
THE SEMIGROUP βS

If S is a discrete space, its Stone-Čech compactification βS can be described as the

space of ultrafilters on S with the topology for which the sets of the form A = {p ∈
βS : A ∈ p}, where A ⊆ S, is chosen as a base for the open sets. (Note that we embed

S in βS by identifying s ∈ S with the principal ultrafilter {A ⊆ S : s ∈ A}.)
βS is then an extremally disconnected compact space and A = clβS(A) for each

A ⊆ S.

If S is a semigroup, the semigroup operation on S has a natural extension to βS.

Given s ∈ S, the map t 7→ st from S to βS has a continuous extension to βS, which

we denote by λs. For s ∈ S and q ∈ βS, we put sq = λs(q). Then, for every q ∈ βS,

the map s 7→ sq from S to βS has a continuous extension to βS, which we denote by

ρq. We put pq = ρq(p). So pq = lim
s→p

lim
t→q

st.

It is easy to see that this operation on βS is associative, so that βS is a semigroup. It

is a right topological semigroup, because ρq is continuous for every q ∈ βS. In addition,

λs is continuous for every s ∈ S. These two facts are summed up by saying that βS is

a semigroup compactification of S. It is the maximal semigroup compactification of S,

in the sense that every other semigroup compactification of S is the image of βS under

a continuous homomorphism.

We shall use S∗ to denote the remainder space βS \ S.

If T is a subset of a semigroup, E(T ) will denote the set of idempotents in T .

APPLICATIONS TO RAMSEY THEORY

Every compact right topological semigroup T has certain important algebraic prop-

erties. I shall need to use the following:

(i) T contains an idempotent; i.e. an element p for which p2 = p.

(ii) A non-empty subset I of T is said to be an ideal if tI ⊆ I and It ⊆ I for every

t ∈ T . T contains a smallest ideal K(T ).

(iii) K(T ) always contains an idempotent. An idempotent in K(T ) is called mini-

mal. An idempotent in T is minimal in this sense if and only if it also minimal for the

partial order defined on idempotents by putting p ≤ q if and only if pq = qp = p.

(iv) Every left ideal ideal in T contains a minimal idempotent, and so does every

right ideal.

(v) If S is a discrete semigroup, a subset of S is said to be central if it is a member

of a minimal idempotent in βS. Central sets have very rich combinatorial properties.
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HINDMAN’S THEOREM

Notation

Given a sequence (xn) in a semigroup, FP 〈xn〉 denotes the set of all products of

the form xn1
xn2
· · ·xnk

with n1 < n2 < · · · < nk. (If S is denoted additively, we might

denote this set by FS〈xn〉.)
If S is a semigroup, p is an idempotent in βS and A ∈ P , then A? = {s ∈ A :

s−1A ∈ p}, where s−1A = {t ∈ S : st ∈ A}. It is easy to show that A? ∈ p and that

t−1A? ∈ p for every t ∈ A?.

Hindman′sTheorem

Let S be a semigroup. Given any finite partition of S, there is a sequence (xn)∞n−1

in S such that FP 〈xn〉 is contained in a cell of the partition.

Ultrafilterproof (Galvin Glazer)

I shall show that, if p is an idempotent in βS and A ∈ p, then FP 〈xn〉 ⊆ A for

some sequence (xn) in S.

Choose any x1 ∈ A?. Then assume that x1, x2, · · · , xn have been chosen so that

FP 〈xi〉ni=1 ⊆ A?. Choose xn+1 ∈ A? ∩
⋂
y∈FP 〈xi〉 y

−1A?. This is possible, because

this set is a finite intersection of elements of p and is therefore non-empty. Then

FP 〈xi〉n+1
i=1 ⊆ A?.

Note that, if p ∈ βS \ S, 〈xn〉 can be chosen as a sequence of distinct points.

THEOREM

Given a finite partition of N, there exist infinite sequences (xn) and (yn) in N such

that FS〈xn〉 and FP 〈yn〉 are both contained in the same cell of the partition.

Proof

There is an idempotent p in K(N, ·) which is in the closure of the idempotents in

K(βN,+).

This follows from the fact that the closure of the minimal idempotents in (βN,+)

is a left ideal in (βN, ·).
So every member of p is also a member of an idempotent in (βN,+).
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VAN DER WAERDEN’S THEOREM

Theorem

Let (S,+) be a commutative semigroup. In every finite partition of S, there is a

cell which contains arbitrarily long AP’s.

Proof

We shall show that, if p ∈ K(βS) and A ∈ p then A contains arbitrarily long AP’s.

Let ` ∈ N and put T = (βS)`. Put p̃ = (p, p, p, · · · , p) ∈ T . We define subsets E

and I of S` as follows:

I = {(a, a+ d, a+ 2d, · · · , a+ (`− 1)d) : a, d ∈ S}
E = {(a, a, a, · · · , a) : a ∈ S} ∪ I .

Then E is a subsemigroup of T and I is an ideal in E.

Furthermore, E is a subsemigroup of T and I is an ideal in E. Now p̃ ∈ E

and it follows easily that p̃ ∈ K(E). So p̃ ∈ I. Since A
`

is a neighbourhood of p̃ in T ,

A
`∩I = A`∩I 6= ∅. So there exist a, d ∈ S such that (a, a+d, a+2d, · · · , a+(`−1)d) ∈ A`.

COROLLARY

Given a finite partition of N, there is a cell which contains arbitrarily long AP’s

and arbitrarily long GP’s.

Proof

We can choose p ∈ K(βN, ·) ∩K(βN,+). Then every member of p contains arbi-

trarily long AP’s and arbitrarily long GP’s.

EXTENSION OF VAN DE WAERDEN’S THEOREM (I.Leader, N.Hindman)

Note that if A =


1 0
1 1
1 2
...

...
1 `− 1

, then an AP can be described as the set of entries

of a column vector of the form A

(
a
d

)
.

Let S be a commutative semigroup. There is a set of matrices A over ω with the

following property: If A ∈ A and C is a central subset of S, then C contains all the

3



entries of AX for some column vector X over S for which AX is defined. A contains

all matrices over ω, with no row identically zero, in which the first non-zero entries in

two different rows are equal if they occur in the same column. We also require that cS

is a central subset of S whenever c is the first non-zero entry of a row of A.

In particular, A contains all finite matrices over ω, with no row identically zero, in

which the first non-zero entry of each row is 1.

ANOTHER EXTENSION (V. Bergelson)

Every central subset C of (N, ·) contains an arbitrarily long geoarithmetic pro-

gression. I.e., given ` ∈ N, there exist a, b, d ∈ N such that b(a + id)j ∈ C for every

i, j ∈ {0, 1, 2, · · · , `}.

FURTHER EXTENSIONS (M. Beiglböck, V. Bergelson, N. Hindman, DS)

If S is a commutative semigroup and F a partition regular family of finite subsets

of S, then for any finite partition of S and any k ∈ N, there exists b, r ∈ S and F ∈ F
such that rF ∪{b(rx)j : x ∈ F, j ∈ {0, 1, 2, . . . , k}} is contained in a cell of the partition.

Let F and G be families of subsets of N such that every multiplicatively central

subset of N contains a member of F and every additively central subset of N contains a

member of G. If either F or G is a family of finite sets, then, given any finite partition

of N, there exists B ∈ F and C ∈ G such that B ∪C ∪B ·C is contained in a cell of the

partition.

ADDITIVE AND MULTIPLICATIVE IDEMPOTENTS IN βN

THEOREM (DS)

The closure of the smallest ideal of (βN, ·) does not meet the smallest ideal of

(βN,+). In fact, it does not meet N∗ + N∗.

THEOREM (DS) The closure of the set of minimal idempotents in βN does not meet

the set of additive idempotents.

Lemma 1

Let A and B be σ-compact subsets of a compact F-space. Then A∩B 6= ∅ implies

that A ∩B 6= ∅ or A ∩B 6= ∅.

Lemma 2

Let µR denote the uniform compactification of R. This is a compact right topo-

logical semigroup in which R is densely embedded, with the defining property that a
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bounded continuous real function has a continuous extension to µR if and and only if

it is uniformly continuous.

The log function from N to R has a continuous extension to a function L from βN
to µR. L has the following properties:

(i) L(x+ y) = L(y) for every x ∈ βN and every y ∈ N∗.
(ii) L(xy) = L(x) + L(y) for every x, y ∈ βN.

Remark

For x ∈ βN and n ∈ N, nx will denote lims→x ns. Note that this is not the same

as x+ x+ . . .+ x, with n terms in the sum.

Proof of Theorem

Let H =
⋂
n∈N clβN(2nN).

Let T denote the unit circle.

Observe that H contains all the idempotents in (βN,+) and that every idempotent

in (βN, ·) is either in H or in clβN(2N− 1).

Let C = clβN(E(βN, ·)) ∩H. Assume that there exists p ∈ E(βN,+) ∩ C.

Let D = {x ∈ µR : φ(x) = 0 for every continuous homomorphism φ : µR→ T }. Then

L(C) ⊆ D and so L(p) ∈ D. Observe that, for every distinct s 6= 0 in R, (s+D)∩D = ∅.
It follows that, for any n > 1 in N, L(p) /∈ L(n) +D.

We have p ∈ clβN((N \ {1}) + p). We also have p ∈ clβN(
⋃
{nC : n ∈ N, n > 1}),

because E(βN, ·) ∩H ⊆ clβN(
⋃
{nC : n ∈ N, n > 1}).

It follows from Lemma 2 that x + p ∈ nC for some x ∈ βN and some n > 1 in N,

or else n+ p ∈ clβN(
⋃
{nC : n ∈ N, n > 1}).

The first possibility is ruled out because it implies that L(p) ∈ L(n) + D. The

second is ruled by the observation that n+ p /∈ H, while nC ⊆ H for every n ∈ N.

COROLLARY

There is no idempotent p ∈ (βN,+) such that every member of p contains all the

finite products of an infinite sequence in N.

QUESTION

Is there an idempotent p ∈ (βN,+) such that every member of p contains three

integers of the form x, y, xy?
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