THE SEMIGROUP βS

If S is a discrete space, its Stone-Čech compactification βS can be described as the space of ultrafilters on S with the topology for which the sets of the form $\overline{A} = \{p \in \beta S : A \in p\}$, where $A \subseteq S$, is chosen as a base for the open sets. (Note that we embed S in βS by identifying $s \in S$ with the principal ultrafilter $\{A \subseteq S : s \in A\}$.)

 βS is then an extremally disconnected compact space and $\overline{A} = cl_{\beta S}(A)$ for each $A \subseteq S$.

If S is a semigroup, the semigroup operation on S has a natural extension to βS .

Given $s \in S$, the map $t \mapsto st$ from S to βS has a continuous extension to βS , which we denote by λ_s . For $s \in S$ and $q \in \beta S$, we put $sq = \lambda_s(q)$. Then, for every $q \in \beta S$, the map $s \mapsto sq$ from S to βS has a continuous extension to βS , which we denote by ρ_q . We put $pq = \rho_q(p)$. So $pq = \lim_{s \to a} \lim_{t \to b} st$.

It is easy to see that this operation on βS is associative, so that βS is a semigroup. It is a right topological semigroup, because ρ_q is continuous for every $q \in \beta S$. In addition, λ_s is continuous for every $s \in S$. These two facts are summed up by saying that βS is a semigroup compactification of S. It is the maximal semigroup compactification of S, in the sense that every other semigroup compactification of S is the image of βS under a continuous homomorphism.

We shall use S^* to denote the remainder space $\beta S \setminus S$.

If T is a subset of a semigroup, E(T) will denote the set of idempotents in T.

APPLICATIONS TO RAMSEY THEORY

Every compact right topological semigroup T has certain important algebraic properties. I shall need to use the following:

(i) T contains an idempotent; i.e. an element p for which $p^2 = p$.

(ii) A non-empty subset I of T is said to be an *ideal* if $tI \subseteq I$ and $It \subseteq I$ for every $t \in T$. T contains a smallest ideal K(T).

(iii) K(T) always contains an idempotent. An idempotent in K(T) is called *minimal*. An idempotent in T is minimal in this sense if and only if it also minimal for the partial order defined on idempotents by putting $p \leq q$ if and only if pq = qp = p.

(iv) Every left ideal ideal in T contains a minimal idempotent, and so does every right ideal.

(v) If S is a discrete semigroup, a subset of S is said to be *central* if it is a member of a minimal idempotent in βS . Central sets have very rich combinatorial properties.

HINDMAN'S THEOREM

Notation

Given a sequence (x_n) in a semigroup, $FP\langle x_n \rangle$ denotes the set of all products of the form $x_{n_1}x_{n_2}\cdots x_{n_k}$ with $n_1 < n_2 < \cdots < n_k$. (If S is denoted additively, we might denote this set by $FS\langle x_n \rangle$.)

If S is a semigroup, p is an idempotent in βS and $A \in P$, then $A^* = \{s \in A : s^{-1}A \in p\}$, where $s^{-1}A = \{t \in S : st \in A\}$. It is easy to show that $A^* \in p$ and that $t^{-1}A^* \in p$ for every $t \in A^*$.

Hindman'sTheorem

Let S be a semigroup. Given any finite partition of S, there is a sequence $(x_n)_{n-1}^{\infty}$ in S such that $FP\langle x_n \rangle$ is contained in a cell of the partition.

Ultrafilterproof (Galvin Glazer)

I shall show that, if p is an idempotent in βS and $A \in p$, then $FP\langle x_n \rangle \subseteq A$ for some sequence (x_n) in S.

Choose any $x_1 \in A^*$. Then assume that x_1, x_2, \dots, x_n have been chosen so that $FP\langle x_i \rangle_{i=1}^n \subseteq A^*$. Choose $x_{n+1} \in A^* \cap \bigcap_{y \in FP\langle x_i \rangle} y^{-1}A^*$. This is possible, because this set is a finite intersection of elements of p and is therefore non-empty. Then $FP\langle x_i \rangle_{i=1}^{n+1} \subseteq A^*$.

Note that, if $p \in \beta S \setminus S$, $\langle x_n \rangle$ can be chosen as a sequence of distinct points.

THEOREM

Given a finite partition of \mathbb{N} , there exist infinite sequences (x_n) and (y_n) in \mathbb{N} such that $FS\langle x_n \rangle$ and $FP\langle y_n \rangle$ are both contained in the same cell of the partition.

Proof

There is an idempotent p in $K(\mathbb{N}, \cdot)$ which is in the closure of the idempotents in $K(\beta\mathbb{N}, +)$.

This follows from the fact that the closure of the minimal idempotents in $(\beta \mathbb{N}, +)$ is a left ideal in $(\beta \mathbb{N}, \cdot)$.

So every member of p is also a member of an idempotent in $(\beta \mathbb{N}, +)$.

VAN DER WAERDEN'S THEOREM

Theorem

Let (S, +) be a commutative semigroup. In every finite partition of S, there is a cell which contains arbitrarily long AP's.

Proof

We shall show that, if $p \in K(\beta S)$ and $A \in p$ then A contains arbitrarily long AP's.

Let $\ell \in \mathbb{N}$ and put $T = (\beta S)^{\ell}$. Put $\tilde{p} = (p, p, p, \dots, p) \in T$. We define subsets E and I of S^{ℓ} as follows:

$$I = \{(a, a + d, a + 2d, \cdots, a + (\ell - 1)d) : a, d \in S\}$$

$$E = \{(a, a, a, \cdots, a) : a \in S\} \cup I$$

Then E is a subsemigroup of T and I is an ideal in E.

Furthermore, \overline{E} is a subsemigroup of T and \overline{I} is an ideal in \overline{E} . Now $\tilde{p} \in \overline{E}$ and it follows easily that $\tilde{p} \in K(\overline{E})$. So $\tilde{p} \in \overline{I}$. Since \overline{A}^{ℓ} is a neighbourhood of \tilde{p} in T, $\overline{A}^{\ell} \cap I = A^{\ell} \cap I \neq \emptyset$. So there exist $a, d \in S$ such that $(a, a+d, a+2d, \cdots, a+(\ell-1)d) \in A^{\ell}$.

COROLLARY

Given a finite partition of \mathbb{N} , there is a cell which contains arbitrarily long AP's and arbitrarily long GP's.

Proof

We can choose $p \in K(\beta\mathbb{N}, \cdot) \cap \overline{K(\beta\mathbb{N}, +)}$. Then every member of p contains arbitrarily long AP's and arbitrarily long GP's.

EXTENSION OF VAN DE WAERDEN'S THEOREM (I.Leader, N.Hindman)

Note that if $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ \vdots & \vdots \\ 1 & \ell - 1 \end{pmatrix}$, then an AP can be described as the set of entries

of a column vector of the form $A\begin{pmatrix}a\\d\end{pmatrix}$.

Let S be a commutative semigroup. There is a set of matrices \mathcal{A} over ω with the following property: If $A \in \mathcal{A}$ and C is a central subset of S, then C contains all the

3

entries of AX for some column vector X over S for which AX is defined. \mathcal{A} contains all matrices over ω , with no row identically zero, in which the first non-zero entries in two different rows are equal if they occur in the same column. We also require that cSis a central subset of S whenever c is the first non-zero entry of a row of A.

In particular, \mathcal{A} contains all finite matrices over ω , with no row identically zero, in which the first non-zero entry of each row is 1.

ANOTHER EXTENSION (V. Bergelson)

Every central subset C of (\mathbb{N}, \cdot) contains an arbitrarily long geoarithmetic progression. I.e., given $\ell \in \mathbb{N}$, there exist $a, b, d \in \mathbb{N}$ such that $b(a + id)^j \in C$ for every $i, j \in \{0, 1, 2, \dots, \ell\}$.

FURTHER EXTENSIONS (M. Beiglböck, V. Bergelson, N. Hindman, DS)

If S is a commutative semigroup and \mathcal{F} a partition regular family of finite subsets of S, then for any finite partition of S and any $k \in \mathbb{N}$, there exists $b, r \in S$ and $F \in \mathcal{F}$ such that $rF \cup \{b(rx)^j : x \in F, j \in \{0, 1, 2, ..., k\}\}$ is contained in a cell of the partition.

Let \mathcal{F} and \mathcal{G} be families of subsets of \mathbb{N} such that every multiplicatively central subset of \mathbb{N} contains a member of \mathcal{F} and every additively central subset of \mathbb{N} contains a member of \mathcal{G} . If either \mathcal{F} or \mathcal{G} is a family of finite sets, then, given any finite partition of \mathbb{N} , there exists $B \in \mathcal{F}$ and $C \in \mathcal{G}$ such that $B \cup C \cup B \cdot C$ is contained in a cell of the partition.

ADDITIVE AND MULTIPLICATIVE IDEMPOTENTS IN $\beta \mathbb{N}$

$\underline{\text{THEOREM}}$ (DS)

The closure of the smallest ideal of $(\beta \mathbb{N}, \cdot)$ does not meet the smallest ideal of $(\beta \mathbb{N}, +)$. In fact, it does not meet $\mathbb{N}^* + \mathbb{N}^*$.

<u>THEOREM</u> (DS) The closure of the set of minimal idempotents in $\beta \mathbb{N}$ does not meet the set of additive idempotents.

<u>Lemma 1</u>

Let A and B be σ -compact subsets of a compact F-space. Then $\overline{A} \cap \overline{B} \neq \emptyset$ implies that $\overline{A} \cap B \neq \emptyset$ or $A \cap \overline{B} \neq \emptyset$.

Lemma 2

Let $\mu \mathbb{R}$ denote the uniform compactification of \mathbb{R} . This is a compact right topological semigroup in which \mathbb{R} is densely embedded, with the defining property that a

4

bounded continuous real function has a continuous extension to $\mu \mathbb{R}$ if and and only if it is uniformly continuous.

The log function from \mathbb{N} to \mathbb{R} has a continuous extension to a function L from $\beta \mathbb{N}$ to $\mu \mathbb{R}$. L has the following properties:

- (i) L(x+y) = L(y) for every $x \in \beta \mathbb{N}$ and every $y \in \mathbb{N}^*$.
- (ii) L(xy) = L(x) + L(y) for every $x, y \in \beta \mathbb{N}$.

Remark

For $x \in \beta \mathbb{N}$ and $n \in \mathbb{N}$, nx will denote $\lim_{s \to x} ns$. Note that this is not the same as $x + x + \ldots + x$, with n terms in the sum.

Proof of Theorem

Let $\mathbb{H} = \bigcap_{n \in \mathbb{N}} cl_{\beta \mathbb{N}}(2^n \mathbb{N}).$

Let $\mathbb T$ denote the unit circle.

Observe that \mathbb{H} contains all the idempotents in $(\beta \mathbb{N}, +)$ and that every idempotent in $(\beta \mathbb{N}, \cdot)$ is either in \mathbb{H} or in $cl_{\beta \mathbb{N}}(2\mathbb{N}-1)$.

Let $C = cl_{\beta\mathbb{N}}(E(\beta\mathbb{N}, \cdot)) \cap \mathbb{H}$. Assume that there exists $p \in E(\beta\mathbb{N}, +) \cap C$.

Let $D = \{x \in \mu \mathbb{R} : \phi(x) = 0 \text{ for every continuous homomorphism } \phi : \mu \mathbb{R} \to \mathbb{T} \}$. Then $L(C) \subseteq D$ and so $L(p) \in D$. Observe that, for every distinct $s \neq 0$ in \mathbb{R} , $(s+D) \cap D = \emptyset$. It follows that, for any n > 1 in \mathbb{N} , $L(p) \notin L(n) + D$.

We have $p \in cl_{\beta\mathbb{N}}((\mathbb{N} \setminus \{1\}) + p)$. We also have $p \in cl_{\beta\mathbb{N}}(\bigcup\{nC : n \in \mathbb{N}, n > 1\})$, because $E(\beta\mathbb{N}, \cdot) \cap \mathbb{H} \subseteq cl_{\beta\mathbb{N}}(\bigcup\{nC : n \in \mathbb{N}, n > 1\})$.

It follows from Lemma 2 that $x + p \in nC$ for some $x \in \beta \mathbb{N}$ and some n > 1 in \mathbb{N} , or else $n + p \in cl_{\beta \mathbb{N}}(\bigcup \{nC : n \in \mathbb{N}, n > 1\}).$

The first possibility is ruled out because it implies that $L(p) \in L(n) + D$. The second is ruled by the observation that $n + p \notin \mathbb{H}$, while $nC \subseteq \mathbb{H}$ for every $n \in \mathbb{N}$. \Box

COROLLARY

There is no idempotent $p \in (\beta \mathbb{N}, +)$ such that every member of p contains all the finite products of an infinite sequence in \mathbb{N} .

QUESTION

Is there an idempotent $p \in (\beta \mathbb{N}, +)$ such that every member of p contains three integers of the form x, y, xy?

