Density of Morse Functions on a Complex Space

Riccardo Benedetti

Department of Mathematics, University of Pisa, Via Derna 1/I, I-56100 Pisa, Italy

1. Introduction

Theorem 1 fills a gap, pointed out by Fischer in [2], in the proof of a theorem of Andreotti and Grauert in [1].

Let X be a reduced, Hausdorff, q-convex complex space, with countable basis. $\mathscr{E}(X)$ denotes the set of real valued, infinitely differentiable functions on X. Let K be the compact set of X and φ the continuous function on X, strongly q-convex on X - K, respectively, as stated in the definition of [1] and [2]; we can suppose that $\varphi \in \mathscr{E}(X)$. We shall prove the following:

Theorem 1. There exist a compact set $K^* \in X$ and $\varphi^* \in \mathscr{E}(X)$, such that:

1. φ^* is strongly q-convex in $X - K^*$ and $B_c = \{x \in X ; \varphi^*(x) < c\} \subset \subset X$ for every $c \in \mathbb{R}$.

2. The set {local minima of φ^* on X} is discrete in X.

Actually we shall prove a density property of the functions satisfying property 2 of Theorem 1. We note that (*iii*) in the definition of the *Espaces fortement* (p,q)-convexes-concaves in [5] is, by means of Theorem 1, needless.

2.

Let $\{V_n^0\}_{n\in\mathbb{N}}, \{V_n^1\}_{n\in\mathbb{N}}, \{V_n^2\}_{n\in\mathbb{N}}$, be locally finite (hence countable) open coverings of X such that

1. For all $i, j, V_i^i \in \subset X$.

2. $\{V_n^{i+1}\}_{n\in\mathbb{N}}$ is a shrinking of $\{V_n^i\}_{n\in\mathbb{N}}$, i=0,1.

3. For every *j*, there is an analytic isomorphism $h_j: V_j^0 \to A_j^0$ of V_j^0 onto an analytic set A_j^0 of a domain $D_j^0 \subset \mathbb{C}^{N(j)}$.

4. For every j, there are domains $D_i^2 \subset \subset D_i^1 \subset \subset D_i^0$ such that

$$D_{i}^{i} \cap A_{i}^{0} = h_{i}(V_{i}^{i}) \equiv A_{i}^{i} \quad i = 1, 2.$$

5. For every *j*, there is $\Phi_j \in \mathscr{E}(D_j^0)$ such that $\Phi_j | A_j^0 = \varphi \circ h_j^{-1}$; if $V_j^0 \cap K = \emptyset$ then Φ_j is strongly *q*-convex.

Set, for all j, $D_i^1 = D_i$, $V_i^1 = V_i$, $A_i^1 = A_i$. We choose on every $\mathscr{E}(D_i)$ a metric d_i that induces the usual Fréchet space topology on it. Furthermore we consider on $E = \prod \mathscr{E}(D_i)$ the topology determined by the following basis of neighbourhoods of $0 = (0, 0, \dots): \text{ for every } \varepsilon = \{\varepsilon_n\}_{n \in \mathbb{N}}, \quad \varepsilon_j \in \mathbb{R}, \quad \varepsilon_j > 0, \quad U(\varepsilon, 0) = \{f = (f_0, f_1, \dots) \in E; \}$ $d_i(f_i, 0) < \varepsilon_i, j \in \mathbb{N}$. We define: $S = \{f \in E; \text{ for all } i, j \in f_i | h_i(V_i \cap V_i) = f_i | h_i(V_i \cap V_i) \}$. S is not empty. For every $f \in E$ and for every ε , set: $U'(\varepsilon, f) = U(\varepsilon, f) \cap S$. For every ε , set $\frac{\varepsilon}{t} = \left(\frac{\varepsilon_0}{t}, \frac{\varepsilon_1}{t}, \dots\right), t \in \mathbb{R} - \{0\}.$

Proposition 1. S is a Baire space.

Proof. Let $\{C_n\}_{n\in\mathbb{N}}$ be a countable family of dense open sets in S. It is enough to prove that, for every $f \in S$, for every $\varepsilon = (\varepsilon_0, \varepsilon_1, ...), U'(\varepsilon, f) \cap (\cap C_n) \neq \emptyset$. Let $\{r_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers $r_j > 0$, $r_n \to 0$. Set $f^0 = f$, $\varepsilon^0 = (\varepsilon^0_0, \varepsilon^0_1, \varepsilon^0_2, ...) = \varepsilon$. $U'\left(\frac{\varepsilon^0}{4}, f^0\right) \cap C_0$ is open and $\neq \emptyset$. Hence there exist $f^1 \in U'\left(\frac{\varepsilon^0}{4}, f^0\right) \cap C_0$ and $\varepsilon^1 = (\varepsilon_0^1, \varepsilon_0^1)$ $\varepsilon_{1}^{1}, \dots) \text{ such that: } U'(\varepsilon^{1}, f^{1}) \subset U'(\varepsilon^{0}, f^{0}) \cap C_{0}.$ We can choose ε^{1} satisfying moreover : $\varepsilon_{j}^{1} < \min\left(r_{0}, \frac{\varepsilon_{j}^{0}}{4}\right)$ for all *j*. $U'\left(\frac{\varepsilon^{1}}{4}, f^{1}\right) \cap C_{1}$

is open and $\neq \emptyset$. Hence there exist $f^2 \in U'\left(\frac{\varepsilon^1}{4}, f^1\right) \cap C_1$ and $\varepsilon^2 = (\varepsilon_0^2, \varepsilon_1^2, ...)$ such that: $U'(\varepsilon^2, f^2) \subset U'(\varepsilon^1, f^1) \cap C_1$. We can choose ε^2 satisfying moreover: $\varepsilon_j^2 < \min\left(r_1, \frac{\varepsilon_j^1}{4}\right)$ for all *j*. We thus

construct inductively a countable family $\{U'(\varepsilon^n, f^n)\}_{n\in\mathbb{N}}$ such that:

(i)
$$\varepsilon_j^n < \min\left(r_{n-1}, \frac{\varepsilon_j^{n-1}}{4}\right)$$
 for all j .
(ii) $d_j(f_j^{n+1}, f_j^n) < \frac{\varepsilon_j^n}{4}$ for all j .
(iii) $U'(\varepsilon^n, f^n) \in U'(\varepsilon^{n-1}, f^{n-1}) \cap C_{n-1}$.

Hence: $\cap U'(\varepsilon^n, f^n) \in U'(\varepsilon, f) \cap (\cap C_n)$; so, if we prove that $\cap U'(\varepsilon^n, f^n) \neq \emptyset$ we are done. Now, for all j, $\{f_i^n\}_{n\in\mathbb{N}}$ is a Cauchy sequence in $\mathscr{E}(D_i)$. Since it is a Fréchet space $\{f_i^n\}$ has a limit F_i and clearly $F = (F_0, F_1, \dots) \in S$.

Moreover, using the inequalities (i) and (ii) it is easy to prove that $F \in U'(\varepsilon^n, f^n)$, for every *n*. This completes our proof.

Let $\mathcal{N}(D_i) \subset \mathscr{E}(D_i)$ the set: $\{f \in \mathscr{E}(D_i); \operatorname{supp} f \subset \subset D_i\}$.

Proposition 2. There is a continuous map $s: \mathcal{N}(D_i) \rightarrow S$, such that $p_i \circ s = \mathrm{Id}$, where p_i is the projection on the i-factor of S.

Proof. Let Φ be an element of $\mathcal{N}(D_i)$. We will determine the corresponding $f = (f_0, f_1, ...) \in S$. If $V_i \cap V_j = \emptyset$, we put $f_j = 0$. Let $V_i \cap V_j \neq \emptyset$. We can consider Φ as an element of $\mathcal{N}(D_i^0)$ and $\overline{h_i(V_i \cap V_i)}$ in D_i^0 is compact. For every $x \in \overline{h_i(V_i \cap V_i)}$ there are an open neighbourhood $U_x \in CD_i^0$ of x such that $U_x \cap A_i^0 = U_x \cap h_i(V_i^0 \cap V_i^0)$ and a holomorphic map with image in $\mathbb{C}^{N(i)}$, $g = (g_1, \dots, g_{N(i)})$, defined on a neighbourhood of U_x in D_i^0 , such that:

$$g|h_{j}(V_{i}^{0} \cap V_{j}^{0}) \cap U_{x} = h_{i} \circ h_{j}^{-1}|h_{j}(V_{i}^{0} \cap V_{j}^{0}) \cap U_{x}.$$

Let us select a finite covering $\{U_1, \ldots, U_k\}$ of $\overline{h_j(V_i \cap V_j)}$ and let $g^t = (g_1^t, \ldots, g_{N(i)}^t)$, $t = 1, \ldots, k$, be the corresponding holomorphic maps. Let $\{\chi_t\}_{t=0,1,\ldots,k}$ be an infinitely differentiable partition of unity subordinate to $\{U_0, U_1, \ldots, U_k\}$, where U_0 $= D_j^0 - \overline{h_j(V_i \cap V_j)}$. For every $t = 1, \ldots, k$ the function: $\Phi_t(y) = \chi_t(y)\Phi(g^t(y))$ for $y \in U_t$, $\Phi_t(y) = 0$ for $y \in D_j^0 - U_t$, is infinitely differentiable. For $y \in D_j$ we put: $f_j(y)$

= $\sum_{\substack{1 \le t \le k}} \Phi_t(y)$. Repeating this for every *j* such that $V_i \cap V_j \neq \emptyset$ (this is a finite set) we

obtain an element of S; clearly this correspondence is continuous and verifies the statement of the proposition.

We fix now $A = A_j$ $(D = D_j, \mathbb{C}^{N(j)})$. Let $W^1 \supset W^2 \supset \ldots \supset W^r$ where $W^1 = A$ and $W^{i+1} = \text{Sing. } W^i$. The following properties hold:

1. The family of W^i is locally finite.

2. W^i is a complex space in D, for all i.

3. $S^{i} = W^{i} - W^{i+1}$ is a complex manifold, for all *i*.

Moreover, if we call stratum (of complex dimension $n_{i,j}$) every connected component S_i^i of S^i we have:

4. ∂S_i^i is a union of strata of dimension $\langle n_{i,i} \rangle$.

5. The family of all strata is locally finite.

We observe that for our purpose it is enough to use the natural stratification of A without referring to Whitney's theory.

Definition 1. We say that $S_j^p < S_i^q$ if $S_j^p \subset \partial S_i^q$. Now, let S_j^p , S_i^q be strata such that $S_j^p < S_i^q$. Then, we define: $T(S_j^p, S_i^q) = \{H \in G(n_{q,i}, N); \text{ there are } x \in S_j^p \text{ and } \{y_n\}_{n \in \mathbb{N}} \subset S_i^q \text{ such that: } y_n \to x \text{ and } T(y_n, S_i^q) \to H \text{ in } G(n_{q,i}, N)\}, \text{ where: } G(n_{q,i}, N) \text{ is the Grassman manifold of complex } n_{q,i}\text{-planes through the origin in } \mathbb{C}^N; T(y_n, S_i^q) \text{ is the tangent vector space to } S_i^q \text{ in } y_n.$

Definition 2. We say that $\Phi \in \mathscr{E}(D)$ is a Morse function on A if:

1. $\Phi|S_j^p$ has no degenerate critical points for all p, j such that: $n_{p,j} > 0$.

2. For all i, j, p, q (such that: $S_j^p < S_i^q$), for all $H \in T(S_j^p, S_i^q)$, the linear form $d\Phi(x)$ is not null on H.

Note. If Φ is a Morse function on A then the set of local minima of $\Phi|A$ is discrete in A; indeed a non degenerate critical point is isolated; moreover 2. of Definition 2 says that there are no sequences of critical points of $\Phi|S_i^q$ converging to a point of an $S_i^p < S_i^q$.

Proposition 3. For every $\Phi \in \mathscr{E}(D)$ and for every $\varepsilon > 0$, there exist $\Psi \in \mathscr{N}(D)$ such that : (i) $d(\Psi, 0) < \varepsilon$. (ii) $\Phi + \Psi$ is a Morse function on A^2 .

Proof. We identify \mathbb{C}^N with \mathbb{R}^{2N} :

 $(z_1, z_2, \dots) = (x_1 + iy_1, x_2 + iy_2, \dots) \rightarrow (x_1, y_1, x_2, y_2, \dots).$

Now, we consider: $h: D \to \mathbb{R}^{2N+1}$ where $h(x) = (h_1(x), h_2(x), \dots) = (\Phi(x), x_1, y_1, \dots)$. Let $p \in \mathbb{R}^{2N+1}$. We define $L_p: D \to \mathbb{R}$ by $L_p(s) = \|p - h(s)\|^2$, where $\|\cdot\|$ is the Euclidean norm.

For all q, j, the set of $p \in \mathbb{R}^{2N+1}$ such that $L_p|S_j^q$ has degenerate critical points is of measure 0 in \mathbb{R}^{2N+1} ([3]). Since the S_j^q are a countable set, the set of $p \in \mathbb{R}^{2N+1}$ such

that $L_p|S_j^q$ has degenerate critical points on at least one S_j^q is of measure 0 in \mathbb{R}^{2N+1} . We call this set *B*. Let $S^n = S_j^n$ and $\overline{S^r} = S_i^r$ be such that $S^r < S^n$. We can suppose that $\dim_{\mathbb{C}} S^n = n$. $\overline{S^n}$ and $\overline{S^r}$ (in *D*) are complex analytic subspaces of *D* ([4] Chapter IV, Theorem 1). Calling *W* the set: $\{(x, H); x \in S^n, H \in T(x, S^n)\}$, \overline{W} in $\overline{S^n} \times G(n, N)$ is an analytic subspace of $\overline{S^n} \times G(n, N)$ ([4] Chapter IV, Proposition 4'). Moreover \overline{W} is irreducible of $\dim_{\mathbb{C}} = n$ (*W* is a connected set of regular points and $\dim_{\mathbb{C}} W = n$). If $(x, H) \in \overline{W} \cap S^r \times G(n, N)$, then $H \in T(S^r, S^n)$.

 $\Theta = \{(x, H) \in \overline{W}; x \in \overline{S'}\}$ is an analytic subspace of \overline{W} and $\dim_{\mathbb{C}} \Theta \leq n-1$. For every $(x, H) \in \overline{S^r} \times G(n, N)$ we call $H_h = J(x)H$, where J(x) is the Jacobian matrix of h in x (we consider H as a real 2n-plane). In $\overline{S^r} \times G(n, N) \times \mathbb{R}^{2N+1}$ let Θ' be the set Θ' = {(x, H, y); $(x, H) \in \Theta$, $y \in {(H_h)^{\perp} + h(x)}$ }, where $(H_h)^{\perp}$ is the orthogonal space to H_h in \mathbb{R}^{2N+1} with respect to the usual scalar product. By means of the restriction to Θ' of the projection $\overline{S^r} \times G(n, N) \times \mathbb{R}^{2N+1} \to \overline{S^r} \times G(n, N)$ we obtain an infinitely differentiable fiber bundle on every stratum of any stratification of Θ . The fiber is a real (2N+1-2n)-plane. Then Θ' is (as set) a countable union of differentiable manifolds of dim_R $\leq 2N - 1$. Hence, by Sard's theorem, the image of Θ' in \mathbb{R}^{2N+1} with respect to the projection $\overline{S^r} \times G(n, N) \times \mathbb{R}^{2N+1} \to \mathbb{R}^{2N+1}$ has measure 0 in \mathbb{R}^{2N+1} . Repeating it for every couple of strata of A like S^n and S^r (this couple set is countable), the union of images of Θ' 's in \mathbb{R}^{2N+1} is of measure 0 in \mathbb{R}^{2N+1} . We call this set C. Now, $Q = \mathbb{R}^{2N+1} - (B \cup C)$ is a dense set in \mathbb{R}^{2N+1} and for every $p \in Q$ we have: 1. $L_p | S_i^q$ has no degenerate critical points for every j, q. 2. L_p has the property 2 of Definition 2. Let U an open set, $D^2 \subset \subset U \subset \subset D$. Let $\chi \in \mathcal{N}(D)$ be such that $\chi | \overline{U} = 1$. Let $c \in \mathbb{R}$ be and choose $p = (-c + \varepsilon_1, \varepsilon_2, \dots, \varepsilon_{2N+1}) \in Q$. ε_i can be arbitrarily small. Set: $g = \frac{(L_p - c^2)}{2c}$; g has property 1 and property 2 of Definition 2. A short computation shows that

$$g = \Phi + \sum_{1 \le i \le 2N+1} \frac{h_i^2}{2c} - \sum_{1 \le i \le 2N+1} \frac{\varepsilon_i h_i}{c} + \sum_{1 \le i \le 2N+1} \frac{\varepsilon_i^2}{2c} - \varepsilon_1.$$

If ε_i are small and c is large we have: for $\Psi = \chi(g - \Phi)$, $d(\Psi, 0) < \varepsilon$; indeed for $f \in \mathscr{E}(D)$, if $\lambda_m \to 0$ then $d(\lambda_m f, 0) \to 0$. This concludes our proof.

Proposition 4. For every $i, M_i = \{f \in S; f_i \text{ is a Morse function on } A_i^2\}$ is an open and dense set in S.

Proof. It is clear that M_i is an open set. Density follows by means of Proposition 2 and Proposition 3.

Now, we have proved Theorem 1. We put: $K^* = \bigcup \overline{V}_i^0$, where $V_i^0 \cap K \neq \emptyset$. Proposition 1 and Proposition 4 say that $M = \bigcap M_i$ is a dense set in S. It is enough to choose $\varepsilon = \{\varepsilon_n\}_{n \in \mathbb{N}}$, so small such that a function $\Phi^* = (\Phi_0^*, \Phi_1^*, \dots) \in M \cap U'(\varepsilon, \Phi)$, where $\Phi = (\Phi_0, \Phi_1, \dots)$ has the following properties: (i) Φ_i^* is strongly q-convex on D_i^2 (if Φ_i had same property). (ii) Noting φ^* the function on X that we obtain by pulling back to X, we have $B_c \subset CX$, for every $c \in \mathbb{R}$. Every f on X that we obtain by pulling back to X an element $F \in M$ has the property 2 of Theorem 1. (with respect to local maxima too).

References

- 1. Andreotti, A., Grauert, H.: Théorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. math. France 90, 193-259 (1962)
- 2. Fischer, W.: Eine Bemerkung zu einem Satz von Andreotti und Grauert. Math. Ann. 184, 297–299 (1970)
- 3. Milnor, J.: Morse theory. Ann. Math. Studies 51, Princeton 1963
- 4. Narasimhan, R.: Introduction to the theory of analytic spaces. Berlin, Heidelberg, New York: Springer 1966
- 5. Ramis, J.P.: Théorèmes de separation et de finitude pour l'homologie etc. Ann. Scuola Normale Superiore di Pisa serie III, vol. XXVII, 1973

Received November 13, 1976