

Combinatorics and topology of toric arrangements II. Topology of arrangements in the complex torus

(An invitation to combinatorial algebraic topology)

Emanuele Delucchi (SNSF / Université de Fribourg)

> Toblach/Dobbiaco February 23, 2017

TORIC ARRANGEMENTS

Recall: a toric arrangement in the complex torus $T := (\mathbb{C}^*)^d$ is a set

$$\mathscr{A} := \{K_1, \ldots, K_n\}$$

of 'hypertori' $K_i = \{z \in T \mid z^{a_i} = b_i\}$ with $a_i \in \mathbb{Z}^d \setminus 0$ and $b_i \in \mathbb{C}^*$

The *complement* of \mathscr{A} is

$$M(\mathscr{A}):=T\setminus\cup\mathscr{A},$$

PROBLEM: Study the topology of $M(\mathscr{A})$.

The long game

Let
$$A = [a_1, ..., a_n] \in M_{d \times n}(\mathbb{Z})$$

(Central) hyperplane (Centered) toric (Centered) elliptic
arrangement arrangement arrangement
 $\lambda_i : \mathbb{C}^d \to \mathbb{C}$ $\lambda_i : (\mathbb{C}^*)^d \to \mathbb{C}^*$ $\lambda_i : \mathbb{E}^d \to \mathbb{E}$
 $\underline{z} \mapsto \sum_j a_{ji} z_j$ $\underline{z} \mapsto \prod_j z_j^{a_{ji}}$ $\underline{z} \mapsto \sum_j a_{ji} z_j$
 $H_i := \ker \lambda_i$ $K_i := \ker \lambda_i$ $L_i := \ker \lambda_i$
 $\mathscr{A} = \{H_1, ..., H_n\}$ $\mathscr{A} = \{K_1, ..., K_n\}$ $\mathscr{A} = \{L_1, ..., L_n\}$
 $M(\mathscr{A}) := \mathbb{C}^d \setminus \cup \mathscr{A}$ $M(\mathscr{A}) := (\mathbb{C}^*)^d \setminus \cup \mathscr{A}$ $M(\mathscr{A}) := \mathbb{E}^d \setminus \cup \mathscr{A}$
 $\boxed{\operatorname{rk} : 2^{[n]} \to \mathbb{N}}$ $?$
 $M(\mathscr{A})$

Hyperplanes: Brieskorn

 $\mathscr{A} := \{H_1, \dots, H_d\}: \text{ set of (affine) hyperplanes in } \mathbb{C}^d,$ $\mathcal{C}(\mathscr{A}) = \mathcal{L}(\mathscr{A}) := \{\cap \mathscr{B} \mid \mathscr{B} \subseteq \mathscr{A}\}: \text{ poset of intersections (reverse inclusion)}.$ For $X \in \mathcal{L}(\mathscr{A}): \mathscr{A}_X = \{H_i \in \mathscr{A} \mid X \subseteq H_i\}.$

Theorem (Brieskorn 1972). The inclusions $M(\mathscr{A}) \hookrightarrow M(\mathscr{A}_X)$ induce, for every k, an isomorphism of <u>free</u> abelian groups

$$b: \bigoplus_{\substack{X \in \mathcal{L}(\mathscr{A}) \\ \operatorname{codim} X = k}} H^k(M(\mathscr{A}_X), \mathbb{Z}) \xrightarrow{\cong} H^k(M(\mathscr{A}), \mathbb{Z})$$

Hyperplanes: Brieskorn

 $\mathscr{A} := \{H_1, \dots, H_d\}: \text{ set of (affine) hyperplanes in } \mathbb{C}^d,$ $\mathcal{C}(\mathscr{A}) = \mathcal{L}(\mathscr{A}) := \{\cap \mathscr{B} \mid \mathscr{B} \subseteq \mathscr{A}\}: \text{ poset of intersections (reverse inclusion)}.$ For $X \in \mathcal{L}(\mathscr{A}): \mathscr{A}_X = \{H_i \in \mathscr{A} \mid X \subseteq H_i\}.$

In fact: $M(\mathscr{A})$ is a minimal space, i.e., it has the homotopy type of a CWcomplex with as many cells in dimension k as there are generators in k-th cohomology. [Dimca-Papadima '03]

HYPERPLANES: THE ORLIK-SOLOMON ALGEBRA [Arnol'd '69, Orlik-Solomon '80]

 $H^*(M(\mathscr{A}),\mathbb{Z})\simeq E/\mathcal{J}(\mathscr{A}),$ where

E: exterior \mathbb{Z} -algebra with degree-1 generators e_1, \ldots, e_n (one for each H_i);

$$\mathcal{J}(\mathscr{A}): \text{ the ideal } \langle \sum_{l=1}^{k} (-1)^{l} e_{j_{1}} \cdots \widehat{e_{j_{l}}} \cdots e_{j_{k}} \mid \operatorname{codim}(\cap_{i=1...k} H_{j_{i}}) = k-1 \rangle$$

Fully determined by $\mathcal{L}(\mathscr{A})$ (cryptomorphisms!). For instance:

 $Poin(M(\mathscr{A}), t) =$ $1 + 4t + 5t^2 + 2t^3$

$$P(M(\mathscr{A}), t) = \sum_{X \in \mathcal{L}(\mathscr{A})} \underbrace{\mu_{\mathcal{L}(\mathscr{A})}(\hat{0}, X)}_{\substack{\text{Möbius} \\ \text{function} \\ \text{of } \mathcal{L}(\mathscr{A})}} (-t)^{\text{rk}X}$$

TORIC ARRANGEMENTS

Another good reason for considering $\mathcal{C}(\mathscr{A})$, the poset of *layers* (i.e. connected components of intersections of the K_i).

Theorem [Looijenga '93, De Concini-Procesi '05]

$$\operatorname{Poin}(M(\mathscr{A}),\mathbb{Z}) = \sum_{Y \in \mathcal{C}(\mathscr{A})} \mu_{\mathcal{C}(\mathscr{A})}(Y)(-t)^{\operatorname{rk} Y}(1+t)^{d-\operatorname{rk} Y}$$

 $= (-t)^d \chi_{\mathcal{C}(\mathscr{A})}(-t(1+t))$

TORIC ARRANGEMENTS

[De Concini – Procesi '05] compute the Poincaré polynomial and the cup product in $H^*(M(\mathscr{A}), \mathbb{C})$ when the matrix $[a_1, \ldots, a_n]$ is totally unimodular. [d'Antonio–D. '11, '13] $\pi_1(M(\mathscr{A}))$, minimality, torsion-freeness (complexified) [Bibby '14] Q-cohomology algebra of unimodular abelian arrangements [Dupont '14] Algebraic model for \mathbb{C} -cohomology algebra of complements of hypersurface arrangements in manifolds with hyperplane-like crossings. [Callegaro-D. '15] Integer cohomology algebra, its dependency from $\mathcal{C}(\mathscr{A})$. [Bergvall '16] Cohomology as repr. of Weyl group in type G_2 , F_4 , E_6 , E_7 . Wonderful models: nonprojective [Moci'12], projective [Gaiffi-De Concini '16].

TOOLS

Posets and categories

P - a partially ordered set C - a s.c.w.o.l.

(all invertibles are endomorphisms, all endomorphisms are identities)

 $\Delta(P)$ - the order complex of P (abstract simplicial complex of totally ordered subsets)

 $||P|| := |\Delta(P)|$

its geometric realization

 $\Delta \mathcal{C}$ - the nerve

(simplicial set of composable chains)

 $||\mathcal{C}|| := |\Delta \mathcal{C}|$

its geometric realization

TOOLS

POSETS AND CATEGORIES

P - a partially ordered set \mathcal{C} - a s.c.w.o.l.

 ΔC - the nerve

(all invertibles are endomorphisms, all endomorphisms are identities)

 $\Delta(P)$ - the order complex of P (abstract simplicial complex of totally ordered subsets)

(simplicial set of composable chains)

 $||P|| := |\Delta(P)|$

its geometric realization

 $||\mathcal{C}|| := |\Delta \mathcal{C}|$

its geometric realization

- Posets are special cases of s.c.w.o.l.s;
- Every functor $F : \mathcal{C} \to \mathcal{D}$ induces a continuous map $||F|| : ||\mathcal{C}|| \to ||\mathcal{D}||$.
- Quillen-type theorems relate properties of ||F|| and F.

My favorite thing about scucks: offer - e.g., when C = F(X), GC X cellularly 11en/ ~ 11 C/G/1 in the cat. at sexuals Pos semuls Cat. [Baridson, Haffiger]

FACE CATEGORIES

Let X be a polyhedral complex. The *face category* of X is $\mathcal{F}(X)$, with

- $Ob(\mathcal{F}(X)) = \{X_{\alpha}, \text{ polyhedra of } X\}.$
- $\operatorname{Mor}_{\mathcal{F}(X)}(X_{\alpha}, X_{\beta}) = \{ \text{ face maps } X_{\alpha} \to X_{\beta} \}$

Theorem. There is a homeomorphism $||\mathcal{F}(X)|| \cong X$. [Kozlov / Tamaki]

Example 1: X regular: $\mathcal{F}(X)$ is a poset, $||\mathcal{F}(X)|| = Bd(X)$.

Example 2: A complexified toric arrangement $(\mathscr{A} = \{\chi_i^{-1}(b_i)\}\)$ with $b_i \in S^1$ induces a polyhedral cellularization of $(S^1)^d$: call $\mathcal{F}(\mathscr{A})$ its face category.

THE NERVE LEMMA

Let X be a paracompact space with a (locally) finite open cover $\mathcal{U} = \{U_i\}_I$. For $J \subseteq I$ write $U_J := \bigcap_{i \in J} U_i$.

Nerve of \mathcal{U} : the abstract simplicial complex $\mathscr{N}(\mathcal{U}) = \{ \emptyset \neq J \subseteq I \mid U_J \neq \emptyset \}$ **Theorem** (Weil '51, Borsuk '48). If U_J is contractible for all $J \in \mathscr{N}(\mathcal{U})$,

 $X \simeq |\mathscr{N}(\mathcal{U})|$

THE GENERALIZED NERVE LEMMA

Let X be a paracompact space with a (locally) finite open cover $\mathcal{U} = \{U_i\}_I$.

Consider the diagram $\mathscr{D} : \mathscr{N}(\mathcal{U}) \to \text{Top}, \ \mathscr{D}(J) := U_J$ and inclusion maps.

THE GENERALIZED NERVE LEMMA

Let X be a paracompact space with a (locally) finite open cover $\mathcal{U} = \{U_i\}_I$.

Consider the diagram $\mathscr{D} : \mathscr{N}(\mathcal{U}) \to \text{Top}, \ \mathscr{D}(J) := U_J$ and inclusion maps.

(") × ₽(12)] = 12 × 🙆 🥥 $J_{\delta} \leq J_{1}$ Sor Dan) 2 5 12 $J_0 = 2 : \Delta^{(0)} \times \mathcal{D}(2)$ NSB: [flueset of all (J, p) Jen pe Bl

P= D(J) $(J_{1},p_{1}) \geq (J_{2},p_{2}) \iff J_{1} \gg \mathbb{P}_{2}$ PatoP2

THE GENERALIZED NERVE LEMMA Application: the Salvetti complex

Let \mathscr{A} be a *complexified* arrangement of hyperplanes in \mathbb{C}^d (i.e. the defining equations for the hyperplanes are real).

[Salvetti '87] There is a poset $\operatorname{Sal}(\mathscr{A})$ such that

 $||\operatorname{Sal}(\mathscr{A})|| \simeq M(\mathscr{A}).$

Recall: complexified means $\alpha_i \in (\mathbb{R}^d)^*$ and $b_i \in \mathbb{R}$.

Consider the associated arrangement $\mathscr{A}^{\mathbb{R}} = \{H_i^{\mathbb{R}}\}$ in \mathbb{R}^d , $H_i^{\mathbb{R}} = \Re(H_i)$.

The Salvetti poset

For $z \in \mathbb{C}^d$ and all j,

$$\alpha_j(z) = \alpha_j(\Re(z)) + i\alpha_j(\Im(z)).$$

We have $z \in M(\mathscr{A})$ if and only if $\alpha_j(z) \neq 0$ for all j.

Thus, surely for very region (chamber) $C\in\mathcal{R}(\mathscr{A}^{\mathbb{R}})$ we have

$$U(C) := C + i \mathbb{R}^d \subseteq M(\mathscr{A}).$$

G.N.L. applies to the covering by $M(\mathscr{A})$ -closed sets $\mathcal{U} := \left\{ \overline{U(C)} \right\}_{C \in \mathcal{R}(\mathscr{A}^{\mathbb{R}})}$ (what's important is that each $(M(\mathscr{A}), \overline{U(C)})$ is NDR-pair).

After some "massaging", $\mathscr{N}(\mathcal{U}) \int \widehat{\mathscr{D}}$ becomes

$$\operatorname{Sal}(\mathscr{A}) = \begin{bmatrix} \{[F,C] | & F \in \mathcal{F}(\mathscr{A}^{\mathbb{R}}), \underbrace{C \in \mathcal{R}(\mathscr{A}_{|F|})}_{\leftrightarrow C \in \mathcal{R}(\mathscr{A}^{\mathbb{R}}), C \leq F} \\ [F,C] \geq [F',C'] & \text{if } F \leq F', \ C \subseteq C' \end{bmatrix}$$

 $\mathcal{A} = \{ \{ x = 0 \} \} \text{ in } \mathbb{C}^{4}$ $\mathcal{A}^{\mathbb{R}} = \{\{x = o\}\}$ in \mathbb{R}^{1} C, ⇒ FL* C . Cz C, 7+162 $U(\mathcal{L}_{i})$ UCh) 7+ iC, Diagram 5 U(G) U(a) C, +iR C2+iR [7,G] [7,G] D Ully a Ulle) [Cz, R] [G,R]

SALVETTI COMPLEXES OF PSEUDOARRANGEMENTS

Notice: the definition of $Sal(\mathscr{A})$ makes sense also for general pseudoarrangements (oriented matroids).

Theorem. [D.–Falk '15] The class of complexes $|| \operatorname{Sal}(\mathscr{A}) ||$ where \mathscr{A} is a pseudoarrangement gives rise to "new" fundamental groups. For instance, the non-pappus oriented matroid gives rise to a fundamental group that is not isomorphic to any realizable arrangement group.

THE GENERALIZED NERVE LEMMA Application: the Salvetti complex

Let \mathscr{A} be a *complexified* arrangement of hyperplanes in \mathbb{C}^d (i.e. the defining equations for the hyperplanes are real).

[Salvetti '87] There is a poset $\operatorname{Sal}(\mathscr{A})$ such that

 $||\operatorname{Sal}(\mathscr{A})|| \simeq M(\mathscr{A}).$

[Callegaro-D. '15] Let $X \in \mathcal{L}(\mathscr{A})$ with codim X = k.

There is a map of posets $\operatorname{Sal}(\mathscr{A}) \to \operatorname{Sal}(\mathscr{A}_X)$ that induces the Brieskorn inclusion $b_X : H^k(M(\mathscr{A}_X), \mathbb{Z}) \hookrightarrow H^k(M(\mathscr{A}), \mathbb{Z}).$

Q: "Brieskorn decomposition" in the ("wiggly") case of oriented matroids?

SALVETTI CATEGORY [d'Antonio-D., '11]

Any complexified toric arrangement \mathscr{A} lifts to a complexified arrangement of affine hyperplanes \mathscr{A}^{\uparrow} under the universal cover

The group \mathbb{Z}^d acts on $\operatorname{Sal}(\mathscr{A}^{\uparrow})$ and we can define the *Salvetti category* of \mathscr{A} :

$$\operatorname{Sal}(\mathscr{A}) := \operatorname{Sal}(\mathscr{A}^{\uparrow}) / \mathbb{Z}^d$$

(quotient taken in the category of scwols).

Here the realization commutes with the quotient [Babson-Kozlov '07], thus

$$||\operatorname{Sal}(\mathscr{A})|| \simeq M(\mathscr{A}).$$

DISCRETE MORSE THEORY [Forman, Chari, Kozlov,...; since '98] Here is a regular CW complex

with its poset of cells:

DISCRETE MORSE THEORY

[Forman, Chari, Kozlov,...; since '98]

Elementary collapses...

DISCRETE MORSE THEORY

[Forman, Chari, Kozlov,...; since '98]

Elementary collapses...

DISCRETE MORSE THEORY [Forman, Chari, Kozlov,...; since '98] Elementary collapses...

DISCRETE MORSE THEORY

The sequence of collapses is encoded in a matching of the poset of cells.

Question: Does every matchings encode such a sequence? **Answer:** No. Only (and exactly) those without "cycles" like

Acyclic matchings \leftrightarrow discrete Morse functions.

TOOLS

DISCRETE MORSE THEORY

Main theorem of Discrete Morse Theory [Forman '98].

Every acyclic matching on the poset of cells of a regular CW-complex X induces a homotopy equivalence of X with a CW-complex with as many cells in every dimension as there are non-matched ("*critical*) cells of the same dimension in X.

Theorem. [d'Antonio-D. '15] This theorem also holds for (suitably defined) acyclic matchings on face categories of polyhedral complexes.

DISCRETE MORSE THEORY Application: minimality of $Sal(\mathscr{A})$

Let ${\mathscr A}$ be a complexified toric arrangement.

Theorem. [d'Antonio-D., '15] The space $M(\mathscr{A})$ is *minimal*, thus its cohomology groups $H^k(M(\mathscr{A}), \mathbb{Z})$ are torsion-free.

Recall: "minimal" means having the homotopy type of a CW-complex with one cell for each generator in homology.

Proof. Construction of an acyclic matching of the Salvetti category with $Poin(\mathcal{M}(\mathscr{A}), 1)$ critical cells.

THE SALVETTI CATEGORY - AGAIN

For $F \in Ob(\mathcal{F}(\mathscr{A}))$ consider the hyperplane arrangement $\mathscr{A}[F]$:

[Callegaro – D. '15] $||\operatorname{Sal}(\mathscr{A})|| \simeq \operatorname{hocolim} \mathscr{D}$, where

$$\begin{aligned} \mathscr{D}: \quad \mathcal{F}(\mathscr{A}) \quad &\to \quad \mathrm{Top} \\ F \quad &\mapsto \quad ||\operatorname{Sal}(\mathscr{A}[F])|| \end{aligned}$$

Call $\mathscr{D}E_*^{p,q}$ the associated cohomology spectral sequence [Segal '68]. (equivalent to the Leray Spectral sequence of the canonical proj to $||\mathcal{F}(\mathscr{A})||$)

The Salvetti category - ...and again

For $Y \in \mathcal{C}(\mathscr{A})$ define $\mathscr{A}^Y = \mathscr{A} \cap Y$, the arrangement induced on Y.

For every $Y \in \mathcal{C}(\mathscr{A})$ there is a subcategory $\Sigma_Y \hookrightarrow \operatorname{Sal}(\mathscr{A})$ with

$$Y \times M(\mathscr{A}[Y]) \simeq ||\mathcal{F}(\mathscr{A}^Y) \times \operatorname{Sal}(\mathscr{A}[Y])|| \simeq ||\Sigma_Y|| \hookrightarrow ||\operatorname{Sal}(\mathscr{A})||$$

and we call ${}_YE^{p,q}_*$ the Leray spectral sequence induced by the canonical projection

$$\pi_Y: \Sigma_Y \to \mathcal{F}(\mathscr{A}^Y).$$

Spectral sequences

For every $Y \in \mathcal{C}(\mathscr{A})$, the following commutative square

induces a morphism of spectral sequences ${}_{\mathscr{D}}E^{p,q}_* \to {}_YE^{p,q}_*$.

Next, we examine the morphism of spectral sequences associated to the corresponding map from $\biguplus_{Y \in \mathcal{C}(\mathscr{A})} ||\Sigma_Y||$ to $||\operatorname{Sal}(\mathscr{A})||$.

Spectral sequences

[Callegaro – D., '15] (all cohomologies with Z-coefficients)

A presentation for $H^*(M(\mathscr{A}), \mathbb{Z})$

The inclusions $\phi_{\bullet}: \Sigma_{\bullet} \hookrightarrow \operatorname{Sal}(\mathscr{A})$ give rise to a commutative triangle

with $f_{Y \supseteq Y'} := \iota^* \otimes b_{Y'}$ obtained from $\iota : Y \hookrightarrow Y'$ and the Brieskorn map b. **Proof.** Carrier lemma and 'combinatorial Brieskorn'.

This defines a 'compatibility condition' on $\oplus_Y H^*(Y) \otimes H^*(M(\mathscr{A}[Y]))$; the (subalgebra of) compatible elements is isomorphic to $H^*(M(\mathscr{A}), \mathbb{Z})$.

A presentation for $H^*(M(\mathscr{A}), \mathbb{Z})$

More succinctly, define an 'abstract' algebra as the direct sum

$$\bigoplus_{Y \in \mathcal{C}(\mathscr{A})} H^*(Y, \mathbb{Z}) \otimes H^{\operatorname{codim} Y}(M(\mathscr{A}[Y]), \mathbb{Z})$$

with multiplication of α, α' in the Y, resp. Y' component, as

$$(\alpha * \alpha')_{Y''} := \begin{cases} f_{Y \supseteq Y''}(\alpha) \smile f_{Y' \supseteq Y''}(\alpha') & \text{if } Y \cap Y' \supseteq Y'' \text{ and} \\ & \text{rk } Y'' = \text{rk } Y + \text{rk } Y', \\ 0 & \text{else.} \end{cases}$$

Note: this holds in general (beyond complexified). **Question:** is this completely determined by $C(\mathscr{A})$?

$\mathcal{C}(\mathscr{A})$ "Rules", if A has a unimodular basis

Recall that a centered toric arrangement is defined by a $d \times n$ integer matrix $A = [\alpha_1, \ldots, \alpha_n].$

Theorem. [Callegaro-D. '15] If $(S, \operatorname{rk}, m)$ is an arithmetic matroid associated to a matrix A that has a maximal minor equal to 1, then the matrix A can be reconstructed from the arithmetic matroid up to sign reversal of columns. Since the poset $\mathcal{C}(\mathscr{A})$ encodes the multiplicity data, this means that, in this case, the poset in essence determines the arrangement.

An example

Consider the following two complexified toric arrangements in $T = (\mathbb{C}^*)^2$.

Clearly $\mathcal{C}(\mathscr{A}_1) \simeq \mathcal{C}(\mathscr{A}_2).$

There is an "ad hoc" ring isomorphism $H^*(M(\mathscr{A}_1,\mathbb{Z}) \to H^*(M(\mathscr{A}_2,\mathbb{Z});$

 $H^*(M(\mathscr{A}_1),\mathbb{Z})$ and $H^*(M(\mathscr{A}_2),\mathbb{Z})$ are *not* isomorphic as $H^*(T,\mathbb{Z})$ -modules.

THE LONG GAME

ABELIAN ARRANGEMENTS

Let $A =$		
(Central) hyperplane	(Centered) toric	(Centered) elliptic
arrangement	arrangement	arrangement
$\lambda_i: \mathbb{C}^d \to \mathbb{C}$	$\lambda_i: (\mathbb{C}^*)^d \to \mathbb{C}^*$	$\lambda_i: \mathbb{E}^d \to \mathbb{E}$
$\underline{z} \mapsto \sum_{j} a_{ji} z_{j}$	$\underline{z} \mapsto \prod_j z_j^{a_{ji}}$	$\underline{z} \mapsto \sum_{j} a_{ji} z_{j}$
$H_i := \ker \lambda_i$	$K_i := \ker \lambda_i$	$L_i := \ker \lambda_i$
$\mathscr{A} = \{H_1, \dots, H_n\}$	$\mathscr{A} = \{K_1, \dots, K_n\}$	$\mathscr{A} = \{L_1, \ldots, L_n\}$
$M(\mathscr{A}) := \mathbb{C}^d \setminus \cup \mathscr{A}$	$M(\mathscr{A}) := (\mathbb{C}^*)^d \setminus \cup \mathscr{A}$	$M(\mathscr{A}) := \mathbb{E}^d \setminus \cup \mathscr{A}$

The long game

ABELIAN ARRANGEMENTS

Let $A = [a_1, \ldots, a_n] \in M_{d \times n}(\mathbb{Z})$			
(Central) hyperplane	(Centered) toric	(Cei	
arrangement	arrangement	arra	
$\lambda_i: \mathbb{C}^d \to \mathbb{C}$	$\lambda_i: (\mathbb{C}^*)^d \to \mathbb{C}^*$	λ_i	
$\underline{z} \mapsto \sum_{j} a_{ji} z_{j}$	$\underline{z} \mapsto \prod_j z_j^{a_{ji}}$		
$H_i := \ker \lambda_i$	$K_i := \ker \lambda_i$	L_i :=	
$\mathscr{A} = \{H_1, \ldots, H_n\}$	$\mathscr{A} = \{K_1, \dots, K_n\}$	A =	
$M(\mathscr{A}) := \mathbb{C}^d \setminus \cup \mathscr{A}$	$M(\mathscr{A}):=(\mathbb{C}^*)^d\setminus\cup\mathscr{A}$	M(s	

 $\mathbf{T} \rightarrow \mathbf{A}$ [$\mathbf{x} = \mathbf{x}$] $\mathbf{c} \mathbf{M}$

(m)

(Centered) elliptic arrangement $\lambda_i: \mathbb{E}^d \to \mathbb{E}$ $\underline{z} \mapsto \sum_j a_{ji} z_j$ $L_i := \ker \lambda_i$ $\mathscr{A} = \{L_1, \dots, L_n\}$ $M(\mathscr{A}) := \mathbb{E}^d \setminus \cup \mathscr{A}$

Having a blast!

Doing pretty good.

Even Betti numbers are unknown...

TOWARDS A COMPREHENSIVE ABSTRACT THEORY

TOMORROW:

Ansatz: "periodic arrangements"

Abstractly: group actions on semimatroids!