THE SEMIGROUP βS

If S is a discrete space, its Stone-Cech compactification βS can be described as the space of ultrafilters on S with the topology for which the sets of the form $\bar{A}=\{p \in$ $\beta S: A \in p\}$, where $A \subseteq S$, is chosen as a base for the open sets. (Note that we embed S in βS by identifying $s \in S$ with the principal ultrafilter $\{A \subseteq S: s \in A\}$.)
βS is then an extremally disconnected compact space and $\bar{A}=c l_{\beta S}(A)$ for each $A \subseteq S$.

If S is a semigroup, the semigroup operation on S has a natural extension to βS.
Given $s \in S$, the map $t \mapsto s t$ from S to βS has a continuous extension to βS, which we denote by λ_{s}. For $s \in S$ and $q \in \beta S$, we put $s q=\lambda_{s}(q)$. Then, for every $q \in \beta S$, the map $s \mapsto s q$ from S to βS has a continuous extension to βS, which we denote by ρ_{q}. We put $p q=\rho_{q}(p)$. So $p q=\lim _{s \rightarrow p} \lim _{t \rightarrow q} s t$.

It is easy to see that this operation on βS is associative, so that βS is a semigroup. It is a right topological semigroup, because ρ_{q} is continuous for every $q \in \beta S$. In addition, λ_{s} is continuous for every $s \in S$. These two facts are summed up by saying that βS is a semigroup compactification of S. It is the maximal semigroup compactification of S, in the sense that every other semigroup compactification of S is the image of βS under a continuous homomorphism.

We shall use S^{*} to denote the remainder space $\beta S \backslash S$.
If T is a subset of a semigroup, $E(T)$ will denote the set of idempotents in T.

APPLICATIONS TO RAMSEY THEORY

Every compact right topological semigroup T has certain important algebraic properties. I shall need to use the following:
(i) T contains an idempotent; i.e. an element p for which $p^{2}=p$.
(ii) A non-empty subset I of T is said to be an ideal if $t I \subseteq I$ and $I t \subseteq I$ for every $t \in T . T$ contains a smallest ideal $K(T)$.
(iii) $K(T)$ always contains an idempotent. An idempotent in $K(T)$ is called minimal. An idempotent in T is minimal in this sense if and only if it also minimal for the partial order defined on idempotents by putting $p \leq q$ if and only if $p q=q p=p$.
(iv) Every left ideal ideal in T contains a minimal idempotent, and so does every right ideal.
(v) If S is a discrete semigroup, a subset of S is said to be central if it is a member of a minimal idempotent in βS. Central sets have very rich combinatorial properties.

HINDMAN'S THEOREM

Notation

Given a sequence $\left(x_{n}\right)$ in a semigroup, $F P\left\langle x_{n}\right\rangle$ denotes the set of all products of the form $x_{n_{1}} x_{n_{2}} \cdots x_{n_{k}}$ with $n_{1}<n_{2}<\cdots<n_{k}$. (If S is denoted additively, we might denote this set by $F S\left\langle x_{n}\right\rangle$.)

If S is a semigroup, p is an idempotent in βS and $A \in P$, then $A^{\star}=\{s \in A$: $\left.s^{-1} A \in p\right\}$, where $s^{-1} A=\{t \in S: s t \in A\}$. It is easy to show that $A^{\star} \in p$ and that $t^{-1} A^{\star} \in p$ for every $t \in A^{\star}$.

Hindman'sTheorem

Let S be a semigroup. Given any finite partition of S, there is a sequence $\left(x_{n}\right)_{n-1}^{\infty}$ in S such that $F P\left\langle x_{n}\right\rangle$ is contained in a cell of the partition.

Ultrafilterproof (Galvin Glazer)

I shall show that, if p is an idempotent in βS and $A \in p$, then $F P\left\langle x_{n}\right\rangle \subseteq A$ for some sequence $\left(x_{n}\right)$ in S.

Choose any $x_{1} \in A^{\star}$. Then assume that $x_{1}, x_{2}, \cdots, x_{n}$ have been chosen so that $F P\left\langle x_{i}\right\rangle_{i=1}^{n} \subseteq A^{\star}$. Choose $x_{n+1} \in A^{\star} \cap \bigcap_{y \in F P\left\langle x_{i}\right\rangle} y^{-1} A^{\star}$. This is possible, because this set is a finite intersection of elements of p and is therefore non-empty. Then $F P\left\langle x_{i}\right\rangle_{i=1}^{n+1} \subseteq A^{\star}$.

Note that, if $p \in \beta S \backslash S,\left\langle x_{n}\right\rangle$ can be chosen as a sequence of distinct points.

THEOREM

Given a finite partition of \mathbb{N}, there exist infinite sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in \mathbb{N} such that $F S\left\langle x_{n}\right\rangle$ and $F P\left\langle y_{n}\right\rangle$ are both contained in the same cell of the partition.

Proof

There is an idempotent p in $K(\mathbb{N}, \cdot)$ which is in the closure of the idempotents in $K(\beta \mathbb{N},+)$.

This follows from the fact that the closure of the minimal idempotents in $(\beta \mathbb{N},+)$ is a left ideal in $(\beta \mathbb{N}, \cdot)$.

So every member of p is also a member of an idempotent in $(\beta \mathbb{N},+)$.

VAN DER WAERDEN'S THEOREM

Theorem

Let $(S,+)$ be a commutative semigroup. In every finite partition of S, there is a cell which contains arbitrarily long AP's.

Proof
We shall show that, if $p \in K(\beta S)$ and $A \in p$ then A contains arbitrarily long AP's.
Let $\ell \in \mathbb{N}$ and put $T=(\beta S)^{\ell}$. Put $\tilde{p}=(p, p, p, \cdots, p) \in T$. We define subsets E and I of S^{ℓ} as follows:

$$
\begin{array}{cc}
I= & \{(a, a+d, a+2 d, \cdots, a+(\ell-1) d): a, d \in S\} \\
E= & \{(a, a, a, \cdots, a): a \in S\} \cup I
\end{array} .
$$

Then E is a subsemigroup of T and I is an ideal in E.
Furthermore, \bar{E} is a subsemigroup of T and \bar{I} is an ideal in \bar{E}. Now $\tilde{p} \in \bar{E}$ and it follows easily that $\tilde{p} \in K(\bar{E})$. So $\tilde{p} \in \bar{I}$. Since \bar{A}^{ℓ} is a neighbourhood of \tilde{p} in T, $\bar{A}^{\ell} \cap I=A^{\ell} \cap I \neq \emptyset$. So there exist $a, d \in S$ such that $(a, a+d, a+2 d, \cdots, a+(\ell-1) d) \in A^{\ell}$.

COROLLARY

Given a finite partition of \mathbb{N}, there is a cell which contains arbitrarily long AP's and arbitrarily long GP's.

Proof

We can choose $p \in K(\beta \mathbb{N}, \cdot) \cap \overline{K(\beta \mathbb{N},+)}$. Then every member of p contains arbitrarily long AP's and arbitrarily long GP's.

EXTENSION OF VAN DE WAERDEN'S THEOREM (I.Leader, N.Hindman)

Note that if $A=\left(\begin{array}{cc}1 & 0 \\ 1 & 1 \\ 1 & 2 \\ \vdots & \vdots \\ 1 & \ell-1\end{array}\right)$, then an AP can be described as the set of entries of a column vector of the form $A\binom{a}{d}$.

Let S be a commutative semigroup. There is a set of matrices \mathcal{A} over ω with the following property: If $A \in \mathcal{A}$ and C is a central subset of S, then C contains all the
entries of $A X$ for some column vector X over S for which $A X$ is defined. \mathcal{A} contains all matrices over ω, with no row identically zero, in which the first non-zero entries in two different rows are equal if they occur in the same column. We also require that $c S$ is a central subset of S whenever c is the first non-zero entry of a row of A.

In particular, \mathcal{A} contains all finite matrices over ω, with no row identically zero, in which the first non-zero entry of each row is 1 .

ANOTHER EXTENSION (V. Bergelson)

Every central subset C of ($\mathbb{N}, \cdot)$ contains an arbitrarily long geoarithmetic progression. I.e., given $\ell \in \mathbb{N}$, there exist $a, b, d \in \mathbb{N}$ such that $b(a+i d)^{j} \in C$ for every $i, j \in\{0,1,2, \cdots, \ell\}$.

FURTHER EXTENSIONS (M. Beiglböck, V. Bergelson, N. Hindman, DS)

If S is a commutative semigroup and \mathcal{F} a partition regular family of finite subsets of S, then for any finite partition of S and any $k \in \mathbb{N}$, there exists $b, r \in S$ and $F \in \mathcal{F}$ such that $r F \cup\left\{b(r x)^{j}: x \in F, j \in\{0,1,2, \ldots, k\}\right\}$ is contained in a cell of the partition.

Let \mathcal{F} and \mathcal{G} be families of subsets of \mathbb{N} such that every multiplicatively central subset of \mathbb{N} contains a member of \mathcal{F} and every additively central subset of \mathbb{N} contains a member of \mathcal{G}. If either \mathcal{F} or \mathcal{G} is a family of finite sets, then, given any finite partition of \mathbb{N}, there exists $B \in \mathcal{F}$ and $C \in \mathcal{G}$ such that $B \cup C \cup B \cdot C$ is contained in a cell of the partition.

ADDITIVE AND MULTIPLICATIVE IDEMPOTENTS IN $\beta \mathbb{N}$

THEOREM (DS)

The closure of the smallest ideal of $(\beta \mathbb{N}, \cdot)$ does not meet the smallest ideal of $(\beta \mathbb{N},+)$. In fact, it does not meet $\mathbb{N}^{*}+\mathbb{N}^{*}$.

THEOREM (DS) The closure of the set of minimal idempotents in $\beta \mathbb{N}$ does not meet the set of additive idempotents.

Lemma 1

Let A and B be σ-compact subsets of a compact F -space. Then $\bar{A} \cap \bar{B} \neq \emptyset$ implies that $\bar{A} \cap B \neq \emptyset$ or $A \cap \bar{B} \neq \emptyset$.

Lemma 2

Let $\mu \mathbb{R}$ denote the uniform compactification of \mathbb{R}. This is a compact right topological semigroup in which \mathbb{R} is densely embedded, with the defining property that a
bounded continuous real function has a continuous extension to $\mu \mathbb{R}$ if and and only if it is uniformly continuous.

The \log function from \mathbb{N} to \mathbb{R} has a continuous extension to a function L from $\beta \mathbb{N}$ to $\mu \mathbb{R}$. L has the following properties:
(i) $L(x+y)=L(y)$ for every $x \in \beta \mathbb{N}$ and every $y \in \mathbb{N}^{*}$.
(ii) $L(x y)=L(x)+L(y)$ for every $x, y \in \beta \mathbb{N}$.

Remark

For $x \in \beta \mathbb{N}$ and $n \in \mathbb{N}, n x$ will denote $\lim _{s \rightarrow x} n s$. Note that this is not the same as $x+x+\ldots+x$, with n terms in the sum.

Proof of Theorem

Let $\mathbb{H}=\bigcap_{n \in \mathbb{N}} c l_{\beta \mathbb{N}}\left(2^{n} \mathbb{N}\right)$.
Let \mathbb{T} denote the unit circle.
Observe that \mathbb{H} contains all the idempotents in $(\beta \mathbb{N},+)$ and that every idempotent in $(\beta \mathbb{N}, \cdot)$ is either in \mathbb{H} or in $c l_{\beta \mathbb{N}}(2 \mathbb{N}-1)$.

Let $C=c l_{\beta \mathbb{N}}(E(\beta \mathbb{N}, \cdot)) \cap \mathbb{H}$. Assume that there exists $p \in E(\beta \mathbb{N},+) \cap C$.
Let $D=\{x \in \mu \mathbb{R}: \phi(x)=0$ for every continuous homomorphism $\phi: \mu \mathbb{R} \rightarrow \mathbb{T}\}$. Then $L(C) \subseteq D$ and so $L(p) \in D$. Observe that, for every distinct $s \neq 0$ in $\mathbb{R},(s+D) \cap D=\emptyset$. It follows that, for any $n>1$ in $\mathbb{N}, L(p) \notin L(n)+D$.

We have $p \in c l_{\beta \mathbb{N}}((\mathbb{N} \backslash\{1\})+p)$. We also have $p \in c l_{\beta \mathbb{N}}(\bigcup\{n C: n \in \mathbb{N}, n>1\})$, because $E(\beta \mathbb{N}, \cdot) \cap \mathbb{H} \subseteq c l_{\beta \mathbb{N}}(\bigcup\{n C: n \in \mathbb{N}, n>1\})$.

It follows from Lemma 2 that $x+p \in n C$ for some $x \in \beta \mathbb{N}$ and some $n>1$ in \mathbb{N}, or else $n+p \in c l_{\beta \mathbb{N}}(\bigcup\{n C: n \in \mathbb{N}, n>1\})$.

The first possibility is ruled out because it implies that $L(p) \in L(n)+D$. The second is ruled by the observation that $n+p \notin \mathbb{H}$, while $n C \subseteq \mathbb{H}$ for every $n \in \mathbb{N}$.

COROLLARY

There is no idempotent $p \in(\beta \mathbb{N},+)$ such that every member of p contains all the finite products of an infinite sequence in \mathbb{N}.

QUESTION

Is there an idempotent $p \in(\beta \mathbb{N},+)$ such that every member of p contains three integers of the form $x, y, x y$?

