Combinatorics and Topology of TORIC ARRANGEMENTS II. Topology of arrangements in the complex torus

(AN INVITATION TO COMBINATORIAL ALGEBRAIC TOPOLOGY)

Emanuele Delucchi
(SNSF / Université de Fribourg)

Toblach/Dobbiaco
February 23, 2017

Toric arrangements

Recall: a toric arrangement in the complex torus $T:=\left(\mathbb{C}^{*}\right)^{d}$ is a set

$$
\mathscr{A}:=\left\{K_{1}, \ldots, K_{n}\right\}
$$

of 'hypertori' $K_{i}=\left\{z \in T \mid z^{a_{i}}=b_{i}\right\}$ with $a_{i} \in \mathbb{Z}^{d} \backslash 0$ and $b_{i} \in \mathbb{C}^{*}$

The complement of \mathscr{A} is

$$
M(\mathscr{A}):=T \backslash \cup \mathscr{A}
$$

Problem: Study the topology of $M(\mathscr{A})$.

Let $A=\left[a_{1}, \ldots, a_{n}\right] \in M_{d \times n}(\mathbb{Z})$
(Central) hyperplane arrangement

$$
\begin{aligned}
\lambda_{i}: & \mathbb{C}^{d} \rightarrow \mathbb{C} \\
& \underline{z} \mapsto \sum_{j} a_{j i} z_{j}
\end{aligned}
$$

$H_{i}:=\operatorname{ker} \lambda_{i}$
$K_{i}:=\operatorname{ker} \lambda_{i}$
$\mathscr{A}=\left\{H_{1}, \ldots, H_{n}\right\} \quad \mathscr{A}=\left\{K_{1}, \ldots, K_{n}\right\} \quad \mathscr{A}=\left\{L_{1}, \ldots, L_{n}\right\}$
$M(\mathscr{A}):=\mathbb{C}^{d} \backslash \cup \mathscr{A} \quad M(\mathscr{A}):=\left(\mathbb{C}^{*}\right)^{d} \backslash \cup \mathscr{A} \quad M(\mathscr{A}):=\mathbb{E}^{d} \backslash \cup \mathscr{A}$
(Centered) elliptic arrangement
$\lambda_{i}: \mathbb{E}^{d} \rightarrow \mathbb{E}$

$$
\underline{z} \mapsto \sum_{j} a_{j i} z_{j}
$$

$L_{i}:=\operatorname{ker} \lambda_{i}$

Hyperplanes: Brieskorn

$\mathscr{A}:=\left\{H_{1}, \ldots, H_{d}\right\}$: set of (affine) hyperplanes in \mathbb{C}^{d},
$\mathcal{C}(\mathscr{A})=\mathcal{L}(\mathscr{A}):=\{\cap \mathscr{B} \mid \mathscr{B} \subseteq \mathscr{A}\}:$ poset of intersections (reverse inclusion).
For $X \in \mathcal{L}(\mathscr{A}): \mathscr{A}_{X}=\left\{H_{i} \in \mathscr{A} \mid X \subseteq H_{i}\right\}$.

Theorem (Brieskorn 1972). The inclusions $M(\mathscr{A}) \hookrightarrow M\left(\mathscr{A}_{X}\right)$ induce, for every k, an isomorphism of free abelian groups

$$
b: \quad \bigoplus_{\substack{X \in \mathcal{L}(\mathscr{A}) \\ \operatorname{codim} X=k}} H^{k}\left(M\left(\mathscr{A}_{X}\right), \mathbb{Z}\right) \xrightarrow{\cong} H^{k}(M(\mathscr{A}), \mathbb{Z})
$$

Hyperplanes: Brieskorn

$\mathscr{A}:=\left\{H_{1}, \ldots, H_{d}\right\}$: set of (affine) hyperplanes in \mathbb{C}^{d},
$\mathcal{C}(\mathscr{A})=\mathcal{L}(\mathscr{A}):=\{\cap \mathscr{B} \mid \mathscr{B} \subseteq \mathscr{A}\}:$ poset of intersections (reverse inclusion).
For $X \in \mathcal{L}(\mathscr{A}): \mathscr{A}_{X}=\left\{H_{i} \in \mathscr{A} \mid X \subseteq H_{i}\right\}$.

In fact: $M(\mathscr{A})$ is a minimal space, i.e., it has the homotopy type of a CWcomplex with as many cells in dimension k as there are generators in k-th cohomology. [Dimca-Papadima '03]

Hyperplanes: The Orlik-Solomon algebra
 [Arnol'd '69, Orlik-Solomon '80]

$$
H^{*}(M(\mathscr{A}), \mathbb{Z}) \simeq E / \mathcal{J}(\mathscr{A}), \text { where }
$$

E : exterior \mathbb{Z}-algebra with degree-1 generators e_{1}, \ldots, e_{n} (one for each H_{i});
$\mathcal{J}(\mathscr{A})$: the ideal $\left\langle\sum_{l=1}^{k}(-1)^{l} e_{j_{1}} \cdots \widehat{e_{j_{l}}} \cdots e_{j_{k}} \mid \operatorname{codim}\left(\cap_{i=1 \ldots k} H_{j_{i}}\right)=k-1\right\rangle$

Fully determined by $\mathcal{L}(\mathscr{A})$ (cryptomorphisms!).
For instance:

$$
P(M(\mathscr{A}), t)=\sum_{X \in \mathcal{L}(\mathscr{A})} \underbrace{\mu_{\mathcal{L}(\mathscr{A})}(\hat{0}, X)}_{\begin{array}{c}
\text { Möbius } \\
\text { function } \\
\text { of } \mathcal{L}(\mathscr{A})
\end{array}}(-t \text { rk }
$$

Toric arrangements

Another good reason for considering $\mathcal{C}(\mathscr{A})$, the poset of layers (i.e. connected components of intersections of the K_{i}).

$$
\mathcal{C}(\mathscr{A}):
$$

Theorem [Looijenga '93, De Concini-Procesi '05]

$$
\begin{aligned}
\operatorname{Poin}(M(\mathscr{A}), \mathbb{Z})=\sum_{Y \in \mathcal{C}(\mathscr{A})} \mu_{\mathcal{C}(\mathscr{A})}(Y)(-t)^{\mathrm{rk} Y}(1+t)^{d-\mathrm{rk} Y} \\
=(-t)^{d} \chi_{\mathcal{C}(\mathscr{A})}(-t(1+t))
\end{aligned}
$$

Toric arrangements

[De Concini - Procesi '05] compute the Poincaré polynomial and the cup product in $H^{*}(M(\mathscr{A}), \mathbb{C})$ when the matrix $\left[a_{1}, \ldots, a_{n}\right]$ is totally unimodular. [d'Antonio-D. '11,'13] $\pi_{1}(M(\mathscr{A}))$, minimality, torsion-freeness (complexified) [Bibby '14] \mathbb{Q}-cohomology algebra of unimodular abelian arrangements [Dupont '14] Algebraic model for \mathbb{C}-cohomology algebra of complements of hypersurface arrangements in manifolds with hyperplane-like crossings.
[Callegaro-D. '15] Integer cohomology algebra, its dependency from $\mathcal{C}(\mathscr{A})$.
[Bergvall '16] Cohomology as repr. of Weyl group in type $G_{2}, F_{4}, E_{6}, E_{7}$.
Wonderful models: nonprojective [Moci'12], projective [Gaiffi-De Concini '16].

Tools

Posets and categories

P - a partially ordered set $\quad \mathcal{C}$ - a s.c.w.o.l.
(all invertibles are endomorphisms, all endomorphisms are identities)
$\Delta(P)$ - the order complex of $P \quad \Delta \mathcal{C}$ - the nerve (abstract simplicial complex of totally ordered subsets)

$$
\|P\|:=|\Delta(P)| \quad\|\mathcal{C}\|:=|\Delta \mathcal{C}|
$$

its geometric realization

P
$\left\{\begin{array}{ccc}a & b & c \\ a b & a c & (\emptyset)\end{array}\right\}$
ΔP

Posets And CATEGORIES

$$
\begin{aligned}
& P \text { - a partially ordered set } \quad \mathcal{C} \text { - a s.c.w.o.l. } \\
& \\
& \quad \text { (all invertibles are endomorphisms, } \\
& \\
& \text { all endomorphisms are identities) }
\end{aligned}
$$

$\Delta(P)$ - the order complex of $P \quad \Delta \mathcal{C}$ - the nerve (abstract simplicial complex of totally ordered subsets)

$$
\|P\|:=|\Delta(P)| \quad\|\mathcal{C}\|:=|\Delta \mathcal{C}|
$$

its geometric realization
its geometric realization

- Posets are special cases of s.c.w.o.l.s;
- Every functor $F: \mathcal{C} \rightarrow \mathcal{D}$ induces a continuous map $\|F\|:\|\mathcal{C}\| \rightarrow\|\mathcal{D}\|$.
- Quillen-type theorems relate properties of $\|F\|$ and F.

My favorite thing about scwels: often-e.9., when $e=F(x), \operatorname{G} \leftrightarrow x$ cellularly

$$
\|E\| / G \simeq \underbrace{\|E / G\|}_{\text {inthe cot. of sexols }}
$$

Pos scudels Cat.

Tools

FACE CATEGORIES

Let X be a polyhedral complex. The face category of X is $\mathcal{F}(X)$, with

- $\operatorname{Ob}(\mathcal{F}(X))=\left\{X_{\alpha}\right.$, polyhedra of $\left.X\right\}$.
- $\operatorname{Mor}_{\mathcal{F}(X)}\left(X_{\alpha}, X_{\beta}\right)=\left\{\right.$ face maps $\left.X_{\alpha} \rightarrow X_{\beta}\right\}$

Theorem. There is a homeomorphism $\|\mathcal{F}(X)\| \cong X$. [Kozlov / Tamaki]
Example 1: X regular: $\mathcal{F}(X)$ is a poset, $\|\mathcal{F}(X)\|=\operatorname{Bd}(X)$.
Example 2: A complexified toric arrangement $\left(\mathscr{A}=\left\{\chi_{i}^{-1}\left(b_{i}\right)\right\}\right.$ with $b_{i} \in$ S^{1}) induces a polyhedral cellularization of $\left(S^{1}\right)^{d}$: call $\mathcal{F}(\mathscr{A})$ its face category.

x :
$f(x)$

$$
\|F(x)\|
$$

Tools

The Nerve Lemma

Let X be a paracompact space with a (locally) finite open cover $\mathcal{U}=\left\{U_{i}\right\}_{I}$. For $J \subseteq I$ write $U_{J}:=\bigcap_{i \in J} U_{i}$.

Nerve of \mathcal{U} : the abstract simplicial complex $\mathscr{N}(\mathcal{U})=\left\{\emptyset \neq J \subseteq I \mid U_{J} \neq \emptyset\right\}$ Theorem (Weil '51, Borsuk '48). If U_{J} is contractible for all $J \in \mathscr{N}(\mathcal{U})$,

$$
X \simeq|\mathscr{N}(\mathcal{U})|
$$

Tools

The Generalized Nerve Lemma

Let X be a paracompact space with a (locally) finite open cover $\mathcal{U}=\left\{U_{i}\right\}_{I}$.

$\mathscr{N}(\mathcal{U})=$
$\left\{\begin{array}{cc}1 & 2 \\ 12 & \end{array}\right\}$

Consider the diagram $\mathscr{D}: \mathscr{N}(\mathcal{U}) \rightarrow \mathrm{Top}, \mathscr{D}(J):=U_{J}$ and inclusion maps.

$$
\begin{array}{ccc}
X=\underset{\uparrow}{\operatorname{colim} \mathscr{D}} \underset{\text { G.N.L.: }}{\simeq} \underset{\uparrow}{\text { hocolim }} \mathscr{D} \longleftrightarrow & \simeq & \text { hocolim } \widehat{\mathscr{D}} \\
& \simeq \| \mathscr{N} \int \widehat{\mathscr{D} \|}
\end{array}
$$

Tools

The Generalized Nerve Lemma

Let X be a paracompact space with a (locally) finite open cover $\mathcal{U}=\left\{U_{i}\right\}_{I}$.

Consider the diagram $\mathscr{D}: \mathscr{N}(\mathcal{U}) \rightarrow \mathrm{Top}, \mathscr{D}(J):=U_{J}$ and inclusion maps.

$$
\begin{aligned}
& X=\underset{\uparrow}{\operatorname{colim}} \mathscr{D} \longleftarrow \text { G.N.L. }: \simeq \operatorname{hocolim} \mathscr{D} \longleftrightarrow \operatorname{hocolim} \widehat{\mathscr{D}} \\
& \uparrow \text { G.N.L.: } \simeq \quad \simeq\left\|\mathscr{N} \int \hat{\mathscr{D}}\right\| \\
& \biguplus_{J} \mathscr{D}(J) / \text { identifying } \quad \biguplus_{\text {along maps }} \Delta^{(n)} \times \mathscr{D}\left(J_{n}\right) /_{J_{0} \subseteq \ldots \subseteq J_{n}}^{\text {glue in }} \begin{array}{c}
\text { mapping } \\
\text { cylinders }
\end{array} \quad \begin{array}{c}
\text { Grothendieck } \\
\left.\begin{array}{c}
\text { construction } \\
\text { (} \ldots \text { whatever.) }
\end{array}\right)
\end{array}
\end{aligned}
$$

$N \int \hat{D}:\left[\begin{array}{ll}\text { the set of all }(J, p) & J \in N \\ \left(J_{1}, p_{1}\right) \geqslant\left(J_{2}, p_{2}\right) & \Leftrightarrow \quad J_{1} \geqslant D_{2} \\ & p_{1} \longmapsto p_{2}\end{array}\right.$

The Generalized Nerve Lemma

Application: the Salvetti complex

Let \mathscr{A} be a complexified arrangement of hyperplanes in \mathbb{C}^{d}
(i.e. the defining equations for the hyperplanes are real).
[Salvetti '87] There is a poset $\operatorname{Sal}(\mathscr{A})$ such that

$$
\|\operatorname{Sal}(\mathscr{A})\| \simeq M(\mathscr{A})
$$

Recall: complexified means $\alpha_{i} \in\left(\mathbb{R}^{d}\right)^{*}$ and $b_{i} \in \mathbb{R}$.
Consider the associated arrangement $\mathscr{A}^{\mathbb{R}}=\left\{H_{i}^{\mathbb{R}}\right\}$ in $\mathbb{R}^{d}, H_{i}^{\mathbb{R}}=\Re\left(H_{i}\right)$.

The Salvetti poset

For $z \in \mathbb{C}^{d}$ and all j,

$$
\alpha_{j}(z)=\alpha_{j}(\Re(z))+i \alpha_{j}(\Im(z)) .
$$

We have $z \in M(\mathscr{A})$ if and only if $\alpha_{j}(z) \neq 0$ for all j.
Thus, surely for very region (chamber) $C \in \mathcal{R}\left(\mathscr{A}^{\mathbb{R}}\right)$ we have

$$
U(C):=C+i \mathbb{R}^{d} \subseteq M(\mathscr{A}) .
$$

G.N.L. applies to the covering by $M(\mathscr{A})$-closed sets $\mathcal{U}:=\{\overline{U(C)}\}_{C \in \mathcal{R}\left(\mathscr{A}^{\mathbb{R}}\right)}$
(what's important is that each $(M(\mathscr{A}), \overline{U(C)})$ is NDR-pair).
After some "massaging", $\mathscr{N}(\mathcal{U}) \int \widehat{\mathscr{D}}$ becomes

$$
\operatorname{Sal}(\mathscr{A})=\left[\begin{array}{cl}
\{[F, C] \mid & F \in \mathcal{F}\left(\mathscr{A}^{\mathbb{R}}\right), \underbrace{C \in \mathcal{R}\left(\mathscr{A}_{|F|}^{\mathbb{R}}\right)}_{\leftrightarrow \in \mathcal{R}\left(\mathscr{A}^{\mathbb{R}}\right), C \leq F \mid}\}, \\
{[F, C] \geq\left[F^{\prime}, C^{\prime}\right]} & \text { if } F \leq F^{\prime}, C \subseteq C^{\prime}
\end{array}\right.
$$

Salvetti complexes of pseudoarrangements

Notice: the definition of $\operatorname{Sal}(\mathscr{A})$ makes sense also for general pseudoarrangements (oriented matroids).

Theorem.[D.-Falk '15] The class of complexes $\|\operatorname{Sal}(\mathscr{A})\|$ where \mathscr{A} is a pseudoarrangement gives rise to "new" fundamental groups. For instance, the non-pappus oriented matroid gives rise to a fundamental group that is not isomorphic to any realizable arrangement group.

Tools

The Generalized Nerve Lemma

Application: the Salvetti complex

Let \mathscr{A} be a complexified arrangement of hyperplanes in \mathbb{C}^{d}
(i.e. the defining equations for the hyperplanes are real).
[Salvetti '87] There is a poset $\operatorname{Sal}(\mathscr{A})$ such that

$$
\|\operatorname{Sal}(\mathscr{A})\| \simeq M(\mathscr{A})
$$

[Callegaro-D. '15] Let $X \in \mathcal{L}(\mathscr{A})$ with $\operatorname{codim} X=k$.
There is a map of posets $\operatorname{Sal}(\mathscr{A}) \rightarrow \operatorname{Sal}\left(\mathscr{A}_{X}\right)$ that induces the Brieskorn inclusion $b_{X}: H^{k}\left(M\left(\mathscr{A}_{X}\right), \mathbb{Z}\right) \hookrightarrow H^{k}(M(\mathscr{A}), \mathbb{Z})$.

Q: "Brieskorn decomposition" in the ("wiggly") case of oriented matroids?

Salvetti Category

[d'Antonio-D., '11]
Any complexified toric arrangement \mathscr{A} lifts to a complexified arrangement of affine hyperplanes \mathscr{A}^{\top} under the universal cover

$$
\mathbb{C}^{d} \rightarrow T, \quad \mathscr{A}{ }^{1}:>\xrightarrow{I^{d}} \mathscr{A}:
$$

The group \mathbb{Z}^{d} acts on $\operatorname{Sal}\left(\mathscr{A}^{1}\right)$ and we can define the Salvetti category of \mathscr{A} :

$$
\begin{aligned}
\operatorname{Sal}(\mathscr{A}):= & \operatorname{Sal}\left(\mathscr{A}^{\Gamma}\right) / \mathbb{Z}^{d} \\
& \text { (quotient taken in the category of scwols). }
\end{aligned}
$$

Here the realization commutes with the quotient [Babson-Kozlov '07], thus

$$
\|\operatorname{Sal}(\mathscr{A})\| \simeq M(\mathscr{A})
$$

Discrete Morse Theory

[Forman, Chari, Kozlov,...; since '98]
Here is a regular CW complex

with its poset of cells:

Tools

Discrete Morse Theory

[Forman, Chari, Kozlov,...; since '98]

Elementary collapses...

... are homotopy equivalences.

Discrete Morse Theory

[Forman, Chari, Kozlov,...; since '98]

Elementary collapses...

... are homotopy equivalences.

Discrete Morse Theory

[Forman, Chari, Kozlov,...; since '98]
Elementary collapses...

... are homotopy equivalences.

Discrete Morse Theory

[Forman, Chari, Kozlov,...; since '98]
Elementary collapses...

... are homotopy equivalences.

Discrete Morse Theory

The sequence of collapses is encoded in a matching of the poset of cells.

Question: Does every matchings encode such a sequence?
Answer: No. Only (and exactly) those without "cycles" like

Acyclic matchings \leftrightarrow discrete Morse functions.

Discrete Morse Theory

Main theorem of Discrete Morse Theory [Forman '98].

Every acyclic matching on the poset of cells of a regular $C W$-complex X induces a homotopy equivalence of X with a $C W$-complex with as many cells in every dimension as there are non-matched ("critical) cells of the same dimension in X.

Theorem. [d'Antonio-D. '15] This theorem also holds for (suitably defined) acyclic matchings on face categories of polyhedral complexes.

Discrete Morse Theory

Application: minimality of $\operatorname{Sal}(\mathscr{A})$
Let \mathscr{A} be a complexified toric arrangement.
Theorem. [d'Antonio-D., '15] The space $M(\mathscr{A})$ is minimal, thus its cohomology groups $H^{k}(M(\mathscr{A}), \mathbb{Z})$ are torsion-free.

Recall: "minimal" means having the homotopy type of a CW-complex with one cell for each generator in homology.

Proof. Construction of an acyclic matching of the Salvetti category with $\operatorname{Poin}(M(\mathscr{A}), 1)$ critical cells.

The Salvetti category - Again

For $F \in \operatorname{Ob}(\mathcal{F}(\mathscr{A}))$ consider the hyperplane arrangement $\mathscr{A}[F]$:

[Callegaro - D. $\left.{ }^{\prime} 15\right]\|\operatorname{Sal}(\mathscr{A})\| \simeq$ hocolim \mathscr{D}, where

$$
\left.\begin{aligned}
\mathscr{D}: \mathcal{F}(\mathscr{A}) & \rightarrow \text { Top } \\
F & \mapsto
\end{aligned} \right\rvert\, \operatorname{Sal}(\mathscr{A}[F]) \|
$$

Call $\mathscr{D} E_{*}^{p, q}$ the associated cohomology spectral sequence [Segal '68]. (equivalent to the Leray Spectral sequence of the canonical proj to $\|\mathcal{F}(\mathscr{A})\|$)

The Salvetti category - ...AND AGAIN

For $Y \in \mathcal{C}(\mathscr{A})$ define $\mathscr{A}^{Y}=\mathscr{A} \cap Y$, the arrangement induced on Y.

$$
\mathscr{A}^{Y}=\mathscr{A} \cap Y:
$$

For every $Y \in \mathcal{C}(\mathscr{A})$ there is a subcategory $\Sigma_{Y} \hookrightarrow \operatorname{Sal}(\mathscr{A})$ with

$$
Y \times M(\mathscr{A}[Y]) \simeq\left\|\mathcal{F}\left(\mathscr{A}^{Y}\right) \times \operatorname{Sal}(\mathscr{A}[Y])\right\| \simeq\left\|\Sigma_{Y}\right\| \hookrightarrow\|\operatorname{Sal}(\mathscr{A})\|
$$

and we call ${ }_{Y} E_{*}^{p, q}$ the Leray spectral sequence induced by the canonical projection

$$
\pi_{Y}: \Sigma_{Y} \rightarrow \mathcal{F}\left(\mathscr{A}^{Y}\right)
$$

Spectral SEQUENCES

For every $Y \in \mathcal{C}(\mathscr{A})$, the following commutative square

$$
M(\mathscr{A}) \simeq\|\operatorname{Sal}(\mathscr{A})\| \longleftarrow \xrightarrow{\left.\right|_{\pi}}\left\|\Sigma_{Y}\right\|
$$

induces a morphism of spectral sequences $\mathscr{\mathscr { D }} E_{*}^{p, q} \rightarrow_{Y} E_{*}^{p, q}$.

Next, we examine the morphism of spectral sequences associated to the corresponding map from $\uplus_{Y \in \mathcal{C}(\mathscr{A})}\left\|\Sigma_{Y}\right\|$ to $\|\operatorname{Sal}(\mathscr{A})\|$.

Integer cohomology algebra

Spectral sequences

[Callegaro - D., '15] (all cohomologies with \mathbb{Z}-coefficients)

$$
\begin{array}{cc}
H^{*}(M(\mathscr{A})) & \text { Hom. of rings } \\
\\
\downarrow \text { Injective } \\
\text { bij. } & \\
\mathscr{D} E_{2}^{p, q}= & \bigoplus_{Y \in \mathcal{C}(\mathscr{A})} H^{*}(Y) \otimes H^{*}(M(\mathscr{A}[Y])) \\
& \bigoplus_{Y \in \mathcal{C}(\mathscr{A})}{ }_{Y} E_{2}^{p, q}=
\end{array}
$$

$\bigoplus_{Y \in \mathcal{C}(\mathscr{A})} H^{p}(Y) \otimes H^{q}(M(\mathscr{A}[Y])) \xrightarrow{\bigoplus_{Y \in \mathcal{C}(\mathscr{A})} H^{p}(Y) \otimes H^{q}(M(\mathscr{A}[Y])), ~(M)}$ rk $Y=q$

On Y_{0}-summand: $\omega \otimes \lambda \longmapsto\left(\begin{array}{ll}i^{*}(\omega) \otimes b(\lambda) & \text { if } Y_{0} \leq Y \\ 0 & \text { else. }\end{array}\right)_{Y}$

A Presentation for $H^{*}(M(\mathscr{A}), \mathbb{Z})$

The inclusions $\phi_{\bullet}: \Sigma_{\bullet} \hookrightarrow \operatorname{Sal}(\mathscr{A})$ give rise to a commutative triangle

with $f_{Y \supseteq Y^{\prime}}:=\iota^{*} \otimes b_{Y^{\prime}}$ obtained from $\iota: Y \hookrightarrow Y^{\prime}$ and the Brieskorn map b.
Proof. Carrier lemma and 'combinatorial Brieskorn'.

This defines a 'compatibility condition' on $\oplus_{Y} H^{*}(Y) \otimes H^{*}(M(\mathscr{A}[Y]))$; the (subalgebra of) compatible elements is isomorphic to $H^{*}(M(\mathscr{A}), \mathbb{Z})$.

A PRESENTATION FOR $H^{*}(M(\mathscr{A}), \mathbb{Z})$
More succinctly, define an 'abstract' algebra as the direct sum

$$
\bigoplus_{Y \in \mathcal{C}(\mathscr{A})} H^{*}(Y, \mathbb{Z}) \otimes H^{\operatorname{codim} Y}(M(\mathscr{A}[Y]), \mathbb{Z})
$$

with multiplication of α, α^{\prime} in the Y, resp. Y^{\prime} component, as

$$
\left(\alpha * \alpha^{\prime}\right)_{Y^{\prime \prime}}:= \begin{cases}f_{Y \supseteq Y^{\prime \prime}}(\alpha) \smile f_{Y^{\prime} \supseteq Y^{\prime \prime}}\left(\alpha^{\prime}\right) & \text { if } Y \cap Y^{\prime} \supseteq Y^{\prime \prime} \text { and } \\ & \text { rk } Y^{\prime \prime}=\operatorname{rk} Y+\operatorname{rk} Y^{\prime}, \\ 0 & \text { else. }\end{cases}
$$

Note: this holds in general (beyond complexified).
Question: is this completely determined by $\mathcal{C}(\mathscr{A})$?

$\mathcal{C}(\mathscr{A})$ "RULES", IF A HAS A UnimODULAR BASIS

Recall that a centered toric arrangement is defined by a $d \times n$ integer matrix $A=\left[\alpha_{1}, \ldots, \alpha_{n}\right]$.

Theorem. [Callegaro-D. '15] If (S, rk, m) is an arithmetic matroid associated to a matrix A that has a maximal minor equal to 1 , then the matrix A can be reconstructed from the arithmetic matroid up to sign reversal of columns. Since the poset $\mathcal{C}(\mathscr{A})$ encodes the multiplicity data, this means that, in this case, the poset in essence determines the arrangement.

An EXAMPLE

Consider the following two complexified toric arrangements in $T=\left(\mathbb{C}^{*}\right)^{2}$.

Clearly $\mathcal{C}\left(\mathscr{A}_{1}\right) \simeq \mathcal{C}\left(\mathscr{A}_{2}\right)$.

There is an "ad hoc" ring isomorphism $H^{*}\left(M\left(\mathscr{A}_{1}, \mathbb{Z}\right) \rightarrow H^{*}\left(M\left(\mathscr{A}_{2}, \mathbb{Z}\right)\right.\right.$; $H^{*}\left(M\left(\mathscr{A}_{1}\right), \mathbb{Z}\right)$ and $H^{*}\left(M\left(\mathscr{A}_{2}\right), \mathbb{Z}\right)$ are not isomorphic as $H^{*}(T, \mathbb{Z})$-modules.

Abelian arrangements

$$
\text { Let } A=\left[a_{1}, \ldots, a_{n}\right] \in M_{d \times n}(\mathbb{Z})
$$

(Central) hyperplane arrangement

$$
\begin{aligned}
\lambda_{i}: & \mathbb{C}^{d} \rightarrow \mathbb{C} \\
& \underline{z} \mapsto \sum_{j} a_{j i} z_{j}
\end{aligned}
$$

$H_{i}:=\operatorname{ker} \lambda_{i}$
$\mathscr{A}=\left\{H_{1}, \ldots, H_{n}\right\}$
$M(\mathscr{A}):=\mathbb{C}^{d} \backslash \cup \mathscr{A}$
(Centered) toric arrangement

$$
\begin{aligned}
\lambda_{i}: & \left(\mathbb{C}^{*}\right)^{d} \rightarrow \mathbb{C}^{*} \\
& \underline{z} \mapsto \prod_{j} z_{j}^{a_{j i}}
\end{aligned}
$$

$K_{i}:=\operatorname{ker} \lambda_{i}$
$\mathscr{A}=\left\{K_{1}, \ldots, K_{n}\right\}$
$M(\mathscr{A}):=\left(\mathbb{C}^{*}\right)^{d} \backslash \cup \mathscr{A}$
(Centered) elliptic arrangement
$\lambda_{i}: \mathbb{E}^{d} \rightarrow \mathbb{E}$

$$
\underline{z} \mapsto \sum_{j} a_{j i} z_{j}
$$

$L_{i}:=\operatorname{ker} \lambda_{i}$
$\mathscr{A}=\left\{L_{1}, \ldots, L_{n}\right\}$
$M(\mathscr{A}):=\mathbb{E}^{d} \backslash \cup \mathscr{A}$

Abelian arrangements

$$
\text { Let } A=\left[a_{1}, \ldots, a_{n}\right] \in M_{d \times n}(\mathbb{Z})
$$

(Central) hyperplane arrangement
$\lambda_{i}: \quad \mathbb{C}^{d} \rightarrow \mathbb{C}$
$\underline{z} \mapsto \sum_{j} a_{j i} z_{j}$
$H_{i}:=\operatorname{ker} \lambda_{i}$
$\mathscr{A}=\left\{H_{1}, \ldots, H_{n}\right\}$
$M(\mathscr{A}):=\mathbb{C}^{d} \backslash \cup \mathscr{A}$
$M(\mathscr{A}):=\left(\mathbb{C}^{*}\right)^{d} \backslash \cup \mathscr{A}$
$K_{i}:=\operatorname{ker} \lambda_{i}$
$\mathscr{A}=\left\{K_{1}, \ldots, K_{n}\right\}$

Doing pretty good.
(Centered) elliptic arrangement
$\lambda_{i}: \mathbb{E}^{d} \rightarrow \mathbb{E}$

$$
\underline{z} \mapsto \sum_{j} a_{j i} z_{j}
$$

$L_{i}:=\operatorname{ker} \lambda_{i}$
$\mathscr{A}=\left\{L_{1}, \ldots, L_{n}\right\}$
$M(\mathscr{A}):=\mathbb{E}^{d} \backslash \cup \mathscr{A}$

Even Betti numbers
are unknown...

Tomorrow:

Ansatz: "periodic arrangements"

Abstractly: group actions on semimatroids!

