). In order to fix a standard
representative, we can define

W∗(X) := lim
ρ↓0

W∗M(ρ),

the limit of the direct system of chain complexes{W∗M(ρ),W∗ jρ′ρ}. The chain
complexW∗(X) is said theMorse complex ofX. By Theorem 2.7, the homology
of such a chain complex is isomorphic to the singular homology of (M∞,A), which
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by statement (i) of the theorem above is isomorphic to the singular homology of
(M̂,A):

HkW∗(X) � Hk(M̂,A) ∀k ∈ N.
In particular whenA is the empty set (so thatX is a positively complete Morse
vector field onM admitting a Lyapunov function which is bounded below), the
homology of the Morse complex is isomorphic to the singular homology ofM.

By (ii) and by the commutativity of diagram (35), a choice of an orientation
of each unstable manifold allows to identify the groupsCk(X) andWk(X), by the
isomorphism

Θk = lim
ρ↓0

Θk(ρ): Ck(X) � Wk(X).

EXERCISE 2.9. Deduce the so calledstrong Morse relations: there exists a
formal seriesQ with coefficients inN ∪ {+∞} such that

∞∑

k=0

| restk(X)| tk =

∞∑

k=0

βk(M̂,A)tk + (1 + t)Q(t), (36)

whereβk(M̂,A) = rankHk(M̂,A) ∈ N ∪ {+∞} is thekth Betti number of (̂M,A).

Before proving Theorem 2.8, we recall the semi-continuity properties of the
entrance time functioninto a subsetC ⊂ M̂:

tC(p) := inf
{
t ∈ [0, t+(p)[

∣∣∣ φ(t, p) ∈ C
} ∈ [0,+∞].

LEMMA 2.10. If C is open,tC is upper semi-continuous. IfC is closed,tC is
lower semi-continuous.

Proof.Assume thatC is open. IttC(p) < t, there existss ∈ [tC(p), t[ such that
φ(s, p) ∈ C. By continuity,φ(s, q) ∈ C for everyq in a neighborhood ofp, so
tC(q) ≤ s< t in such a neighborhood.

Assume thatC is closed. IftC(p) > t, choosingt′ ∈]t, tC(p)[ we have that
φ(s, p) belongs to the open set̂M \ C for every s ∈ [0, t′]. By continuity and
compactness,φ(s, q) ∈ M̂ \C for everys ∈ [0, t′] and everyq in a neighborhood
of p. Therefore,tC(q) ≥ t′ > t in such a neighborhood. ¤

Proof of Theorem2.8. (i) By Proposition 2.2(i), the orbit of everyp ∈ M̂ either
converges to some rest pointx ∈ M for t → +∞, or eventually entersA. SinceM∞
is a neighborhood of rest(X) and containsA, for everyp ∈ M̂ the entrance time of
φ(·, p) in M∞,

tM∞(p) := inf
{
t ∈ [0, t+(p)[

∣∣∣ φ(t, p) ∈ M∞
}

is finite, and less thant+(p). SinceM∞ is open, by Lemma 2.10 the functiontM∞
is upper semi-continuous.
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On the other hand, the functiont+ is lower semi-continuous. A simple ar-
gument with partitions of unity (also known as Dowker theorem; see Dugundji,
1978, VIII.4.3) shows that on a paracompact topological space we can always find
a continuous function between an upper semi-continuous function and a lower
semi-continuous one. So we can find a continuous functions : M̂ → R such that
tM∞ < s< t+. Then the continuous map

r: (M̂,A)→ (M∞,A), r(p) = φ(s(p), p),

is a homotopical inverse of the inclusioni: (M∞,A) ↪→ (M̂,A), the homotopies
id(M̂,A) ∼ i ◦ r and id(M∞,A) ∼ r ◦ i being the map

([0,1] × M̂, [0,1] × A)→ (M̂,A), (λ, p) 7→ φ(λs(p), p),

and its restriction to ([0,1] × M∞, [0, 1] × A) into (M∞,A).
(ii) Let us prove thatM is a cellular filtration. SinceM is an open covering

of M∞, we just need to compute the singular homology of (Mk,Mk−1). SinceMk

is the union of the open setsMk−1 and

Uk :=
⋃

x∈restk(X)

φ
(
[0,+∞[ × E̊x

(
ρ(x)

))
,

by excision the singular homology of (Mk,Mk−1) is isomorphic to the singular
homology of (Uk,Uk ∩ Mk−1). Condition (34) implies that the open setsU(x) :=
φ
(
[0,+∞[×E̊x

(
ρ(x)bigr)

)
, x ∈ restk(X), are pairwise disjoint, so

H∗(Mk,Mk−1) � H∗(Uk,Uk ∩ Mk−1) �
⊕

x∈restk(X)

H∗(U(x),U(x) ∩ Mk−1).

We shall prove that (U(x),U(x)∩Mk−1) is homotopically equivalent to ak-dimen-
sional disc modulo its boundary, so that

H j(U(x),U(x) ∩ Mk−1) =

{
0 if j , k,
Z if j = k,

proving thatM is a cellular filtration.
Set for simplicityρ = ρ(x). By Lemma 1.10(iii),Eu

x(ρ) × E̊s
x(ρ) ⊂ U(x). Let

p ∈ U(x) \ Eu
x(ρ) × E̊s

x(ρ). By Proposition 2.2(ii), the orbit ofp either eventually
entersA, or converges to a rest pointy for t → +∞. In the latter case,y , x
because of Theorem 1.20(i), so by (34)m(y) ≤ k− 1. In both cases, the orbit ofp
eventually entersMk−1. The upper semi-continuous function

ã : U(x)→ R, p 7→
{

0 if p ∈ E̊x(ρ),
tMk−1(p) if p ∈ U(x) \ E̊x(ρ),
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is strictly less than the lower semi-continuous functiont+, so we can find a con-
tinuous functiona: U(x)→ [0,+∞[ such that ˜a < a < t+, so that

φ(a(p), p) ∈ Mk−1 ∀p ∈ U(x) \ E̊x(ρ). (37)

Then we can define the continuous map

α:
(
Eu

x(ρ) × E̊s
x(ρ), ∂Eu

x(ρ) × E̊s
x(ρ)

)→ (U(x),U(x) ∩ Mk−1), p 7→ φ(a(p), p).

By Theorem 1.20(i), for everyp ∈ U(x) there holds

b(p) := sup
{
t ∈ ]t−(p), 0]

∣∣∣ φ(t, p) ∈ E̊x(ρ)
}

= max
{
t ∈ ]t−(p), 0]

∣∣∣ φ(t, p) ∈ Ex(ρ)
}
,

so by Lemma 2.10 the functionb: U(x) → ]−∞,0] is both lower and upper semi-
continuous, hence continuous. The mapp 7→ φ(b(p), p) is the identity onEu

x(ρ) ×
E̊s

x(ρ), and maps all the other points ofU(x) into ∂Eu
x(ρ) × E̊s

x(ρ). Since by (34)
Ex(ρ) ∩ Mk−1 = ∅, the continuous map

β: (U(x),U(x) ∩ Mk−1)→ (
Eu

x(ρ) × E̊s
x(ρ), ∂Eu

x(ρ) × E̊s
x(ρ)

)
, p 7→ φ(b(p), p),

is well-defined.
It is easy to check thatα andβ are homotopy inverses. Indeed,

(λ, p) 7→ β
(
φ(λa(p), p)

)

is a homotopy betweenβ◦α and the identity map on
(
Eu

x(ρ) × E̊s
x(ρ), ∂Eu

x(ρ) × E̊s
x(ρ)

)
.

On the other hand, by (37),

(λ, p) 7→ φ
(
a
(
φ(λb(p), p)

)
, φ(λb(p), p)

)

is a homotopy betweenα ◦ β and the map

(U(x),U(x) ∩ Mk−1)→ (U(x),U(x) ∩ Mk−1), p 7→ φ(a(p), p),

which is clearly homotopy equivalent to the identity on (U(x),U(x) ∩ Mk−1).
We conclude that (U(x),U(x)∩Mk−1) is homotopy equivalent to

(
Eu

x(ρ) × E̊s
x(ρ), ∂Eu

x(ρ) × E̊s
x(ρ)

)
,

which is homotopy equivalent to
(
Eu

x(ρ), ∂Eu
x(ρ)

)
, a k-dimensional disc modulo

its boundary. The latter pair is homeomorphic to
(
Wu

loc,ρ(x), ∂Wu
loc,ρ(x)

)
, and the

statement about the form of the isomorphismΘk easily follows.
(iii) Since Mk(ρ′) ⊂ Mk(ρ) for everyk, j is a cellular map; we will construct

a cellular homotopy inverse ofj of the form

γ(p) = φ(c(p), p), (38)

with c a suitable positive continuous function.
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Given p ∈ M∞(ρ), set

κ(p) := min
{
k ∈ N

∣∣∣ p ∈ Mk(ρ)
}
,

and
c̃(p) := tMκ(p)(ρ′)(p),

the entrance time ofp into the open setMκ(p)(ρ′). By (34), every point inMk(ρ)
either eventually entersA or converges to a rest pointx with m(x) ≤ k; in both
cases,p eventually entersMk(ρ′). Therefore, ˜c < t+.

Since{Mh(ρ′)}h∈Z is a filtration,tMh(ρ′) is nonincreasing inh, so

c̃(p) = min
{
tMh(ρ′)(p)

∣∣∣ 0 ≤ h ≤ κ(p)
}

= min
{
tMh(ρ′)(p)χh(p)

∣∣∣ h ∈ N}
,

whereχh(p) = 1 if h ≤ κ(p), i.e., p < Mh−1(ρ), andχh(p) = +∞ otherwise;
hence the positive functionχh is upper semi-continuous. Since alsotMh(ρ′) is upper
semi-continuous and nonnegative, so is the function ˜c.

Let c: M∞(ρ) → R be a continuous function such that ˜c < c < t+, and let
γ: M∞(ρ) → M∞(ρ′) be the map defined in (38). By construction,γ mapsMk(ρ)
into Mk(ρ′), so it is a cellular map. The cellular homotopies idM∞(ρ) ∼ j ◦ γ and
idM∞(ρ′) ∼ γ◦ j are given by the cellular map (λ, p) 7→ φ(λc(p), p) on the respective
domains.

If θx(ρ): (Dk, ∂Dk)→ (
Mk(ρ),Mk−1(ρ)

)
andθx(ρ′): (Dk, ∂Dk)→ (

Mk(ρ′),Mk−1(ρ′)
)

are the continuous maps appearing in (ii), thenj ◦ θx(ρ′) is homotopic toθx(ρ), so
the diagram (35) commutes. ¤

2.8. REPRESENTATION OF∂∗ IN TERMS OF INTERSECTION NUMBERS

Let us strengthen the Morse – Smale assumption (A7) by requiring:

(A7′) X satisfies the Morse – Smale condition up to order 1.

In this case, the boundary operator∂k of the Morse complex ofX can be expressed
in terms of intersection numbers of unstable and stable manifolds of rest points of
index difference 1.

First of all notice that ifm(x) − m(y) = 1, the assumption (A7′) implies that
Wu(x)∩Ws(y) is a flow-invariant 1-dimensional manifold, that is a discrete set of
flow lines. We claim thatWu(x)∩Ws(y) is compact: otherwise Corollary 2.4 would
imply the existence of a “broken orbit” fromz0 = x to zh = y, with intermediate
rest pointsz1, . . . , zh−1, for someh ≥ 2. By the Morse – Smale condition (up to
order 0)m(z0) > m(z1) > · · · > m(zh), a contradiction becausem(z0) −m(zh) = 1.
ThereforeWu(x) ∩Ws(y) consists of finitely many flow lines.

Let us fix an orientation of each unstable manifoldWu(x). As we have seen in
Section 2.7, this choice determines a preferred isomorphismΘk: Ck(X) � Wk(X).
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Moreover, it determines an orientation of each transverse intersectionWu(x) ∩
Ws(y). Indeed, the orientation of each unstable manifold determines a co-orien-
tation of each stable manifold (that is an orientation of its normal bundle), and
the transverse intersection of a finite-dimensional oriented submanifold with a
finite-codimensional co-oriented submanifold carries a canonical orientation: if
p ∈Wu(x)∩Ws(y) andV ⊂ TpWu(x) is a linear complement ofTp(Wu(x)∩Ws(y))
in TpWu(x), by transversalityV is also a complement ofTpWs(x) in TpM, so it is
oriented, and the orientation ofWu(x) ∩Ws(y) is the one for which

TpWu(x) = Tp
(
Wu(x) ∩Ws(y)

) ⊕ V

is an oriented sum.
In particular, ifm(x)−m(y) = 1 each connected componentW of Wu(x)∩Ws(y)

is an oriented line, and we can defineε(W) to be+1 if φ is orientation preserving
onW, −1 otherwise. Then we can define the integer

n(x, y) =
∑

W connected component
of Wu(x) ∩Ws(y)

ε(W), ∀x, y ∈ rest(X), m(x) −m(y) = 1.

Assume that conditions (A1) – (A6), (A7′), and (A8) hold. Then we have the
following fact.

THEOREM 2.11. In terms of the preferred isomorphismΘk: Ck(X) � Wk(X), the
boundary operator of the Morse complex ofX has the form

∂kx =
∑

y∈restk−1(X)

n(x, y)y, ∀x ∈ restk(X) ⊂ Ck(X). (39)

Before proving this result, we recall that ifσn denotes the generator ofHn(Sn)
corresponding to the standard orientation of∂Dn+1 = Sn, that is the one for which
Rn+1 = Rζ⊕TζSn is an oriented sum, for everyζ in Sn, we have that the boundary
homomorphismHn+1(Dn+1, ∂Dn+1)→ Hn(∂Dn+1) mapsωn+1 intoσn.

EXERCISE 2.12. LetA1, . . . ,Ah be pairwise disjoint closedn-discs inSn, with
maps

ai : (Dn, ∂Dn)→
(
Sn,Sn

∖ h⋃

i=1

Åi

)
,

mappingDn homeomorphically ontoAi , preserving the standard orientations. Let
j: Sn→ (Sn,Sn \⋃h

i=1 Åi) be the inclusion. Then

j∗(σn) =

h∑

i=1

ai
∗(ωn).
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Proof of Theorem2.11. Notice first of all that by (A2) and (A6), for every
x ∈ rest(X) there are finitely many rest pointsy ∈ rest(X) with f (y) < f (x), so the
sum appearing in (39) is finite.

Let ρ: rest(X) → ]0,+∞[ be a function satisfying (34), and letMk = Mk(ρ),
for k ∈ N ∪ {∞}. Let us fix a rest pointx of Morse indexk.

By the naturality of the boundary homomorphism of pairs in singular homol-
ogy, we have the commutative diagram

Hk(Dk, ∂Dk)
θx∗ //

²²

Hk(Mk,Mk−1)

²²
Hk−1(∂Dk)

α∗ // Hk−1(Mk−1)

whereα: ∂Dk → Mk−1 is the restriction ofθx. The cellular boundary homomor-
phism∂k of the cellular filtration{Mk}k∈Z is the composition of the right vertical
arrow with the homomorphism induced by the inclusioni: Mk−1 ↪→ (Mk−1,Mk−2).
On the other hand, the left vertical arrow is an isomorphism mappingωk into
σk−1. Therefore,∂k maps the generatorθx∗(ωk) of Hk(Mk,Mk−1) into i∗α∗(σk−1) ∈
Hk−1(Mk−1,Mk−2), and we must express the latter element in terms of the genera-
torsθy

∗(ωk−1) of Hk−1(Mk−1,Mk−2), for y ∈ restk−1(X).
By the Morse – Smale condition up to order 1,

α−1
( ⋃

y∈restk−1(X)

Ws(y)
)

= {ζ1, . . . , ζh}

is a finite subset of∂Dk, andα maps all the other points into points which either
belong to stable manifolds of rest points of index less thank − 1, or eventually
enterA; so the orbit of any point inα(∂Dk \ {ζ1, . . . , ζh}) eventually entersMk−2.
Chooser > 0 so small that the closedr-balls Br (ζi) ⊂ ∂Dk centered inζi are
pairwise disjoint (k−1)-discs. Letb: ∂Dk → R be a continuous function such that

χtMk−2 ◦ α < b < t+ ◦ α,

whereχ is the characteristic function of the open set∂Dk \⋃h
i=1 Br (ζi), andtMk−2

is the entrance time function intoMk−2. Thenα is homotopic to the map

β: ∂Dk → Mk−1, ζ 7→ φ
(
b(ζ), α(ζ)

)
,

so
θx
∗(ωk) = i∗α∗(σk−1) = i∗β∗(σk−1).

Denote by
γi : (Dk−1, ∂Dk−1)→ (Mk−1,Mk−2)
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the composition ofi ◦ β with an orientation preserving homeomorphism

(Dk−1, ∂Dk−1)→ (
Bρ(ζi), ∂Bρ(ζi)

)
.

Then the result of Exercise 2.12 shows that:

θx
∗(ωk) = i∗β∗(σk−1) =

h∑

i=1

γi∗(ωk−1). (40)

Fix somei ∈ {1, . . . ,h}, let y be the rest point of indexk − 1 toward which the
orbit of α(ζi), i.e., ofβ(ζi), converges fort → +∞, and letWi be the connected
component ofWu(x) ∩Ws(y) consisting of such an orbit.

We claim thatγi is homotopic to eitherθy, in the caseε(Wi) = 1, or toθy ◦ µ,
whereµ is an orientation reversing automorphism of (Dk−1, ∂Dk−1), in the case
ε(Wi) = −1. Therefore

γi∗(ωk−1) = ε(Wi)θ
y
∗(ωk−1),

and (40) allows to conclude.
Let us proof the claim. Up to a small perturbation, we may assume thatγi is a

C1 embedding of a closed (k − 1)-disc, meetingWs(y) transversally at the single
point p = γi(0). The diffeomorphismγi induces an orientation ofTpγi(Dk−1), the
one for which

TpWu(x) = RX(p) ⊕ Tpγi(D
k−1)

is an oriented sum. The differential of the flowD2φ(t, ·) at p maps the tangent
space ofγi(Dk−1) at p onto a subspace ofTφ(t,p)M which converges toTyWu(y)
for t → +∞ (see for instance Abbondandolo and Majer, 2003c, Theorem 2.1(iii)).
A first consequence is that the orientation ofTpγi(Dk−1) defined above isε(Wi)
times the orientation obtained by seeingTpγi(Dk−1) as a complement ofTpWs(y)
in TpM. A second consequence is that, by the evolution of graphs of Lipschitz
maps fromEu

y(r) to Es
y(r) near the hyperbolic rest pointy (see Shub, 1987, or

Abbondandolo and Majer, 2001, Proposition A.3 and Addendum A.5), ifr > 0
is small andt ≥ 0 is large thenφ

({t} × γi(Dk−1)
) ∩ Ey(r) is the graph of a map3

τ : Eu
y(r)→ Es

y(r). Let K ⊂ Dk−1 be the closed neighborhood of 0 such that

φ({t} × γi(K)) = graphτ.

SinceK is a closed (k−1)-disc, it is a deformation retract ofDk−1. Since the local
unstable manifoldWu

loc,r (y) is also the graph of a mapσu: Eu
y(r) → Es

y(r), it is
now easy to combine the above maps to construct a homotopy betweenγi and
an embedding of (Dk−1, ∂Dk−1) into (Wu(y),Wu(y) ∩ Mk−2), which is orientation

3 This statement is part of the content of the so calledλ-lemma, in the particular case of a
gradient-like flow. See Palis (1968) and Palis and de Melo (1982).
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preserving, hence homotopic toθy, if ε(Wi) = 1, orientation reversing, hence
homotopic toθy ◦ µ, if ε(Wi) = −1. ¤

2.9. HOW TO REMOVE THE ASSUMPTION (A8)

If we drop assumption (A8), there need not exist a functionρ satisfying (34), and it
becomes more difficult to associate a cellular filtration toX. Nevertheless, we can
make the graded groupC∗(X) into a chain complex by taking a direct limit of the
Morse complexes on sublevels{ f < a}, for a ↑ sup f . On these domains indeed,
there are finitely many rest points and condition (A7) guarantees condition (A8).
Not being forced to assume (A8) is a positive fact, in that assumption (A7) can be
more easily achieved by generic perturbations, as we shall see in Section 2.12.

If the supremum off on M is attained, by (A2) and (A6)X has finitely many
rest points, so (A8) is implied by (A7). Thus, we can assume that supf is not
attained.

Fora < sup f , let W∗(X)a be the Morse complex associated tôMa := A∪ { f <
a}, and ifa < b < sup f , let

wab: W∗(X)a→W∗(X)b

be the chain map induced by the inclusion̂Ma ↪→ M̂b. TheMorse complex ofX
is defined to be the chain complex

W∗(X) := lim
a↑sup f

W∗(X)a,

the limit of the direct system{W∗(X),wab}. Notice that if (A8) holds, so that
W∗(X) is the chain complex defined in Section 2.7, the family of chain com-
plexes{W∗(X)a}a<sup f is identified with an increasing and exhausting family of
sub-complexes ofW∗(X), so this definition of the Morse complex agrees with the
previous one.

Since the homology of a direct limit of chain complexes is the direct limit of
the homologies (see Dold, 1980, VIII.5.20),

HkW∗(X) = lim
a↑sup f

HkW∗(X)a.

Similarly, the singular homology of an increasing union of open subsets is the
limit of the singular homologies (see Dold, 1980, VIII.5.22), so

Hk(M̂,A) = lim
a↑sup f

Hk(M̂
a,A).

We conclude that the homology of the Morse complex ofX is isomorphic to the
singular homology of (̂M,A),

Hk
(
W∗(X)

)
� Hk(M̂,A) ∀k ∈ N.
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Finally, having fixed an orientation for each unstable manifold, we have the
isomorphisms

Θa
k: Ck(X)a � Wk(X)a,

Ck(X)a being the subgroup ofCk(X) generated by the rest pointsx with f (x) < a,
and the limit of this direct system defines an isomorphism

Θk: Ck(X) � Wk(X).

REMARK 2.13. Since the boundary ofx ∈ rest(X) in C∗(X) and inC∗(X)a coin-
cide whenf (x) < a < sup f , the formula for the boundary homomorphism under
the Morse – Smale condition up to order 1 (Theorem 2.11) holds also without
assuming (A8).

2.10. MORSE FUNCTIONS ON HILBERT MANIFOLDS

A particular but important case is the following situation:f is aC2 Morse function
on a smooth Hilbert manifoldN, endowed with aC1 Riemannian metricg, −∞ <
a < b ≤ +∞, M̂ = {p ∈ N | f (p) < b}, M = {p ∈ N | a < f (p) < b}, and X̂ =

−∇ f , the negative gradient off with respect to the metricg. Let us see what the
assumptions (A1) – (A8) look like in this situation.

In this case, of course, rest(X) = crit( f )∩{a < f < b}, the set of critical points
of f with values betweena andb. Condition (A2) is equivalent to saying thatf
is a Morse function onM, and in condition (A3) the Morse index is the standard
Morse index of a critical point off |M. The set of critical points off with indexk
will be denoted by critk( f ).

Condition (A4) is automatically fulfilled,f itself being a Lyapunov function
for −∇ f , and so is condition (A5).

In the case of a gradient flow the (PS) condition can be restated in the more
familiar way: the pair ( f , g) satisfies the(PS)condition at levelc ∈ R if every
sequence (pn) ⊂ M̂ such thatf (pn) → c and‖d f(pn)‖ → 0 is compact (here the
norm‖·‖ onT∗M is induced by the Riemannian structureg). The assumption (A6)
is equivalent to: (f ,g) satisfies the (PS) condition at levelc for everyc ∈ [a,b[,
anda is a regular value forf .

As we shall see in Section 2.12, the Morse – Smale condition required in (A7)
can be always achieved by perturbing the metricg.

Finally, assumption (A1) is automatically fulfilled when (M̂,g) is complete.
Indeed, the following fact holds.

PROPOSITION 2.14.Let f ∈ C2(M̂,R) anda ∈ R be such that the strip{a ≤
f ≤ c} is complete(with respect to the geodesic distanced on M̂ induced by the
Riemannian metricg), for everyc < sup f . Then the vector field−∇ f is positively
complete with respect to{ f < a}.
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Proof. Let p ∈ M̂ and consider the curveu: [0, t+(p)[ → M̂, u(t) = φ(t, p). If
f (p) = sup f , thenp is a critical point of f , sot+(p) = +∞. If inf f ◦ u < a then
u(t) eventually enters{ f < a}.

Therefore we can assume thatf (p) < sup f andu([0, t+(p)[) ⊂ {a ≤ f ≤
f (p)}, and we must prove thatt+(p) = +∞. Let 0≤ s< t. Then

f
(
u(t)

)− f
(
u(s)

)
=

∫ t

s
D f

(
u(τ)

)[−∇ f
(
u(τ)

)]
dτ = −

∫ t

s
g
(
∇ f

(
u(τ)

)
,∇ f

(
u(τ)

))
dτ,

and the Cauchy – Schwarz inequality implies that

d
(
u(s), u(t)

) ≤
∫ t

s

√
g
(
u′(τ),u′(τ)

)
dτ

=

∫ t

s

√
g
(
∇ f

(
u(τ)

)
,∇ f

(
u(τ)

))
dτ

≤ √t − s
(∫ t

s
g
(
∇ f

(
u(τ)

)
,∇ f

(
u(τ)

))
dτ

)1/2

=
√

t − s
√

f
(
u(s)

) − f
(
u(t)

) ≤ √t − s
√

f (p) − inf f ◦ u.

The above estimate shows thatu is uniformly continuous. If by contradiction
t+(p) < +∞, by the completeness of the strip{a ≤ f ≤ f (p)} we deduce that
u(t) converges fort → t+(p). But then the solutionu of u′ = −∇ f (u), u(0) = p,
can be extended to a right neighborhood oft+(p), contradicting the maximality of
t+(p). ¤

We summarize the above discussion into the following proposition.

PROPOSITION 2.15.Let f be aC2 function on the smooth Hilbert manifoldN,
endowed with aC1 Riemannian metricg, and let−∞ < a < b ≤ +∞. Assume
that

(B1) a is a regular value off ;

(B2) f is a Morse function on{a < f < b}, and it has only critical points of finite
Morse index in such a strip;

(B3) for everyc < b, the strip{a ≤ f ≤ c} is complete;

(B4) f satisfies the(PS)condition at every levelc ∈ [a,b[.

Then, settingM̂ = { f < b}, X̂ = −∇ f |M̂ and M = {a < f < b}, the conditions
(A1) – (A6) are fulfilled.

Notice that only (B3) and (B4) involve the metric. Moreover, if (B3) and (B4)
hold for some metric, they hold also for every uniformly equivalent metric.
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Under the assumptions (B1) – (B4), the free Abelian group generated by the
critical points of f of index k in {a < f < b} will be denoted byCk( f )b

a. The
lower index will be omitted whena < inf f , the upper index will be omitted when
b = +∞.

If −∇ f satisfies also the Morse – Smale condition up to order 0 on{a < f < b},
the boundary operator of the Morse complex of−∇ f on {a < f < b} will be
denoted by

∂k( f ,g)b
a: Ck( f )b

a→ Ck−1( f )b
a.

Its homology is isomorphic to the singular homology of ({ f < b}, { f < a}):
Hk({C∗( f )b

a, ∂∗( f ,g)b
a}) � Hk({ f < b}, { f < a}).

2.11. BASIC RESULTS IN TRANSVERSALITY THEORY

In the following lemma we single out a useful family of linear mappings whose
kernel is complemented.

LEMMA 2.16. Let E, F, G be Banach spaces, and assume thatA ∈ L(E,G) has
complemented kernel and finite-codimensional range. Then for everyB ∈ L(F,G)
the kernel of the operatorC ∈ L(E × F,G), C(e, f ) = Ae− B f, is complemented
in E × F.

Proof. Let E0 := kerA, E1 be a closed complement ofE0 in E, andP0,P1

be the associated projectors. LetG1 := ranA, G0 be a (finite-dimensional) com-
plement ofG1 in G, andQ0,Q1 be the associated projectors. ThenA induces an
isomorphism fromE1 ontoG1, whose inverse will be denoted byT ∈ L(G1,E1).

The equationC(e, f ) = 0 is equivalent toAP1e = B f , which is equivalent to
the system {

AP1e = Q1B f,
Q0B f = 0,

again equivalent to {
P1e = T Q1B f,
Q0B f = 0.

(41)

SinceQ0B has finite rank, its kernel — sayF0 — has a (finite-dimensional) com-
plementF1. By (41), the kernel ofC is

kerC =
{
(e0 + T Q1B f0, f0) ∈ E × F

∣∣∣ e0 ∈ E0, f0 ∈ F0
}
,

and the closed linear subspaceE1 × F1 is a complement of kerC. ¤

Let us recall some definitions and basic facts about transversality in a Banach
setting. A classical reference for these topics is Abraham and Robbin (1967). If
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ϕ: M → N is aCk map between Banach manifolds,k ≥ 1, a pointq ∈ N is said a
regular value forϕ if for every p ∈ ϕ−1({q}) the differentialDϕ(p): TpM → TqN
is a left inverse, i.e., if it is onto and its kernel is complemented. In this case,
ϕ−1({q}) is a submanifold of classCk.

A C1 mapϕ: M → N between Banach manifolds is said aFredholm map
if its differential at every point is a Fredholm operator. When the index of the
differential is constant (for instance whenM is connected), this integer is said the
Fredholm index ofϕ.

PROPOSITION 2.17.Let M, N, O be Banach manifolds, and letϕ ∈ C1(M,N),
ψ ∈ C1(M,O) be maps with regular valuesp ∈ N andq ∈ O. Then:

(i) p is a regular value forϕ|ψ−1({q}) if and only if q is a regular value for
ψ|ϕ−1({p});

(ii) ϕ|ψ−1({q}) is a Fredholm map if and only ifψ|ϕ−1({p}) is a Fredholm map, in
which case the indices coincide.

This proposition is a consequence of the following linear statements.

PROPOSITION 2.18.Let E, F, G be Banach spaces, and letA ∈ L(E, F), B ∈
L(E,G) be left inverses. Then:

(i) A|kerB is a left inverse if and only ifB|kerA is a left inverse;

(ii) A|kerB is Fredholm if and only ifB|kerA is Fredholm, in which case the indices
coincide.

Proof. Let R ∈ L(F,E) and S ∈ L(G,E) be right inverses ofA and B,
respectively.

(i) If R0 ∈ L(F, kerB) is a right inverse ofA|kerB, i.e., a right inverse ofA
with range in kerB, the mapS0 := (IE − R0A)S is a right inverse ofB, being a
perturbation ofS by an operator with range in kerB, and it takes value in kerA
because

AS0 = AS− AR0AS = AS− IFAS = 0.

Therefore,S0 is a right inverse ofB|kerA.
(ii) The kernels ofA|kerB andB|kerA coincide:

kerA|kerB = kerB|kerA = kerA∩ kerB.

Moreover, sinceR: F → RF is an isomorphism and sinceI − RA is a projector
onto kerA,

cokerA|kerB =
F

AkerB

R
�

RF
RAkerB

�
kerA + RF

kerA + RAkerB
=

E
kerA + kerB

.

We conclude that the assertions in (ii) are equivalent, each of them being equiv-
alent to the fact that the pair of subspaces (kerA, kerB) is Fredholm, i.e., kerA∩
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kerB is finite-dimensional, and kerA + kerB is finite-codimensional.4 The index
of A|kerB and ofB|kerA equals the index of (kerA, kerB),

ind(kerA, kerB) = dim kerA∩ kerB− codim(kerA + kerB). ¤

We recall that a subspaceT′ of a topological spaceT is saidresidual if it
contains a countable intersection of open and dense subspaces ofT. Baire theorem
guarantees that a residual subspace of a complete metric space is dense.

The following Sard – Smale Theorem, combined with Proposition 2.17, is the
basic tool to deal with transversality questions.

THEOREM 2.19. Let M, N beCh Banach manifolds,h ≥ 1, with M Lindelöf.
Letϕ: M → N be aCh Fredholm map of indexm. If h > max{0,m} then the set of
regular values ofϕ is residual inN.

The proof can be found in Smale (1965).

2.12. GENERICITY OF THE MORSE – SMALE CONDITION

Let f be aCh+1 real function,h ≥ 1, on the smooth Hilbert manifoldN, endowed
with a Riemannian metricg of classCh. Let −∞ < a < b ≤ +∞, and assume
(B1) – (B4). The aim of this section is to show that it is possible to perturb the
metricg obtaining a uniformly equivalent metric such that the associated negative
gradient of f has the Morse – Smale property up to orderh. We shall assumeN
to be infinite-dimensional and second countable (in particular, it is modeled on a
separable Hilbert space).

A well-known theorem by Eells and Elworthy (1970) implies that every infi-
nite-dimensional Hilbert manifold can be smoothly embedded as an open subset
of a Hilbert space. So we may assume thatN is an open subset of the separable
Hilbert space (H, 〈·, ·〉).5

Denote by Sym(H) the Banach space of self-adjoint bounded linear operators
onH. The metricg can be represented by aCh mapG: N→ Sym(H) taking values
in the cone of positive operators, such that

g(p)[ξ, η] = 〈G(p)ξ, η〉 ∀p ∈ N, ∀ξ, η ∈ TpN = H.

We shall always denote by a lower case letter a symmetric bilinear form, and
by the corresponding upper case letter the associated self-adjoint operator. The

4 See also Section 3.2.
5 Viewing N as an open subset of a Hilbert space is useful to simplify the notation (some spaces

of maps are Banach spaces and not Banach manifolds, some sections of Banach bundles are just
maps between Banach spaces, and so on) but it is by no means necessary. Therefore the results of
this section hold also for a finite-dimensionalN which is not diffeomorphic to an open subset ofRn.
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gradient of f with respect to the metricg is ∇g f (p) = G(p)−1∇ f (p), where∇ f
denotes the gradient off with respect to the Hilbert inner product〈·, ·〉.

The Morse – Smale property will be achieved by rank 2 perturbations ofG.
In order to describe the space of such perturbations, letθ: N → [0,+∞[ be a
continuous function such that

θ(p) ≤ 1
‖G(p)−1‖ ∀p ∈ N. (42)

The vector space

K :=
{
K ∈ Ch

b
(
N,Sym(H)

)∣∣∣ rankK(p) ≤ 2 ∀p ∈ N,

∃c ≥ 0 such that‖K(p)‖ ≤ cθ(p) ∀p ∈ N
}

is a Banach space with the norm

‖K‖K := ‖K‖Ch + sup
θ(p),0

‖K(p)‖
θ(p)

.

As usual, the symbolCh
b denotes the space of maps whose differentials up to the

hth order are continuous and bounded. Notice that the mapsK ∈ K vanish on the
set of zeroes ofθ. By (42), for everyp ∈ N

‖G(p)−1K(p)‖ ≤ ‖G(p)−1‖‖K‖Kθ(p) ≤ ‖K‖K ,
so if ‖K‖K < 1, G + K = G(I + G−1K) is positive, and defines a metricg + k
which is uniformly equivalent tog. Denote byK1 the open unit ball ofK . The
main result of this section is the following theorem.

THEOREM 2.20. Let f be aCh+1 function,h ≥ 1, on the smooth second count-
able Hilbert manifoldN ⊂ H, endowed with a Riemannian metricg of classCh.
Let −∞ < a < b ≤ +∞, and assume(B2). Assume that the continuous function
θ: N → [0,+∞[ satisfies(42), that its set of zeroes is the closure of an open set,
and that it has the following property: if x, y are critical points in{a < f < b}
with m(x) −m(y) ≤ h, such thatWu(x) andWs(y) (with respect to−∇g f ) have a
nontransverse intersection atp, thenθ > 0 somewhere on the orbit ofp.

Then for everyK in a residual subspace ofK1, the metricg + k associated to
G + K is such that the vector field−∇g+k f satisfies the Morse – Smale property up
to orderh.

Notice that high regularity off and g is needed if we want to achieve the
Morse – Smale property up to a high order. This phenomenon is determined by
the regularity versus Fredholm index assumption required by the Sard – Smale
Theorem 2.19. In a finite-dimensional setting this problem does not occur because
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thereCh functions can always beCh-approximated by smooth ones, while such an
approximation may not be possible on an infinite-dimensional Hilbert space (see
for instance Nemirovskiı̆ and Semenov, 1973 and Lasry and Lions, 1986). Notice
thatC2 regularity of f is enough to get the Morse – Smale property up to order 1,
which is just what we need in order to have the Morse complex and to represent it
by intersection numbers.

The possibility of having a functionθ which vanishes on some regions where
the intersections are already transversal and which can be very small elsewhere
will be useful in Section 2.13.

Let us set up the proof of Theorem 2.20. Fix two critical pointsx , y in
{a < f < b} with m(x) −m(y) ≤ h, and consider the space of curves

C = C(x, y) :=
{
u ∈ C1(R,N)

∣∣∣∣ lim
t→−∞u(t) = x, lim

t→+∞u(t) = y, lim
t→±∞u′(t) = 0

}
.

The spaceC is a smooth Banach manifold, being an open subset of an affine
Banach space modeled onC1

0(R,H) (the spacesCh
0 are defined in Section 1.2).

Therefore,TuC = C1
0(R,H). The map

Ψ:C × K1→ C0
0(R,H), (u,K) 7→ u′ + ∇g+k f (u) = u′ + (G + K)−1(u)∇ f (u),

is of classCh, and its zeroes are the pairs (u,K) such thatu is a negative gradient
flow line of f with respect to the metricg+k, going fromx to y. SetZ := Ψ−1({0}).
The following two lemmas describe some properties of the differential ofΨ with
respect to the first, respectively the second variable.

LEMMA 2.21. Let (u,K) ∈ Z. Then:

(i) the operatorD1Ψ(u,K): TuC → C0
0(R,H) is Fredholm of indexm(x)−m(y);

(ii) the operatorD1Ψ(u,K) is onto if and only if the unstable manifold ofx and
the stable manifold ofy with respect to the vector field−∇g+k f intersect
transversally atu(t) for some(hence all) t ∈ R;

(iii) if w ∈ C0
0(R,H) anda < b are real numbers, then there existsv ∈ TuC such

that
D1Ψ(u,K)[v](t) = w(t) ∀t ∈ ]−∞, a] ∪ [b,+∞[.

Proof.The differential ofΨ with respect to the first variable is of the form

D1Ψ(u,K): C1
0(R,H)→ C0

0(R,H), v 7→ v′ − Av,

whereA:R→ L(H) is defined by

A(t) := −(G + K)−1(u(t)
)
D2 f

(
u(t)

) − D(G + K)−1)
(
u(t)

)∇ f
(
u(t)

)
.
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Sinceu(t) converges tox, resp. toy, for t → −∞, resp.t → +∞, A(t) converges in
norm to the operators

A(−∞) = −(G + K)−1(x)D2 f (x) = −∇2
g+k f (x),

A(+∞) = −(G + K)−1(y)D2 f (y) = −∇2
g+k f (y),

which are hyperbolic, and have positive eigenspaces of dimensionm(x) andm(y),
respectively. Then (i) follows from Proposition 1.8. Claim (ii) follows from the
second identity in (9) , and from the identities

Tu(0)W
u(x) = Wu

A, Tu(0)W
s(y) = Ws

A.

As for claim (iii), up to a translation we may assume thata < 0 < b. Then the con-
clusion follows from Proposition 1.6(i), applied toA|[0,+∞] and toA|[−∞,0](−·). ¤

LEMMA 2.22. Let (u,K) ∈ Z, and leta < b be real numbers such thatθ
(
u(t)

)
,

0 for everyt ∈ [a, b]. Let w ∈ Ch(R,H) be a curve with support in[a, b]. Then
there existsJ ∈ K such thatD2Ψ(u,K)[J] = w.

Proof.The differential ofΨ with respect to the second variable is

D2Ψ(u,K)[J] = −(G + K)−1(u)J(u)(G + K)−1(u)∇ f (u).

Since (u,K) ∈ Z, the curveu is a flow line of the vector field−∇g+k f going from
x to y. In particular,u is a Ch+1 embedding ofR into N, and∇ fg+k ◦ u never
vanishes.

It is easy to find aCh curve J0:R → Sym(H) with support in [a,b] such
that for everyt ∈ R the symmetric operatorJ(t) has rank not exceeding 2, and
maps the nonzero vector (G + K)−1(u(t)

)∇ f
(
u(t)

)
= ∇g+k f

(
u(t)

)
into the vector

−(G + K)
(
u(t)

)
w(t). Indeed, one may write an explicit formula forJ0 by noticing

that if ξ , 0 andη are two elements ofH, the bounded linear operator onH

ζ 7→ 〈ξ, ζ〉|ξ|2 η +
〈η, ζ〉
|ξ|2 ξ − 〈ξ, η〉 〈ξ, ζ〉|ξ|4 ξ,

is self-adjoint, has rank not exceeding 2, vanishes whenη = 0, mapsξ into η, and
depends smoothly on (ξ, η) ∈ (H \ {0}) × H.

Sinceu is aCh+1 embedding, givenδ > 0 we can find an open neighborhood
U of u(]a − δ,b + δ[) and aCh+1 submersionτ: U → ]a − δ,b + δ[ such that
τ
(
u(t)

)
= t for every t ∈ ]a − δ,b + δ[. Sinceθ is positive onu([a, b]), up to

choosing a smallerδ and a smallerU we may assume that infU θ > 0, and also that
τ has bounded derivatives up to orderh + 1. If ψ ∈ C∞b (H,R) is a cut-off function
with support inU and taking value 1 onu([a,b]), the Ch mapJ: N → Sym(H),
J(p) = ψ(p)J0

(
τ(p)

)
, belongs toK and has the required property. ¤

The following lemma is the key point in the proof of Theorem 2.20.
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LEMMA 2.23. Let (u,K) ∈ Z. Then the differential DΨ(u,K): TuC × K →
C0

0(R,H) is a left inverse.
Proof.We must prove that the operator

DΨ(u,K)[(v, J)] = D1Ψ(u,K)[v] + D2Ψ(u,K)[J]

is onto and that its kernel is complemented inTuC × K . By Lemma 2.21(i), the
operatorD1Ψ(u,K) is Fredholm, so Lemma 2.16 implies that kerDΨ(u,K) is
complemented inTuC × K . Moreover, the range ofDΨ(u,K) contains the range
of D1Ψ(u,K), in particular it has finite codimension.

If θ ◦ u(t) = 0 for everyt ∈ R, alsoK ◦ u vanishes identically, so∇g+k f ◦ u =

∇g f ◦ u, and (recalling that the set of zeroes ofθ is the closure of an open set) the
tangent spaces of the unstable and stable manifolds ofx andy alongu are the same
for −∇g+k f and for−∇g f . Therefore, the assumption of Theorem 2.20 guarantees
that these manifolds meet transversally alongu. By Lemma 2.21(ii),D1Ψ(u,K) is
onto, and so isDΨ(u,K).

If θ ◦ u is not identically zero, we can find real numbersa < b such that
θ
(
u(t)

)
, 0 for everyt ∈ [a, b]. Let w ∈ C0

0(R,H) and letε > 0. By Lemma
2.21(iii), there existsv ∈ TuC such that

D1Ψ(u,K)[v](t) = w(t) ∀t ∈ ]−∞,a] ∪ [b,+∞[.

The curvew − D1Ψ(u,K)[v] is continuous and has support in [a, b], and we can
find aCh curvez : R→ H with support in [a, b] such that

‖z− (w− D1Ψ(u,K)[v])‖∞ < ε.
Sincez has support in [a,b], whereθ ◦ u does not vanish, by Lemma 2.22 there
existsJ ∈ K such thatD2Ψ(u,K)[J] = z. Hence

‖DΨ(u,K)[(v, J)] − w‖∞ = ‖D1Ψ(u,K)[v] + z− w‖∞ < ε.
Therefore,DΨ(u,K) has dense and finite-codimensional range, so it is onto.¤

In particular,Z is aCh submanifold ofC × K1. Let π be the restriction toZ
of the projection onto the second factor in the productC × K1.

LEMMA 2.24. The mapπ:Z → K1 is Fredholm of indexm(x) −m(y).
Proof.Everything follows from Proposition 2.17(ii), applied toM = C × K1,

N = K1, O = C0
0(R,H), ϕ:C × K1 → K1 projection onto the second factor,

ψ = Ψ, together with Lemma 2.21(i) and Proposition 2.23. ¤

Denote byH(x, y) the set of regular values ofπ.

LEMMA 2.25. The setH(x, y) is residual inK1.
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Proof. Notice thatR acts freely on the submanifoldZ by
(
t, (u,K)

) 7→
(u(t + ·),K), and the mapπ is invariant with respect to this action. Therefore, the
quotient spacẽZ = Z/R is still aCh manifold, and the induced map̃π: Z̃ → K1

is of classCh and Fredholm indexm(x) − m(y) − 1 ≤ h − 1, by Lemma 2.24.
Moreover,K is a regular value forπ if and only if it is a regular value for̃π.

SinceN, and thusH, is assumed to be second countable,C × K1 is second
countable, and so areZ andZ̃. Since the level of differentiability ofπ̃ is strictly
greater than its Fredholm index, the Sard – Smale Theorem 2.19 implies that the
set of regular values of̃π— and thus ofπ— is residual inK1. ¤

Proof of Theorem2.20. By Proposition 2.17(i),H(x, y) is also the set ofK ∈
K1 for which the mapΨ(·,K) : C(x, y) → C0

0(R,H) has 0 as a regular value. By
Lemma 2.21 (ii),H(x, y) is also the set ofK ∈ K1 such that the unstable manifold
of x and the stable manifold ofy with respect to−∇g+k f meet transversally. By
Lemma 2.25, the countable intersection

⋂

x, y ∈ crit( f ) ∩ {a < f < b}
x , y, m(x) −m(y) ≤ h

H(x, y)

is the required residual subset ofK1. ¤

2.13. INVARIANCE OF THE MORSE COMPLEX

Let f ∈ C2(M) be a Morse function on the smooth second countable Hilbert
manifold M, with critical points of finite index. Assume thatf is bounded below
and thatM admits a complete Riemannian metricg such that (f ,g) satisfies the
Palais – Smale condition. We know from the previous section that by perturbingg
we can achieve also the Morse – Smale property up to order 1. In general, different
Morse – Smale metrics will produce different Morse complexes: the groupsCk( f )
are the same, but the boundary operators∂k may vary. Of course the homology
of the Morse complex does not vary, being isomorphic to the singular homology
of M, but we can say more: varying the metric we obtain isomorphic chain com-
plexes. This fact was observed by Cornea and Ranicki (2003) (together with other
interesting rigidity results) for finite-dimensional manifolds, and for some cases
of Floer theory. The proof we give here in our infinite-dimensional situation uses
an idea from Abbondandolo and Majer (2001) (see also Poźniak, 1991).

THEOREM 2.26. Let f ∈ C2(M) be a Morse function, bounded below, having
only critical points of finite Morse index. Letg0 andg1 be complete Riemannian
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metrics onM, such that both( f , g0) and( f ,g1) satisfy(PS)and the Morse – Smale
property up to order1. Then there is a chain complex isomorphism

Φ: {C∗( f ), ∂∗( f , g0)} � {C∗( f ), ∂∗( f , g1)}
of the form

Φx = x +
∑

y ∈ critk( f )
f (y) < f (x)

n(x, y)y, ∀x ∈ critk( f ), k ∈ N, (43)

for suitable integersn(x, y).

The following lemma will be needed in the proof:

LEMMA 2.27. Leta be a nondegenerate continuous symmetric bilinear form on
the real Hilbert space(H, 〈·, ·〉), with either finite Morse index or finite Morse co-
index. Lett0 ≥ 0, and lett 7→ 〈·, ·〉t, t ∈ R, be a continuous path of inner products
on H — equivalent to〈·, ·〉— constant fort ≥ t0 and for t ≤ −t0. Let A(t) be the
〈·, ·〉t-self-adjoint bounded operator onH representinga with respect to the inner
product〈·, ·〉t: a(ξ, η) = 〈A(t)ξ, η〉t for everyξ, η ∈ H. Then the linear stable and
unstable spaces of the pathA (see Section1.2)satisfy

H = Ws
A ⊕Wu

A.
Proof. The pathA is continuous and it is constant fort ≥ t0 and fort ≤ −t0.

Let us assume thata has finite Morse index, the other case being easily reducible
to this one. The linear stable spaceWs

A has dimensionm(a), the Morse index ofa,
while the linear unstable spaceWu

A is closed and has codimensionm(a). Therefore,
it is enough to prove thatWs

A ∩Wu
A = (0).

Let u0 ∈ Ws
A ∩Wu

A, and letu:R → H be the solution of the linear Cauchy
problem {

u′(t) = A(t)u(t),
u(0) = u0.

SinceA is constant fort ≥ t0 and fort ≤ −t0,

u(t) = e(t−t0)A(t0)u(t0) ∀t ≥ t0, u(t) = e(t+t0)A(−t0)u(−t0) ∀t ≤ −t0.

Sinceu(t)→ 0 for |t| → 0, we deduce thatu(t0) belongs to the negative eigenspace
of A(t0), andu(−t0) belongs to the positive eigenspace ofA(−t0). Since bothA(t0)
andA(−t0) represent the symmetric forma, we have

a
(
u(t0), u(t0)

) ≤ 0, a
(
u(−t0), u(−t0)

) ≥ 0. (44)

On the other hand, sinceA(t) representa for everyt, the inequality

1
2

d
dt

a
(
u(t),u(t)

)
= a

(
u(t),u′(t)

)
= a

(
u(t),A(t)u(t)

)
= 〈A(t)u(t),A(t)u(t)〉t ≥ 0
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is compatible with (44) if and only ifu(t) = 0 for everyt ∈ [−t0, t0] (hence for
everyt ∈ R), proving thatu0 = 0. ThereforeWs

A ∩Wu
A = (0). ¤

Proof of Theorem2.26. We introduce the smooth Morse function

ϕ:R→ R, ϕ(s) = 2s3 − 3s2 + 1,

which has two critical points, namely a local maximum at 0, withϕ(0) = 1, and a
local minimum at 1, withϕ(1) = 0. Moreoverϕ′(s) diverges for|s| → +∞.

On the manifoldM̃ = R × M consider theC2 function

f̃ : M̃ → R, f̃ (s, p) = ϕ(s) + f (p).

It is a Morse function, with critical points of finite Morse index, and

critk( f̃ ) =
({0} × critk−1( f )

) ∪ ({1} × critk( f )
)
,

for everyk ∈ N. Therefore

Ck( f̃ ) � Ck−1( f ) ⊕Ck( f ), ∀k ∈ N, (45)

the first group in the sum corresponding to the critical points in{0}×M, the second
one to critical points in{1} × M.

If χ:R → [0,1] is a smooth cut-off function such thatχ(s) = 1 for s ≤ 1/3
andχ(s) = 0 for s≥ 2

3, we can consider the complete Riemannian metric onM̃

g̃(s, p)[(σ, ξ), (σ′, ξ′)] = σσ′ + χ(s)g0(p)[ξ, ξ′] +
(
1− χ(s)

)
g1(p)[ξ, ξ′],

for every (σ, ξ), (σ′, ξ′) ∈ T(s,p)M̃ = R ⊕ TpM.
Let

(
(sn, pn)

)
be a (PS) sequence for (f̃ , g̃). Since‖∇g̃ f̃ (s, p)‖g̃ ≥ |ϕ′(s)|, we

can find a subsequence of (sn) which converges either to 0 or to 1. Since (f , g0)
and (f ,g1) satisfy (PS) and ˜g(s, p)|(0)⊕T M is just g0 for s close to 0 andg1 for s
close to 1, we conclude that (f̃ , g̃) satisfies (PS).

Let us examine the negative gradient flow off̃ with respect to the metric ˜g.

(i) The hypersurfaces{0}×M and{1}×M are flow-invariant, and the restriction
of the flow to{i} ×M is nothing else but the negative gradient flow off with
respect to the metricgi , for i = 0, 1.

Moreover the invariant set{0} × M is a repeller, while{1} × M is an attractor.
Therefore:

(ii) The only flow lines going from a critical point in{i} × M to a critical point
in the same hypersurface are those which are fully contained in{i} × M, for
i = 0,1.

(iii) There are no flow lines going from a critical point in{1} × M to a critical
point in {0} × M.
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If we view f as a function oñM, we have

D f (s, p)[−∇g̃ f̃ (s, p)] = D f (s, p)[(−ϕ′(s),−∇g̃(s,·) f (p)]

= −‖∇g̃(s,·) f (p)‖2g̃(s,·). (46)

This implies thatf is almost a Lyapunov function for the vector field−∇g̃ f̃ :

(iv) f decreases strictly on all the nonconstant orbits, apart from those of the
form

t 7→ (s(t), x), with x ∈ crit( f ), s′(t) = −ϕ′(s(t)).
In particular, up to time shifts there is exactly one flow line going from (0, x)

to (1, x), for x ∈ crit( f ), namely the orbit

t 7→ (s̄(t), x), with

{
s̄′(t) = −ϕ′(s̄(t)),
s̄(0) = 1

2.
(47)

We claim that the intersectionWu((0, x)
) ∩Ws((1, x)

)
= ]0, 1[ × {x} is transverse.

Indeed, by linearizing along the flow line (¯s(t), x), we easily see that

T(1/2,x)W
u((0, x)) = R ⊕Wu

A, T(1/2,x)W
s((1, x)) = R ⊕Ws

A,

where the bounded linear operatorA(t) : TxM → TxM is minus the Hessian off
at the critical pointx with respect to the inner product

g̃(s̄(t), x)|(0)⊕TxM = χ(s̄(t))g0 + (1− χ(s̄(t)))g1.

Then A(t) represents the second differential of f at x with respect to the above
inner product, so by Lemma 2.27,TxM = Ws

A ⊕Wu
A. Therefore

T(1/2,x)W
u((0, x)

) ⊕ T(1/2,x)W
s((1, x)

)
= R ⊕ TxM = T(1/2,x)M̃,

proving transversality.
The vector field−∇g̃ f̃ need not satisfy the Morse – Smale condition up to

order 1, but the only points where transversality can fail are the intersections of
the unstable manifold of a critical point (0, x) with the stable manifold of a critical
point (1, y), with x , y critical points of f . We can perturb the metric ˜g in order to
achieve the Morse – Smale property up to order 1 without loosing the nice features
(i) – (iv) of the vector field−∇g̃ f̃ . More precisely, by Theorem 2.20, taking into
account (46), we can find a complete metricg on M̃ such that

(a) (f̃ , g) satisfies (PS);

(b) g coincides with ˜g on the sets ]−∞, 1
3] ×M, [ 2

3,+∞[ ×M, andR×U, where
U ⊂ M is a neighborhood of crit(f );

(c) D f (s, p)[−∇g f̃ (s, p)] < 0 if p < crit( f );



MORSE COMPLEX FOR INFINITE-DIMENSIONAL MANIFOLDS 87

(d) ( f̃ , g) satisfies the Morse – Smale property up to order 1.

Indeed, the functionθ appearing in the statement of Theorem 2.20 can be
chosen to vanish on the regions indicated in (b), where the intersections are al-
ready transverse, and to be so small that the metrics belonging to the space of
perturbations satisfy (c). By property (b), the flow of−∇g f̃ still satisfies (i), (ii),
(iii). By (c), it satisfies also (iv).

We can now consider the Morse complex of (f̃ ,g) relative to the sublevel
{ f̃ < inf f − 1}. Notice that this sublevel contains no critical points. The boundary
operator∂k( f̃ ,g) can be described by using Theorem 2.11 and Remark 2.13. To
this purpose, it is convenient to choose the orientations of the unstable manifolds
in the following way: since for everyx ∈ crit( f ) there is a privileged isomorphism

TxW
u(x;−∇g0 f ) � TxW

u(x;−∇g1 f ),

namely the restriction to the first space of the projection onto the first factor in the
splitting

TxM = TxW
u(x;−∇g1 f ) ⊕ TxW

s(x;−∇g1 f ),

we can endow these two spaces with orientations which are compatible with this
isomorphism. Then

T(0,x)W
u((0, x);−∇g f̃

)
= R ⊕ TxW

u(x;−∇g0 f )

and
T(1,x)W

u((1, x);−∇g f̃
)

= (0)⊕ TxW
u(x;−∇g1 f )

can be given the product orientations by the the standard orientations ofR and
(0). In this way, we have chosen an orientation for the unstable manifold of each
critical point of f̃ . With this choice the transverse intersection

Wu((0, x)
) ∩Ws((1, x)

)
= ]0,1[ × {x} (48)

is given the orientation corresponding to the vector∂/∂s, which agrees with the
direction of the flow.

By (i), (ii), (iii), and (45) the boundary operator

∂k( f̃ ,g): Ck−1( f ) ⊕Ck( f )→ Ck−2( f ) ⊕Ck−1( f )

can be written as

∂k( f̃ ,g) =

(
∂k−1( f ,g0) 0

Φk−1 ∂k( f , g1)

)
,

for some homomorphism
Φk: Ck( f )→ Ck( f ).

The fact that∂∗( f̃ ,g) is a boundary, i.e.,∂k( f̃ , g) ∂k+1( f̃ ,g) = 0, implies that

Φk−1∂k( f , g0) = ∂k( f ,g1)Φk,
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that is (Φk)k∈N is a chain homomorphism from the Morse complex of (f ,g0) to
the Morse complex of (f , g1).

By (iv), the intersection

Wu((0, x);−∇g f̃
) ∩Ws((1, y);−∇g f̃

)

can be nonempty only iff (y) < f (x) or x = y, and in the latter case it consists of
the single orbit (48).

Together with the previous discussion on orientations, this fact implies that
Φ has the form (43). So if we order the critical points off with Morse indexk
by increasing value off , we see that the homomorphismΦk is represented by
an upper-triangular matrix, with 1 on the diagonal entries. A homomorphism of
this form must be an isomorphism: this is well known whenCk( f ) has finite rank,
because in this caseΦk is represented by a finite matrix with determinant 1, an
invertible element ofZ, but it remains true if the rank ofCk( f ) is infinite. Indeed
if x1, x2, . . ., are the critical points of indexk ordered by increasing value off , the
inverse ofΦk is defined inductively by

Φ−1
k x1 = x1, Φ−1

k xh = xh −
h−1∑

i=1

n(xh, xi)Φ
−1
k xi , ∀h ≥ 2. ¤

EXERCISE 2.28. Generalize this result to the case of a strip{a < f < b}.

EXERCISE 2.29. Whenf satisfies the condition (A8), it is possible to obtain the
same conclusion of Theorem 2.26 by looking directly at the two cellular filtrations
induced by the two negative gradient flows. Prove this fact. Then use the limit
arguments of Section 2.9 to prove Theorem 2.26 under the hypothesis that (f , g0)
and (f ,g1) satisfy the Morse – Smale condition only up to order 0.

3. The Morse complex in the case of infinite Morse indices

3.1. THE PROGRAM

In this part we will consider a gradient-likeC1 vector fieldX on a Hilbert man-
ifold M, whose rest points have infinite Morse index and co-index. In this case,
the stable and the unstable manifolds of rest points are infinite-dimensional, and
the flow of X does not produce a meaningful cellular filtration ofM. Indeed, the
infinite-dimensional Hilbert ball is retractable onto its boundary, so the rest points
of X are homotopically invisible.

However, we may hope that in some cases the unstable and the stable man-
ifolds of pairs of rest points have finite-dimensional intersections. If this holds,
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we could use the formula for the boundary operator of Theorem 2.11 not as a
description, but rather as the definition of the Morse complex. Our program is to
follow this idea.

Of course this program cannot be pursued in full generality. A first reason is
that in general the unstable and stable manifolds may not have finite-dimensional
intersections. A deeper reason is that the setting of gradient-like flows for a Morse
function with critical points of infinite Morse index and co-index has too little
rigidity. For instance, the following result was proved in Abbondandolo and Majer
(2004). A sketch of the proof will be presented at the end of Section 3.3.

THEOREM 3.1. Let f : M → R be a smooth Morse function on a separable
Hilbert manifold, whose critical points have infinite Morse index and co-index.
Leta: crit( f )→ Z be an arbitrary function. Then there exists a Riemannian metric
g on M such that the corresponding negative gradient flow off has the following
property: for every pair of critical pointsx, y, the intersectionWu(x) ∩Ws(y) is
transverse and — if nonempty — has dimensiona(x) − a(y).

Moreover, the metricg can be chosen to be uniformly equivalent to any given
metric g0 on M. Finally, if (xi , yi), i = 1, . . . , k, are pairs of critical points such
that xi andyi can be connected by a pathui : [0, 1]→ M such thatD f

(
ui(t)

)
[u′i (t)]

is negative for everyt ∈ ]0,1[, the metricg can be chosen in such a way that
Wu(xi) ∩Ws(yi) is not empty.

Therefore the situation is drastically less rigid than the case of finite Morse
indices, where the Morse index of a critical point does not involve the metric, and
where we have seen that the isomorphism class of the Morse complex does not
depend on the metric, and that its homology does not even depend onf .

Let us examine another example of the lack of rigidity determined by infinite
Morse indices and co-indices. We have seen that when the Morse indices are finite,
the transverse intersectionWu(x) ∩ Ws(y) is always orientable, and each of its
components has the same dimensionm(x) − m(y). On the other hand, ifZ is any
separable Hilbert manifold (finite-dimensional or not, possibly with components
of different dimension), there exists a smooth gradient-like flow on the Hilbert
spaceH with exactly two rest pointsx andy, such that the intersectionWu(x) ∩
Ws(y) is transverse and diffeomorphic toZ × R (see Abbondandolo and Majer,
2003b, Section 4).

These phenomena suggest that a Morse theory for functionsf : M → R with
critical points of infinite Morse index and co-index requires more structure than
just the pair (M, f ). Our choice will be to consider a subbundleV of T M, suitably
compatible with the gradient-like flow.
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3.2. FREDHOLM PAIRS AND COMPACT PERTURBATIONS OF LINEAR
SUBSPACES

Before proceeding, we need to review some facts about theHilbert Grassmannian
Gr(H), the set of all closed linear subspaces of the separable Hilbert spaceH.
See Abbondandolo and Majer (2003a) for a more complete presentation. IfV ∈
Gr(H), we shall denote byPV the orthogonal projection ontoV. The set Gr(H) is a
complete metric space with the distance dist(V,W) := ‖PV − PW‖. The connected
components of Gr(H) are the subspaces

Grn,m(H) = {V ∈ Gr(H) | dimV = n, codimV = m},
wheren,m ∈ N ∪ {∞}, n + m = ∞.

A pair (V,W) ∈ Gr(H)×Gr(H) is aFredholm pairif V∩W is finite-dimensional
andV + W is finite-codimensional. In this case, the number ind(V,W) := dimV ∩
W − codim(V + W) is said theFredholm index of(V,W). The space of Fredholm
pairs, denoted by Fp(H), is an open subset of Gr(H) × Gr(H), and the Fredholm
index is a continuous (i.e., locally constant) function on it. See for instance Kato
(1980, IV§4).

Let W ∈ Gr(H). A closed linear subspaceV is acompact perturbation ofW if
the operatorPV − PW is compact. In this case, the pair (V,W⊥) is Fredholm, and
its index is said therelative dimension ofV with respect toW, denoted by

dim(V,W) := ind(V,W⊥) = dimV ∩W⊥ − dimV⊥ ∩W.

If (V,W) is a Fredholm pair andZ is a compact perturbation ofV, then (Z,W) is
still a Fredholm pair, and its index is

ind(Z,W) = ind(V,W) + dim(Z,V). (49)

3.3. FINITE-DIMENSIONAL INTERSECTIONS

Let M be a smooth Hilbert manifold, and letX be aC1 Morse vector field on
M, with local flow φ: Ω(X) → M. We shall always assume thatX has a Lya-
punov functionf . In view of Remark 1.21(ii), we shall assume thatf ∈ C2(M)
and that it is anondegenerate Lyapunov function, meaning that for everyx ∈
rest(X) the quadratic formξ 7→ D2 f (x)[ξ, ξ] is coercive onEs(∇X(x)

)
, while

ξ 7→ −D2 f (x)[ξ, ξ] is coercive onEu(∇X(x)
)
.

Let V be a smooth subbundle ofT M, and letP be a projector ontoV: P
is a smooth section of the bundle of endomorphisms ofT M such that for every
p ∈ M, P(p) ∈ L(TpM) is a projector ontoV(p). We shall assume the following
compatibility conditions betweenX andV:
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(C1) for everyx ∈ rest(X), the positive eigenspaceEu(∇X(x)
)

of the Jacobian of
X at x is a compact perturbation ofV(x);

(C2) for everyp ∈ M, the operator (LXP)(p)P(p) is compact.

HereLXP denotes the Lie derivative ofP alongX. By (C1), we can define the
relative Morse index of the rest pointx with respect toV to be the integer

m(x,V) := dim
(
Eu(∇X(x)

)
,V(x)

)
.

Condition (C2) depends only on the subbundleV, and not on the choice of the
projectorP onto it. Notice that the subbundleV is φ-invariant (in the sense that
D2φ(t, p)V(p) = V(

φ(t, p)
)

for every (t, p) ∈ Ω(X)) if and only if (LXP)P = 0.
Condition (C2) is equivalent to the fact thatV is φ-essentially invariant:
D2φ(t, p)V(p) is a compact perturbation ofV(

φ(t, p)
)
, for every (t, p) ∈ Ω(X).

WhenM is an open subset of the Hilbert spaceH, andV is a constant subbundle
V ≡ V ∈ Gr(H), so that we can chooseP ≡ PV, there holds

(LXP)P = [DX,PV]PV = (I − PV)DXPV. (50)

These assumptions have the following consequence.

PROPOSITION 3.2.Assume that the Morse vector fieldX satisfies(C1)and(C2)
with respect to the subbundleV. Then for everyx ∈ rest(X):

(i) for everyp ∈Wu(x), TpWu(x) is a compact perturbation ofV(p), with

dim(TpWu(x),V(p)) = m(x,V);

(ii) for everyp ∈Ws(x), the pair(TpWs(x),V(p)) is Fredholm, with

ind(TpWs(x),V(p)) = −m(x,V).

So loosely speaking,Wu(x) is essentially parallel toV, while Ws(x) is essen-
tially normal toV.

Let us sketch the proof of the first claim in a simpler case: we assume that
M is an open set of the Hilbert spaceH, and thatV ≡ V ∈ Gr(H) is a constant
subbundle. Letp ∈Wu(x), and letu(t) := φ(t, p) be the orbit ofp. By linearization
alongu, using the notation of Section 1.2, we have that

TpWu(x) = Wu
A, (51)

whereA(t) := DX
(
u(t)

)
. By (C1), W := TxWu(x) = Eu(A(−∞)

)
is a compact

perturbation ofV. By (C2), the operator [A(t),PV]PV is compact for everyt, and
so is the operator [A(t),PW]PW. Set

B(t) := A(t) − [A(t),PW]PW,
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so thatB(−∞) = A(−∞) = DX(x), Eu(B(−∞)
)

= W, andB(t)W ⊂ W for every
t. These facts easily imply thatWu

B = W. On the other hand, sinceA(t) − B(t)
is compact for everyt, Wu

A is a compact perturbation ofWu
B = W, hence ofV.

By (51), TpWu(x) is a compact perturbation ofV. The formula for its relative
dimension with respect toV follows by continuity.

The proof of claim (ii) is simpler. Since the set of Fredholm pairs is open and
the index is locally constant, by (C1) the pair (TpWs(x),V(p)) is Fredholm of
index−m(x,V) for everyp ∈ Ws(x) in a neighborhood ofx. The tangent bundle
TWs(x) is φ-invariant, and by (C2) the subbundleV is φ-essentially invariant, so
these facts remain true for everyp ∈Ws(x).

By (49), Proposition 3.2 has the following easy corollary.

COROLLARY 3.3. Assume that the Morse vector fieldX satisfies(C1)and (C2)
with respect to the subbundleV. Let x, y ∈ rest(X), and assume thatWu(x) and
Ws(y) meet transversally. ThenWu(x) ∩ Ws(y) is a submanifold of dimension
m(x,V) −m(y,V).

We conclude this section by sketching the proof of Theorem 3.1. By the al-
ready mentioned embedding theorem of Eells and Elworthy (1970), we can embed
M as an open subset of the separable Hilbert spaceH. By modifying this embed-
ding near the critical points off , and by using the Morse Lemma (see for instance
Palais, 1963), we may assume thatf is quadratic near every critical pointx:

f (x + ξ) = f (x) + 1
2〈A(x)ξ, ξ〉, for |ξ| small,

for some self-adjoint invertible operatorA(x). Fix a closed linear subspaceV of
H, with infinite dimension and codimension. By a further modification of the
embedding, we may also rotate small neighborhoods of the critical points in such
a way that the negative eigenspaceEs(A(x)) of the operatorA(x) is a compact per-
turbation ofV, of relative dimensiona(x). Here we actually need to use Kuiper’s
theorem (Kuiper, 1965), stating the orthogonal group ofH is contractible.

It is now easy to build a vector fieldX having f as a nondegenerate Lyapunov
function, and which satisfies (C1) and (C2) with respect to the constant subbundle
V. Indeed, near a critical pointx one may chooseX to be the linear vector field

X(x + ξ) = −∇ f (x + ξ) = −A(x)ξ, for |ξ| small. (52)

Since the negative eigenspace ofA(x) is a compact perturbation ofV of relative
dimensiona(x), X satisfies (C1) andx has relative Morse indexm(x,V) = a(x).
The linear vector fieldX satisfies also (C2). Indeed by (50),

(LXPV)PV = −(I − PV)A(x)PV = −PV⊥PEs(A(x))A(x)PV − PV⊥A(x)PEu(A(x))PV,

and the operatorsPV⊥PEs(A(x)) andPEu(A(x))PV are compact becauseEs(A(x)) is
a compact perturbation ofV. If p ∈ M is not a critical point, we may choose
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X to be the constant vector fieldX(p + ξ) = −∇ f (p), for everyξ so small that
D f (p + ξ)[−∇ f (p)] < 0. Every constant vector field trivially satisfies (C2) with
respect to the constant subbundleV.

These local definitions ofX can be patched together by a smooth partition
of unity. In this way one can build a vector fieldX satisfying (52) near critical
points, so that (C1) holds. The set of vector fields satisfying condition (C2) is a
module over the ring of real functions, soX satisfies (C2). Havingf as a Lyapunov
function is a convex condition, sof is a Lyapunov function forX. Up to a small
perturbation, we may assume thatX also satisfies the Morse – Smale condition.
Then Corollary 3.3 implies thatWu(x) ∩ Ws(y) is a submanifold of dimension
m(x,V) −m(y,V) = a(x) − a(y). The fact thatX is actually the negative gradient
of f near the critical points makes it possible to find a metricg on M such that
X = −∇g f .

We refer to Abbondandolo and Majer (2004) for details on how to keepg
uniformly equivalent to a given metric, and on how to obtain thatWu(xi)∩Ws(yi)
is nonempty for everyi = 1, . . . , k.

3.4. ESSENTIAL SUBBUNDLES

It is readily seen that ifX satisfies (C1) and (C2) with respect to a subbundle
V, then it satisfies (C1) and (C2) also with respect to a subbundleW which at
every point is a compact perturbation ofV. This fact suggests the possibility of
weakening the structure, fixing only anessential subbundleof T M.

In order to make this precise, we need to introduce the essential Grassmanni-
ans of a Hilbert space. See again Abbondandolo and Majer (2003b) for a complete
discussion. Theessential Grassmannian ofH is the quotient of Gr(H) by the
equivalence relation

{(V,W) ∈ Gr(H) ×Gr(H) | V is a compact perturbation ofW},
and it is denoted by Gre(H). This space can also be seen as the space of sym-
metric projectors in the Calkin algebraL(H)/Lc(H) (Lc(H) denotes the closed
ideal of compact operators). Notice that the finite-dimensional and the finite-
codimensional spaces represent two points in Gre(H). We shall actually be in-
terested in the complementary Gr∗

e(H) of these two points, that is in the quotient
of Gr∞,∞(H).

The (0)-essential GrassmannianGr(0)(H) is the quotient of Gr(H) by the
stronger equivalence relation

{(V,W) ∈ Gr(H) ×Gr(H) | V is a compact perturbation ofW and dim(V,W) = 0}.
Again, Gr∗(0)(H) denotes the quotient of Gr∞,∞(H). The Bott periodicity theorem
(see Bott, 1959), and the fact that the group of automorphisms ofH which are



94 A. ABBONDANDOLO AND P. MAJER

compact perturbations of the identity is homotopy equivalent to the infinite gen-
eral linear group GL(∞) = lim−→GL(n) (see Palais, 1965), allow to determine the
homotopy type of the essential Grassmannian, proving the following result.

THEOREM 3.4. The quotient projectionGr∞,∞(H)→ Gr∗(0)(H) is a fiber bundle
with contractible total space. The quotient projectionGr∗(0)(H) → Gr∗e(H) is a
universal covering. The spaceGr∗e(H) is path connected, its fundamental group is
infinite cyclic, and ifi ≥ 2,

πi(Gr∗e(H)) � πi−2
(
GL(∞)

)
=


Z if i ≡ 1, 5 mod 8,
Z2 if i ≡ 2, 3 mod 8,
0 if i ≡ 0, 4,6,7 mod 8.

Since the tangent bundle of an infinite-dimensional Hilbert manifold is always
trivial (by the already mentioned Kuiper’s theorem; Kuiper, 1965), a subbundle
V of T M can be identified with a mapV: M → Gr(H). Similarly, anessential
subbundle(respectively a (0)-essential subbundle) of T M can be identified with a
mapE: M → Gre(H) (resp.E: M → Gr(0)(H)).

By Theorem 3.4, an essential subbundleE of T M can be lifted to a (0)-
essential subbundle if and only if the homomorphism

E∗: π1(M)→ π1
(
Gr∗e(H)

)
= Z

vanishes. A (0)-essential subbundleE of T M can be lifted to a true subbundle of
T M if and only if all the homomorphisms

E∗: πi(M)→ πi
(
Gr∗(0)(H)

)

vanish (a condition which has to be checked only fori ≡ 1,2, 3, 5 mod 8).
If the vector fieldX satisfies (C1) and (C2) with respect to a (0)-essential

subbundleE of T M, then the relative Morse indexm(x,E) can still be defined,
and the conclusions of Proposition 3.2 and of Corollary 3.3 still hold (with the
obvious changes).

If the vector fieldX satisfies (C1) and (C2) with respect to an essential sub-
bundle, there is no relative Morse index. In this case the transverse intersection
Wu(x) ∩Ws(y) is finite-dimensional, but different components may have different
dimension. More precisely, the dimension of the connected component contain-
ing p depends on the homotopy class of the orbit ofp, seen as a curve from
(R,−∞,+∞) into (M, x, y). It is actually possible to construct an example of a
gradient-like vector field onS1 ×H, which satisfies (C1) and (C2) with respect to
a nonliftable essential subbundle, and has two critical pointsx andy such that the
intersectionWu(x)∩Ws(y) is transverse and consists of two connected components
of different dimension.
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3.5. ORIENTATIONS

We recall that in the case of finite Morse indices, an arbitrary choice of the ori-
entation of all the unstable manifolds — or equivalently of the finite-dimensional
spacesTxWu(x) — determines an orientation of each transverse intersection of
unstable and stable manifolds. NowTxWu(x) is infinite-dimensional, so it does
not carry orientations. The right object to orient turns out to be the Fredholm pair(
TxWs(x),V(x)

)
.

In order to deal with this question, we need to introduce thedeterminant
bundle

Det
(
Fp(H)

)→ Fp(H)

on the space of Fredholm pairs (see Abbondandolo and Majer, 2003b, for more
details). It is a real line bundle, whose fiber at (V,W) ∈ Fp(H) is

Det(V,W) := Det(V ∩W) ⊗
(
Det

(
H/(V + W)

))∗
,

where Det(Z) := ΛdimZ(Z) denotes the space of top degree in the exterior algebra
of the finite-dimensional vector spaceZ. Defining a bundle structure for this object
is not immediate, because the maps (V,W) 7→ V ∩W and (V,W) 7→ V + W are
not continuous. We just mention the key ingredients in the constructions. The
intersection map (V,W) 7→ V ∩W is continuous on the space of transverse pairs,
while the sum (V,W) 7→ V+W is continuous on the space of pairs with intersection
(0). Then the bundle structure near a Fredholm pair (V0,W0) can be constructed
by fixing a finite-dimensional spaceZ such thatZ+V0+W0 = H andZ∩V0 = (0),
and by replacing each pair (V,W) in a neighborhood of (V0,W0) by (Z + V,W).
Such a replacement turns out to be possible because of the existence of an exact
sequence

0→ V ∩W→ (Z + V) ∩W→ Z→ H
V + W

→ 0.

We recall that an exact sequence of finite-dimensional vector spaces

0→ Z1→ · · · → Zk → 0

induces a natural isomorphism
⊗

i odd

Det(Zi) �
⊗

i even

Det(Zi).

The space of Fredholm operators fromH1 to H2, denoted byF (H1,H2) is
“contained” in the space of Fredholm pairs ofH1 × H2. Indeed, the operatorA ∈
L(H1,H2) is Fredholm if and only if the pair (graphA,H1 × (0)) ∈ Gr(H1 ×
H2) × Gr(H1 × H2) is Fredholm, and the index is the same. The pullback of the
determinant bundle on Fp(H) by the map

F (H1,H2)→ Fp(H1 × H2), A 7→ (
graphA,H1 × (0)

)
,
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is the determinant bundle on the space of Fredholm operators, as defined by
Quillen (1985).

Let n ∈ N, and let

Det
(
Grn,∞(H)

)→ Grn,∞(H)

be the real line bundle whose fiber atZ ∈ Grn,∞(H) is Det(Z). LetS be the set of
all

(
Z, (V,W)

)
in (⋃

n∈N
Grn,∞(H)

)
× Fp(H)

such thatZ ∩ V = (0), and let Det(S) → S be the restriction toS of the tensor
product of the bundles

⋃
n∈N Det

(
Grn,∞(H)

)
and Det

(
Fp(H)

)
. The map

S → Fp(H),
(
Z, (V,W)

) 7→ (Z + V,W),

is continuous, and can be lifted to a continuous morphism between the corre-
sponding determinant bundles:

S: Det(S)→ Det
(
Fp(H)

)
.

The construction of such a morphism is based on the exact sequence

0→ V ∩W→ (Z + V) ∩W→ Z + V
V

� Z→ H
V + W

→ H
Z + V + W

→ 0.

The morphismS is associative, meaning that ifZ andY are finite-dimensional
linear subspaces ofH such thatZ ∩ Y = (Z + Y) ∩ V = (0), the diagram

Det(Y) ⊗ Det(Z) ⊗ Det(V,W) id⊗S //

S⊗id
²²

Det(Y) ⊗ Det(Z + V,W)

S
²²

Det(Y + Z) ⊗ Det(V,W) S // Det(Y + Z + V,W)

commutes.
An orientation of a finite-dimensional spaceZ can be defined as an orientation

of the line Det(Z); similarly, an orientation of the Fredholm pair(V,W) is an
orientation of the line Det(V,W). The morphismS allows to sum orientations: if(
Z, (V,W)

) ∈ S, the orientations of two objects among

Z, (V,W), (Z + V,W),

determines an orientation of the other object.
Let us go back to the question of orienting the intersections between unstable

and stable manifolds. The assumption is that the vector fieldX satisfies (C1)
and (C2) with respect to a subbundleV of T M. By assumption (C1), the pair
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(TxWs(x),V(x)) is Fredholm, for everyx ∈ rest(X). Let us choose an orientation
o(x) of such a Fredholm pair, for every rest pointx, in an arbitrary way.

Now let x, y be rest points such thatWu(x) andWs(y) have transversal inter-
section. Letp ∈ Wu(x) ∩Ws(y). By Proposition 3.2(ii), the pair (TpWs(y),V(p))
is Fredholm. Choose a closed complementV of Tp(Wu(x) ∩Ws(y)) in TpWs(y).
By transversality,V is also a complement ofTpWu(x) in TpM. It is a general fact
in this case that the backward evolution ofV with respect to the differential of the
flow converges toTxWs(x):

lim
t→−∞D2φ(t, p)V = TxW

s(x).

Therefore, the Fredholm pair
(
V,V(p)

)
inherits by continuity an orientation from

the orientationo(x) of
(
TxWs(x),V(x)

)
. On the other hand, the Fredholm pair(

TpWs(y),V(p)
)
inherits an orientation from the orientationo(y) of

(
TyWs(y),V(y)

)
.

The last two objects among

Tp
(
Wu(x) ∩Ws(y)

)
,

(
V,V(p)

)
,(

Tp
(
Wu(x) ∩Ws(y)

)
+ V,V(p)

)
=

(
TpWs(y),V(p)

)

are then oriented, so they induce an orientation of the first space. The construction
continuously depends onp, hence it determines an orientation ofWu(x) ∩Ws(y).
We shall see in Section 3.7 that the orientations defined here satisfy a suitable
coherence property.

3.6. COMPACTNESS

In the case of finite Morse indices, we have seen that the (PS) condition together
with the positive completeness ofX implies thatWu(x) ∩ { f ≥ a} is precompact.
Now the unstable manifold is infinite-dimensional, so this cannot be true, but we
can hopeWu(x) ∩Ws(y) to be precompact. However, assumptions (C1) and (C2)
are not sufficient to get this result:Wu(x) ∩ Ws(y) may consist, for instance, of
infinitely many flow lines going fromx to y, with no cluster points besidesx and
y. We need to strengthen condition (C2), a local assumption, into a more global
condition.

We recall that that the Hausdorff distance of two subsetsA, B of a complete
metric space (W,d) is the number

distH (A, B) := max
{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}
∈ [0,+∞],

and that theHausdorff measure of noncompactness ofA is the number

βW(A) := inf {r>0 | A can be covered by finitely many balls of radiusr}∈ [0,+∞],
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so thatA is precompact if and only ifβW(A) = 0. The functionβ is continuous with
respect to the Hausdorff distance. Moreover,βW(A) coincides with the Hausdorff

distance ofA from the space of compact subsets ofW:

βW(A) = inf {distH (A,K) | K ⊂W compact}. (53)

In the case of a normed vector spaceW, β has also the following properties:

βW(λA) = |λ|βW(A), βW(A + B) ≤ βW(A) + βW(B),

βW
(
conv(A)

)
= βW(A). (54)

Let E be an essential subbundle ofT M, different from the trivial essential
subbundles [(0)] and [T M]. We shall assume thatE admits aglobal presentation:
there exists a smooth mapQ : M → N into a Hilbert manifold such that for
every p ∈ M, DQ(p) has finite-codimensional range, and kerDQ(p) belongs to
the equivalence classE(p). For instance,E could be the equivalence class of a
subbundle which is the vertical space of a submersionQ.

We shall assume thatN is endowed with a complete Riemannian metric, and
we shall consider the induced metric onT N. The new assumption on the vector
field X is:

(C3) (i) ‖DQ ◦ X‖∞ < +∞;
(ii) for everyq ∈ N there existsδ = δ(q) > 0 andc = c(q) ≥ 0 such that

βT N

(
DQ(X(A)

)) ≤ cβN
(Q(A)

) ∀A ⊂ Q−1(Bδ(q)
)
.

Let us restate this condition in a simple situation: assume thatM is an open set
of the Hilbert spaceH, and thatE is the equivalence class of a constant subbundle
V ∈ Gr(H). Then we can choose the global presentation to be the orthogonal
projector ontoW := V⊥,Q := PW. Denote by (XV,XW) be the two components of
X with respect to the orthogonal splittingH = V ⊕W. Condition (C3)(i) says that
XW is bounded, while (C3)(ii) is equivalent to: for everyξ ∈ W there existδ > 0
andc ≥ 0 such that

βW
(
XW(A)

) ≤ cβW(PWA) ∀A ⊂ M ∩ (
V × (Bδ(ξ) ∩W)

)
. (55)

In particular, if A ⊂ M is such thatPWA is precompact, then alsoXW(A) =

PWX(A) is required to be precompact. Thus, for everyξ ∈ M the mapη 7→
(I − PV)X(ξ + PVη) is a compact map in a neighborhood of 0. Therefore, the
differential of this map at 0, namely

(I − PV)DX(ξ)PV = (LXPV)(ξ)PV

is compact. Hence (C3) implies (C2): the simple situation —M ⊂ H, E constant,
Q projector — in which we have checked this fact is indeed the general local
situation, and (C2) is a local assumption.
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Notice that in general (55) is strictly stronger than the fact that for everyξ ∈
W, XW should map (ξ + V) ∩ M into a precompact set, because (55) involves a
Lipschitz control on the measure of noncompactness. However, these conditions
are equivalent under a mild Lipschitz assumption onX. See Abbondandolo and
Majer (2003b, Proposition 7.9) for a precise statement (in the case of a general
mapQ). The main result of this section is the following compactness theorem.

THEOREM 3.5. Let E be an essential subbundle ofT M with a global presen-
tation Q: M → N into a complete Riemannian Hilbert manifold. Assume that
the Morse vector fieldX is complete, has a nondegenerate Lyapunov functionf ,
(X, f ) satisfies(PS). Assume also thatX satisfies(C1) – (C3). Then for every pair
of critical pointsx, y, the intersectionWu(x) ∩Ws(y) is precompact.

Let us sketch the proof. It is useful to introduce the following notion: a subset
A ⊂ M is saidessentially verticalif Q(A) is precompact. The proof is then based
on the following steps:

(i) if A is essentially vertical andt ≥ 0, thenφ([0, t] × A) is essentially vertical;

(ii) each local unstable manifoldWu
loc,r (x) is essentially vertical;

(iii) each local stable manifoldWs
loc,r (x) has precompact intersection with every

essentially vertical subset.

Let us prove (i) under the simplifying assumption that the target of the map
Q is a Hilbert spaceE, and that the constants appearing in condition (C3)(ii) are
uniform:c does not depend onq, and we can takeδ = +∞. So (C3)(ii) becomes

βE

(
DQ(X(B)

)) ≤ cβE
(Q(B)

) ∀B ⊂ M. (56)

Let A ⊂ M be an essentially vertical set, that isβE
(Q(A)

)
= 0. SinceQ takes value

in a Hilbert space, there holds

Q(φ(t, p)
)

= Q(p) + t · 1
t

∫ t

0
DQ(φ(s, p)

)[
X
(
φ(s, p)

)]
ds,

from which we deduce that

Q(φ([0, t] × A)
) ⊂ Q(A) + [0, t] conv

(
DQ(X(φ([0, t] × A)

))
.

Then, by the properties (53) of the measure of noncompactnessβ and by (56),

βE

(
Q(φ([0, t] × A)

)) ≤ βE
(Q(A)

)
+ t βE

(
conv

(
DQ(X(φ([0, t] × A)

)))

= t βE

(
DQ

(
X
(
φ([0, t] × A)

))) ≤ tcβE

(
Q(φ([0, t] × A)

))
.
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By the above inequality,βE

(
Q(φ([0, t] × A)

))
vanishes for everyt < 1/c, and by

iteration, for everyt ≥ 0. This proves (i).
Since (ii) and (iii) are local statements, we may assume that the rest pointx

is the origin of the Hilbert spaceH, and thatQ is the orthogonal projector with
kernelV, a constant local representative of the essential subbundleE. By (C1),
Eu := Eu(∇X(0)

)
is a compact perturbation ofV. This fact easily implies that

a bounded setA ⊂ H is essentially vertical if and only if its projectionPsA on
Es := Es(∇X(0)

)
is precompact. In particular, the graph of a mapσ: Eu(r)→ Es(r)

is essentially vertical if and only if the mapσ is compact. So (ii) can be restated by
saying that the mapσu: Eu(r)→ Es(r) whose graph is the local unstable manifold
(see Theorem 1.12) is compact. By the graph transform method (see Shub, 1987,
Chapter 5),σu is the fixed point of the contractionF, mapping every 1-Lipschitz
mapσ ∈ Lip1

(
Eu(r),Es(r)

)
into the mapF(σ) ∈ Lip1

(
Eu(r),Es(r)

)
, whose graph

is theφ-evolution at time 1 of the graph ofσ, intersected withEu(r) × Es(r). So
claim (i) implies that the contractionF maps the closed nonempty subspace of
compact maps into itself, hence the fixed pointσu is a compact map, proving (ii).
Claim (iii) is an immediate consequence of the fact thatWs

loc,r (x) is the graph of a
continuous mapσs: Es(r)→ Eu(r).

Let us see how claims (i), (ii), and (iii) allow to conclude, in the case in which
there are no rest points in the strip wheref (y) < f (p) < f (x). Let (pn) ⊂Wu(x) ∩
Ws(y). We must prove that (pn) has a converging subsequence. We can assume
thatx andy are not limit points of (pn). Then we can findsn < 0 < tn such that

φ(sn, pn) ∈Wu
loc,r (x) ∩ { f = f (x) − ε}, φ(tn, pn) ∈Ws

loc,r (y) ∩ { f = f (y) + ε},
for some smallε > 0. The fact that the are no rest points in the strip{ f (y) < f <
f (x)} implies that (tn − sn) is bounded: otherwise by Remark 2.1, we could find
a sequencern ∈ [sn, tn] such that

(
D f

(
φ(rn, pn)

)[
X
(
φ(rn, pn)

)])
tends to zero, and

by (PS) the sequence
(
φ(rn, pn)

)
would have a subsequence converging to a rest

point in the strip{ f (y) + ε ≤ f ≤ f (x) − ε}, a contradiction. By claim (ii), the set
{φ(sn, pn) | n ∈ N} is essentially vertical. By claim (i) and by the fact that (tn− sn)
is bounded, also the set{φ(tn, pn) | n ∈ N} is essentially vertical. But the latter set
is contained in the local stable manifold ofy, so by claim (iii) it is precompact.
Since (tn) is bounded, also the sequence (pn) is compact.

In the general case, one needs the following stronger versions of (ii) and (iii):
there exist arbitrarily small neighborhoodsU of the rest pointx such that if (pn)
converges tox then:

(ii ′) if tn ≥ 0 andφ(tn, pn)∂U then the set{φ(tn, pn) | n ∈ N} is essentially
vertical;

(iii ′) if sn ≤ 0 andφ(sn, pn)∂U then the set{φ(sn, pn) | n ∈ N} has compact
intersection with any essentially vertical subset.
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The proof of (ii′) and (iii′) makes use of Proposition 1.17. Then a combination
of the argument shown above and the argument in the proof of Theorem 2.2(ii)
allows to conclude the proof of Theorem 3.5. ¤

REMARK 3.6. The requirement that the essential subbundleE should have a
global presentation can be weakened, by replacing the mapQ by a suitable family
of mapsQi : Mi → Ni , i ∈ I , where{Mi}i∈I is an open covering ofM. Besides
allowing more general essential subbundles, this fact has also the advantage of
localizing even more the constants appearing in assumption (C2)(ii).

3.7. TWO-DIMENSIONAL INTERSECTIONS

Assume that the Morse vector fieldX is complete, has a nondegenerate Lyapunov
function f , and that (X, f ) satisfies (PS). Assume also thatX satisfies (C1) – (C3)
with respect to a subbundleV of T M. In analogy with the finite indices case, we
shall say thatX satisfies the Morse – Smale property up to orderk ∈ Z if Wu(x)
meetsWs(y) transversally wheneverm(x,V) −m(y,V) ≤ k.

Let us study what happens when the Morse – Smale condition up to order 2
holds, andx, z are rest points withm(x,V) −m(z,V) = 2. LetW be a connected
component ofWu(x)∩Ws(z). It is a two-dimensional manifold, andR acts freely
on it. ThereforeW/R is a connected one-dimensional manifold, that is it is either
a circle or an interval. In the first case, it is easy to see thatW = W ∪ {x, z} is a
two-dimensional sphere, and the restriction ofφ to W is topologically conjugated
to the exponential flow on the Riemann sphereS2 = C ∪ {∞},

R × S2 3 (t, ζ) 7→ etζ ∈ S2.

We shall be more interested in the second case, in whichW is the union ofW and
two “broken orbits,” with exactly one intermediate rest point. More precisely, the
situation is described by the following theorem.

THEOREM 3.7. Assume that the Morse vector fieldX is complete, has a nonde-
generate Lyapunov functionf , and that(X, f ) satisfies(PS). Assume also thatX
satisfies(C1) – (C3)with respect to a subbundleV of T M, and has the Morse –
Smale property up to order2. Let x, y be rest points withm(x,V) −m(z,V) = 2,
and let W be a connected component ofWu(x) ∩ Ws(z) such thatW/R is an
interval. Then restriction of the flowφ to W is topologically conjugated to the
product of two shift flows onR: there exists a continuous surjective map

h:R ×R→W

with the following properties:
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(i) φ(t,h(u, v)) = h(u + t, v + t) for every(u, v) ∈ R ×R, t ∈ R;

(ii) h(R2) = W, and there exist rest pointsy, y′ with m(y,V) = m(y′,V) =

m(x,V) − 1, andW1, W2, W′1, W′2 connected components ofWu(x) ∩Ws(y),
Wu(y)∩Ws(z), Wu(x)∩Ws(y′), Wu(y′)∩Ws(z), respectively, such thatW1∪
W2 , W′1 ∪W′2, and

h(R × {−∞}) = W1, h({+∞} ×R) = W2,

h({−∞} ×R) = W′1, h(R × {+∞}) = W′2;

(iii) the restrictions ofh to R2, to {±∞} × R, and toR × {±∞}, are diffeomor-
phisms;

(iv) denoting bydeg theZ-topological degree, referred to the orientations de-
fined in Section3.5, there holds

degh = −degh|{−∞}×R · degh|R×{+∞} = degh|R×{−∞} · degh|{+∞}×R.
Wheny , y′, h is injective, so it is a conjugacy. Wheny = y′, it may happen

that W1 = W′1, or that W2 = W′2, but these identities cannot hold simultane-
ously. Statement (iv) expresses a form of coherence of the orientations defined
in Section 3.5.

Let us describe the main idea in the construction ofh. By compactness and
transversality, we can find a “broken orbit” in the closure ofW, with exactly one
intermediate rest pointy of relative Morse indexm(y,V) = m(x,V) − 1. Let W1

andW2 be the corresponding components ofWu(x) ∩Ws(y) andWu(y) ∩Ws(z).
Let p ∈ W1, and letq ∈ W2. Let A be a small hypersurface inWu(x) meeting
Ws(y) transversally atp, and letB be a small hypersurface inWs(z) meetingWu(y)
transversally atq. Consider a neighborhoodU of y of the formU = Eu

y(r)×Es
y(r),

wherer is so small that the local stable manifold ofy is the graph of aθ-Lipschitz
mapσs : Es

y(r) → Eu
y(r), while the local unstable manifold ofy is the graph of

a θ-Lipschitz mapσu: Eu
y(r) → Es

y(r), for someθ < 1. The forward evolution of
A eventually intersectsU in the graph of aθ-Lipschitz map fromEu

y(r) to Es
y(r):

there ist0 ≥ 0 such that for everyt ≥ t0

φ({t} × A) ∩ U = graphαt: Eu
y(r)→ Es

y(r), lip(αt) ≤ θ,
and‖αt − σu‖∞ → 0 for t → +∞. Similarly, for everyt ≤ −t0,

φ({t} × B) ∩ U = graphβt: Es
y(r)→ Eu

y(r), lip(βt) ≤ θ,
and‖βt − σs‖∞ → 0 for t → −∞. Let u ≥ t0 andv ≤ −t0. Since lip(αu) ≤ θ < 1
and lip(βv) ≤ θ < 1, the graphs ofαu and ofβv intersect in exactly one point, and
we can defineh(u, v) as

h(u, v) := (graphαu) ∩ (graphβv).
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This definesh in a neighborhood of (+∞,−∞). See Abbondandolo and Majer
(2003b, Section 11) for a complete proof.

An analogous argument allows to prove the following result.

PROPOSITION 3.8. Let x, y, z be rest points such thatm(x,V) = m(y,V) +

1 = m(z,V) + 2, and letW1, W2 be connected components ofWu(x) ∩ Ws(y),
Wu(y) ∩Ws(z), respectively. Then there exists a unique connected componentW
of Wu(x)∩Ws(z) such thatW1 ∪W2 belongs to the closure of

{
φ(R × {p})

∣∣∣ p ∈W
}

with respect to the Hausdorff distance.

3.8. THE MORSE COMPLEX

We now dispose of all the ingredients to build the Morse complex. The assump-
tions are that the MorseC1 vector fieldX on the Hilbert manifoldM is complete,
satisfies (C1) – (C3) with respect to a subbundleV of T M, with a global presen-
tationQ: M → N, thatX satisfies the Morse – Smale condition up to order 2, has
a nondegenerate Lyapunov functionf ∈ C2(M), and that the pair (X, f ) satisfies
(PS).

For anyk ∈ Z, denote by restk(X) the set of rest pointsx of X of relative Morse
indexm(x,V) = k, and letCk(X) be the free Abelian group generated by restk(X).
Assume the following finiteness condition:

(C4) for everyk ∈ Z, f is bounded below on restk(X).

For every rest pointx, we fix an orientation of the Fredholm pair (TxWs(x),V(x))
in an arbitrary way. This choice induces an orientation of all the intersections
Wu(x) ∩Ws(y), for m(x,V) −m(y,V) ≤ 2.

Let x, y be rest points ofX with m(x,V) −m(y,V) = 1. ThenWu(x) ∩Ws(y)
is a 1-dimensional manifold with a free action ofR, that is it is the union of the
orbits of a discrete set of points. By Theorem 3.5 and by transversality,Wu(x) ∩
Ws(y) is compact: otherwise we could find a sequences of orbits inWu(x)∩Ws(y)
converging to a “broken orbit” fromx to y, with at least one intermediate rest
point, violating the Morse – Smale condition (up to order 0). Therefore,Wu(x) ∩
Ws(y) consists of finitely many orbitsWi , i = 1, . . . ,h, each of which can be given
a signε(Wi) ∈ {+1,−1} depending on whether the direction ofX agrees or does
not agree with the orientation ofWi . In other words, ifWi = φ(R × {p}), ε(Wi) is
the degree of the mapφ(·, p):R→Wi . We define the integern(x, y) as

n(x, y) =

h∑

i=1

ε(Wi).
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By assumption (C4), we can define a homomorphism∂k: Ck(X) → Ck−1(X) gen-
eratorwise, as

∂kx =
∑

y∈restk−1(X)

n(x, y)y, ∀x ∈ restk(X).

The results of Section 3.7 imply that these homomorphisms are boundary opera-
tors.

PROPOSITION 3.9.For everyk ∈ Z, ∂k−1∂k = 0.
Proof.Let x andzbe rest points withm(x,V)−m(z,V) = 2, and letS(x, z) be

the set of “broken orbits” fromx to zwith exactly one intermediate rest point, nec-
essarily of relative indexm(z,V) + 1. By compactness and transversality,S(x, z)
is a finite set. By Proposition 3.8, for every elementW1 ∪W2 of S(x, z) there is
a unique connected componentW of Wu(x) ∩Ws(y) such thatW1 ∪W2 belongs
to the closure of{φ(R × {p}) | p ∈W} with respect to the Hausdorff distance.
By Theorem 3.7, the closure ofW contains exactly one other elementW′1 ∪W′2,
different fromW1∪W2. So there is an involutionW1∪W2 7→W′1∪W′2 onS(x, z),
without fixed points, and by Theorem 3.7 (iv),

ε(W′1)ε(W′2) = −ε(W1)ε(W2). (57)

If m(x,V) = k, the coefficient ofz in ∂k−1 ∂kx is the number
∑

y∈restk−1(X)

n(x, y)n(y, z) =
∑

W1∪W2∈S(x,z)

ε(W1)ε(W2),

which is zero by (57). ¤

Therefore, the Abelian groupsCk(X) and the homomorphisms∂k, for k ∈ Z,
are the data of a chain complex, called theMorse complex ofX. The construction
depends on the choice of the subbundleV, and on the choice of the orienta-
tions of

(
TxWs(x),V(x)

)
. Replacing the subbundleV by a compact perturbations

produces a shift in the indices, equal to the relative dimension of the compact
perturbation. A change of the orientations produces an isomorphic chain complex,
the isomorphism being actually an involution.

When the conditions (C1) – (C3) hold only with respect to a (0)-essential
subbundle, there is no orientation theory available, and the above construction
produces a chain complex ofZ2-vector spaces.

Replacing the vector fieldX by another one (still satisfying conditions (C1) –
(C3) with respect to the same subbundleV) having the same Lyapunov function
f , produces an isomorphic Morse complex: the argument is analogous to the one
used in the proof of Theorem 2.26. In particular, the homology of the Morse
complex does not depend on the vector field, at it can be denoted byH∗( f ), the
Morse homology off .
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Although in this situation we should not expect the Morse homologyH∗( f ) to
be directly related to the singular homology ofM, H∗( f ) is still considerably stable
with respect to modifications of the functionf . For instance, if (X0, f0) and (X1, f1)
satisfy conditions (PS) and (C1) – (C4) (with respect to the same subbundleV),
and if f1− f0 is bounded, then the corresponding Morse homologies are isomorphic
(see Abbondandolo and Majer, 2001, Theorem 1.8, but see also Theorem 1.10).

This fact is a consequence of a more general functorial property of the Morse
homology: Morse homology is a functor from the class of Morse functions which
are Lyapunov functions of some vector field satisfying (PS) and (C1) – (C4), seen
as a small category with the usual order relation, to the category of graded Abelian
groups. In other words, to each inequalityf0 ≥ f1 is associated a sequence of
homomorphisms of Abelian groups

φ f0 f1: Hk( f0)→ Hk( f1), ∀k ∈ Z,
such thatφ f1 f2φ f0 f1 = φ f0 f2 andφ f f = id. Actually, φθ◦ f f = id, if θ:R → R is
a smooth function such thatθ′ > 0 andθ(s) ≥ s. This fact is clearly useful in
order to compute the Morse homology of a given functionf : if one can squeeze
f between two functions,f0 ≥ f ≥ f1, the knowledge of the Morse homology of
f0 and f1 and of the homomorphismφ f0 f1 allows to get information on the Morse
homology of f . For instance, ifφ f0 f1 is an isomorphism, thenφ f0 f is injective and
φ f f1 is surjective, hence the Morse homology off is at least as rich as the Morse
homology of f0 and f1.

The construction of the homomorphismφ f0 f1 involves the same idea used in
the proof of Theorem 2.26:f0 and f1 can be used to build a new functioñf on
R×M, whose boundary operator∂ is the cone of some homomorphismψ f0 f1 from
the Morse complex off0 to the one off1. The∂2 = 0 formula then implies that
ψ f0 f1 is a chain map, so it induces a homomorphismφ f0 f1 in homology.

Bibliographical note

The Morse complex approach for compact manifolds
WhenM is a compact manifold andX is the negative gradient flow of a smooth
function, the relations (36) were proved by Morse (1925), see also Morse (1934;
1947). A classical reference for Morse theory is Milnor (1963). See also the review
papers by Bott (1982; 1988).

The dynamical system point of view arose after the seminal work of Smale,
see Smale (1960; 1961) and the beautiful foundational paper Smale (1967), and
it immediately had influences in topology, see Milnor’s book on theh-cobordism
theorem (Milnor, 1965). In this framework, one can consider Morse – Smale flows,
which are dynamical systems more general than gradient-like flows since they
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may have periodic orbits. The connection between Morse theory for Morse –
Smale flows and the homotopy of the underlying manifold has been further clari-
fied by Franks (1979), see also Franks (1980), and Cornea (2002a; 2002b).

Interpreting the boundary homomorphism of a cellular filtration in terms of
an algebraic count of the gradient flow lines connecting critical points of index
difference 1, was already implicit in a paper by Thom (1949), who however did
not clarify the conditions required on the gradient flow. This interpretation was
pointed out by Witten (1982), where it is deduced quite indirectly from a relation-
ship between Morse theory and certain deformations of the Laplace – Beltrami op-
erator. The first explicit construction of the Morse complex is due to Floer (1989),
see also Salamon (1990). Floer’s proof makes use of Conley index theory, a gen-
eral and powerful method to decompose a dynamical system into simpler invariant
sets, see Conley (1978), Conley and Zehnder (1984), and Salamon (1985).

Weber (1993) contains a concise construction of the Morse complex, by dy-
namical systems techniques (see also Weber, 2004). A systematic study of the
Morse complex of a function as a tool to build a homology theory which satisfies
the Eilenberg – Steenrod axioms can be found in Schwarz (1993). Here the meth-
ods are closer to those used in Floer homology. The isomorphism with the singular
homology is deduced by the fact that all the homology theories which satisfy the
Eilenberg – Steenrod axioms are equivalent on compact CW-complexes. A more
direct proof of this isomorphism, still in this spirit, can be obtained by interpreting
singular homology theory in terms of pseudocycles, see Schwarz (1999).

Banyaga and Hurtubise (2004) presents a self-contained exposition of Morse
homology, adopting the dynamical system point of view and providing all the
necessary tools from hyperbolic dynamics, as well as applications to Morse theory
on Grassmannians and on Lie groups.

The dynamical system point of view is at the basis of Harvey and Lawson’s
approach to Morse theory in terms of the de Rham – Federer theory of currents
(Harvey and Lawson, 2001). The idea is to construct a chain map from the com-
plex of smooth differential forms to the complex of currents, by taking the limit
for t → +∞ of the pullback of a differential form by the flowφ(t, ·). Such a chain
map is chain homotopic to the inclusion, and it is a retraction onto the subcomplex
of currents spanned by the stable manifolds of the flow. The cohomology of such
a subcomplex is then isomorphic to the de Rham cohomology of the manifold, a
result which implies the Morse relations (36).

Infinite-dimensional Morse theory
Morse theory forC2 functions on Hilbert manifolds was developed by Palais
(1963) and Smale (1964a; 1964b). The Palais – Smale condition was introduced in
these papers. This version of Morse theory has been extensively used in the study
of geodesics, see Klingenberg (1978; 1982). The first of these references contains
also a description of the cellular complex approach to infinite-dimensional Morse



MORSE COMPLEX FOR INFINITE-DIMENSIONAL MANIFOLDS 107

theory, in the case of self-indexing functions. A complete presentation of infinite-
dimensional Morse theory including many applications to differential equations
can be found in Mawhin and Willem (1989) and Chang (1993).

Morse theory in the case of infinite Morse indices
In simple situations, functions with critical points of infinite Morse index and
co-index can be studied by taking finite-dimensional approximations. See, for
instance, Chang, (1981; 1993), Conley and Zehnder, (1983; 1984), and Abbondan-
dolo (2001). Another way of overcoming the lack of rigidity due to the presence
of critical points of infinite Morse index and co-index is to restrict the class
of admissible deformations to more rigid classes, as in Benci and Rabinowitz
(1979) and Rabinowitz (1986). In the same spirit, a Morse theory for special
classes of functions on a Hilbert space has been introduced by Szulkin (1992), and
further refined by Abbondandolo (1997; 2000), Kryszewski and Szulkin (1997),
Ge↪ba et al. (1999), and Izydorek (2001). The idea is to develop ageneralized
cohomology theory, which satisfies all the Eilenberg – Steenrod axioms except
the dimension axiom. This axiom is replaced by the requirement that suitable
infinite-dimensional spheres should have nontrivial cohomology. These general-
ized cohomologies will be functorial only with respect to restricted classes of
continuous maps (the infinite-dimensional sphere is contractible), and it is possi-
ble to develop a Morse theory for functions whose gradient flow belongs to such
a class.

The idea of forgetting about the whole ambient space and looking only at
the gradient flow lines connecting critical points is due to Floer, who applied
it to a Cauchy – Riemann type equation which does not even produce a local
flow (so the framework is quite different from the setting of these notes). See
Floer (1988a; 1988b; 1988c; 1989), and the expository paper Salamon (1999).
Angenent and van der Vorst (1999) have used this approach to study the gradient
flow of a function associated to a class of elliptic systems. A complete study of the
Morse complex approach in the case of functions on a Hilbert space consisting of
a compact perturbation of a nondegenerate quadratic form has been carried on by
the authors in Abbondandolo and Majer (2001). The results of Abbondandolo and
Majer (2003b) summarized in the third part of these notes, allow a much more
general setting.

There is a large literature about the Hilbert Grassmannian, and related con-
structions. In particular, the space of all compact perturbations of an infinite-
dimensional and -codimensional closed linear subspace is calledrestricted Grass-
mannianby some authors (although sometimes this term is reserved for Hilbert-
Schmidt perturbations). See for instance Sato (1981), Segal and Wilson (1985),
Pressley and Segal (1986), Guest (1997), and Arbarello (2002). The role of these
objects in the homotopy theory underlying Floer homology is discussed in Cohen
et al. (1995).
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Cohen, R. L., Jones, J. D. S., and Segal, G. B. (1995) Floer’s infinite-dimensional Morse theory and

homotopy theory, In H. Hofer, C. H. Taubes, A. Weinstein, and E. Zehnder (eds.),The Floer
Memorial Volume, Vol. 133 ofProgr. Math, p. 297 – 325, Basel, Birkḧauser.
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