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Toric arrangements

Recall: a toric arrangement in the complex torus T := (C⇤)d is a set

A := {K1, . . . ,Kn}

of ‘hypertori’ Ki = {z 2 T | zai = bi} with ai 2 Zd\0 and bi 2 C⇤

Problem: Study the topology of M(A ).

The complement of A is

M(A ) := T \ [A ,



The long game

Let A = [a1, . . . , an] 2 Md⇥n(Z)

(Central) hyperplane

arrangement

�i : Cd ! C

z 7!
P

j ajizj
Hi := ker�i

A = {H1, . . . , Hn}

M(A ) := Cd \ [A

(Centered) toric

arrangement

�i : (C⇤)d ! C⇤

z 7!
Q

j z
aji

j

Ki := ker�i

A = {K1, . . . ,Kn}

M(A ) := (C⇤)d \ [A

(Centered) elliptic

arrangement

�i : Ed ! E

z 7!
P

j ajizj
Li := ker�i

A = {L1, . . . , Ln}

M(A ) := Ed \ [A

rk : 2[n] ! N

m : 2[n] ! N ?
C(A )

M(A )



Context

Hyperplanes: Brieskorn

A := {H1, . . . , Hd}: set of (a�ne) hyperplanes in Cd,

C(A ) = L(A ) := {\B | B ✓ A }: poset of intersections (reverse inclusion).

For X 2 L(A ): AX = {Hi 2 A | X ✓ Hi}.

A L(A ) AX

X

Theorem (Brieskorn 1972). The inclusions M(A ) ,! M(AX) induce, for

every k, an isomorphism of free abelian groups

b :
M

X2L(A )
codimX=k

Hk(M(AX),Z)
⇠=�! Hk(M(A ),Z)



Context

Hyperplanes: Brieskorn

A := {H1, . . . , Hd}: set of (a�ne) hyperplanes in Cd,

C(A ) = L(A ) := {\B | B ✓ A }: poset of intersections (reverse inclusion).

For X 2 L(A ): AX = {Hi 2 A | X ✓ Hi}.

A L(A ) AX

X

In fact: M(A ) is a minimal space, i.e., it has the homotopy type of a CW-

complex with as many cells in dimension k as there are generators in k-th

cohomology. [Dimca-Papadima ‘03]



Context

Hyperplanes: The Orlik-Solomon algebra
[Arnol’d ‘69, Orlik-Solomon ‘80]

H⇤(M(A ),Z) ' E/J (A ), where

E: exterior Z-algebra with degree-1 generators e1, . . . , en (one for each Hi);

J (A ): the ideal h
Pk

l=1(�1)lej1 · · ·cejl · · · ejk | codim(\i=1...kHji) = k � 1 i

Fully determined by L(A ) (cryptomorphisms!).

For instance:

P (M(A ), t) =
X

X2L(A )

µL(A )(0̂, X)
| {z }

Möbius
function
of L(A )

(�t)rkX

L(A )

Poin(M(A ), t) =

1 + 4t+ 5t2 + 2t3

codimX



Context

Toric arrangements

Another good reason for considering C(A ), the poset of layers (i.e. con-

nected components of intersections of the Ki).

A : C(A ):

Theorem [Looijenga ‘93, De Concini-Procesi ‘05]

Poin(M(A ),Z) =
X

Y 2C(A )

µC(A )(Y )(�t)rkY (1 + t)d�rkY

= (�t)d�C(A )(�t(1 + t))



Context

Toric arrangements

[De Concini – Procesi ’05] compute the Poincaré polynomial and the cup

product inH⇤(M(A ),C) when the matrix [a1, . . . , an] is totally unimodular.

[d’Antonio–D. ‘11,‘13] ⇡1(M(A )), minimality, torsion-freeness (complexified)

[Bibby ’14] Q-cohomology algebra of unimodular abelian arrangements

[Dupont ’14] Algebraic model for C-cohomology algebra of complements of

hypersurface arrangements in manifolds with hyperplane-like crossings.

[Callegaro-D. ‘15] Integer cohomology algebra, its dependency from C(A ).

[Bergvall ‘16] Cohomology as repr. of Weyl group in type G2, F4, E6, E7.

Wonderful models: nonprojective [Moci‘12], projective [Gai�-De Concini ‘16].



Tools

Posets and categories

P - a partially ordered set C - a s.c.w.o.l.

(all invertibles are endomorphisms,

all endomorphisms are identities)

�(P ) - the order complex of P �C - the nerve

(abstract simplicial complex (simplicial set of composable chains)

of totally ordered subsets)

||P || := |�(P )| ||C|| := |�C|

its geometric realization its geometric realization

a

b c

P

8
<

:
a b c

ab ac (;)

9
=

;

�P ||P || C
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Posets and categories

P - a partially ordered set C - a s.c.w.o.l.

(all invertibles are endomorphisms,

all endomorphisms are identities)

�(P ) - the order complex of P �C - the nerve

(abstract simplicial complex (simplicial set of composable chains)

of totally ordered subsets)

||P || := |�(P )| ||C|| := |�C|

its geometric realization its geometric realization

• Posets are special cases of s.c.w.o.l.s;

• Every functor F : C ! D induces a continuous map ||F || : ||C|| ! ||D||.

• Quillen-type theorems relate properties of ||F || and F .





Tools

Face categories

Let X be a polyhedral complex. The face category of X is F(X), with

• Ob(F(X)) = {X↵, polyhedra of X}.

• MorF(X)(X↵, X�) = { face maps X↵ ! X�}

Theorem. There is a homeomorphism ||F(X)|| ⇠= X. [Kozlov / Tamaki]

Example 1: X regular: F(X) is a poset, ||F(X)|| = Bd(X).

Example 2: A complexified toric arrangement (A = {��1
i (bi)} with bi 2

S1) induces a polyhedral cellularization of (S1)d: call F(A ) its face category.





Tools

The Nerve Lemma

Let X be a paracompact space with a (locally) finite open cover U = {Ui}I .

For J ✓ I write UJ :=
T

i2J Ui.

U13

U1

U12

U23

U2U3

N (U) =
⇢

12 13 23

1 2 3

�
1

232 3

12 13

Nerve of U : the abstract simplicial complex N (U) = {; 6= J ✓ I | UJ 6= ;}

Theorem (Weil ‘51, Borsuk ‘48). If UJ is contractible for all J 2 N (U),

X ' |N (U)|



Tools

The Generalized Nerve Lemma

Let X be a paracompact space with a (locally) finite open cover U = {Ui}I .

U1

U2

N (U) =
⇢

1 2

12

�

D bD

Consider the diagram D : N (U) ! Top, D(J) := UJ and inclusion maps.

colimDX = hocolimD

]

J

D(J)

�

identifying

along maps

]

J0✓...✓Jn

�(n) ⇥ D(Jn)

�

glue in

mapping

cylinders

G.N.L.: ' hocolim bD'
' ||N

R

bD ||
Grothendieck

construction
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(...whatever.)





Tools

The Generalized Nerve Lemma
Application: the Salvetti complex

Let A be a complexified arrangement of hyperplanes in Cd

(i.e. the defining equations for the hyperplanes are real).

[Salvetti ‘87] There is a poset Sal(A ) such that

|| Sal(A )|| ' M(A ).

Recall: complexified means ↵i 2 (Rd)⇤ and bi 2 R.

Consider the associated arrangement A R = {HR
i } in Rd, HR

i = <(Hi).



The Salvetti poset

For z 2 Cd and all j,

↵j(z) = ↵j(<(z)) + i↵j(=(z)).

We have z 2 M(A ) if and only if ↵j(z) 6= 0 for all j.

Thus, surely for very region (chamber) C 2 R(A R) we have

U(C) := C + iRd ✓ M(A ).

G.N.L. applies to the covering by M(A )-closed sets U :=
n

U(C)
o

C2R(A R)

(what’s important is that each (M(A ), U(C)) is NDR-pair).

After some “massaging”, N (U)
R

bD becomes

Sal(A ) =

2

6

6

4

{[F,C]| F 2 F(A R), C 2 R(A R
|F |)

| {z }

$C2R(A R),CF

},

[F,C] � [F 0, C 0] if F  F 0, C ✓ C 0





Salvetti complexes of pseudoarrangements

Notice: the definition of Sal(A ) makes sense also for general pseudoarrange-

ments (oriented matroids).

Theorem.[D.–Falk ‘15] The class of complexes || Sal(A )|| where A is a pseu-

doarrangement gives rise to “new” fundamental groups. For instance, the

non-pappus oriented matroid gives rise to a fundamental group that is not

isomorphic to any realizable arrangement group.



Tools

The Generalized Nerve Lemma
Application: the Salvetti complex

Let A be a complexified arrangement of hyperplanes in Cd

(i.e. the defining equations for the hyperplanes are real).

[Salvetti ‘87] There is a poset Sal(A ) such that

|| Sal(A )|| ' M(A ).

[Callegaro-D. ‘15] Let X 2 L(A ) with codimX = k.

There is a map of posets Sal(A ) ! Sal(AX) that induces the Brieskorn

inclusion bX : Hk(M(AX),Z) ,! Hk(M(A ),Z).

Q: ”Brieskorn decomposition” in the (“wiggly”) case of oriented matroids?



Salvetti Category
[d’Antonio-D., ‘11]

Any complexified toric arrangement A lifts to a complexified arrangement

of a�ne hyperplanes A � under the universal cover

Cd ! T, A �:
/Zd

�! A :

The group Zd acts on Sal(A �) and we can define the Salvetti category of A :

Sal(A ) := Sal(A �)/Zd

(quotient taken in the category of scwols).

Here the realization commutes with the quotient [Babson-Kozlov ‘07], thus

|| Sal(A )|| ' M(A ).



Tools

Discrete Morse Theory
[Forman, Chari, Kozlov,...; since ’98]

Here is a regular CW complex

with its poset of cells:
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Discrete Morse Theory
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Elementary collapses...

... are homotopy equivalences.
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Tools

Discrete Morse Theory
[Forman, Chari, Kozlov,...; since ’98]

Elementary collapses...

... are homotopy equivalences.



Tools

Discrete Morse Theory
The sequence of collapses is encoded in a matching of the poset of cells.

Question: Does every matchings encode such a sequence?

Answer: No. Only (and exactly) those without “cycles” like

.

Acyclic matchings $ discrete Morse functions.



Tools

Discrete Morse Theory

Main theorem of Discrete Morse Theory [Forman ‘98].

Every acyclic matching on the poset of cells of a regular CW -complex X

induces a homotopy equivalence of X with a CW -complex with as many

cells in every dimension as there are non-matched (“critical) cells of the

same dimension in X.

Theorem. [d’Antonio-D. ’15] This theorem also holds for (suitably defined)

acyclic matchings on face categories of polyhedral complexes.



Tools

Discrete Morse Theory
Application: minimality of Sal(A )

Let A be a complexified toric arrangement.

Theorem. [d’Antonio-D., ‘15] The space M(A ) is minimal, thus its

cohomology groups Hk(M(A ),Z) are torsion-free.

Recall: ”minimal” means having the homotopy type of a CW-complex with one

cell for each generator in homology.

Proof. Construction of an acyclic matching of the Salvetti category with

Poin(M(A ), 1) critical cells.



Integer cohomology algebra

The Salvetti category - again

For F 2 Ob(F(A )) consider the hyperplane arrangement A [F ]:

F

A [F ]

[Callegaro – D. ’15] || Sal(A )|| ' hocolimD , where

D : F(A ) ! Top

F 7! || Sal(A [F ])||

Call DEp,q
⇤ the associated cohomology spectral sequence [Segal ‘68].

(equivalent to the Leray Spectral sequence of the canonical proj to ||F(A )||)



Integer cohomology algebra

The Salvetti category - ...and again

For Y 2 C(A ) define A Y = A \ Y , the arrangement induced on Y .

A : A Y = A \ Y :

For every Y 2 C(A ) there is a subcategory ⌃Y ,! Sal(A ) with

Y ⇥M(A [Y ]) ' ||F(A Y )⇥ Sal(A [Y ])|| ' ||⌃Y || ,! || Sal(A )||

and we call Y E
p,q
⇤ the Leray spectral sequence induced by the canonical

projection

⇡Y : ⌃Y ! F(A Y ).



Integer cohomology algebra

Spectral sequences

For every Y 2 C(A ), the following commutative square

M(A ) ' || Sal(A )|| ||⌃Y ||

||F(A )|| ||F(A Y )||

◆

⇡ ⇡Y

◆

induces a morphism of spectral sequences DEp,q
⇤ ! Y E

p,q
⇤ .

Next, we examine the morphism of spectral sequences associated to the

corresponding map from ]Y 2C(A )||⌃Y || to || Sal(A )||.



Integer cohomology algebra

Spectral sequences

[Callegaro – D., ’15] (all cohomologies with Z-coe�cients)

H⇤(M(A ))
L

Y 2C(A )H
⇤(Y )⌦H⇤(M(A [Y ]))

DEp,q
2 =

M

Y 2C(A )
rkY=q

Hp(Y )⌦Hq(M(A [Y ]))

M

Y 2C(A )

Y E
p,q
2 =

M

Y 2C(A )

Hp(Y )⌦Hq(M(A [Y ]))

Hom. of rings

Injective

bij. bij.

Hom. of rings

On Y0-summand: ! ⌦ �

0

@

i⇤(!)⌦ b(�) if Y0  Y

0 else.

1

A

Y

“Brieskorn” inclusion

i : Y ,! Y0



Integer cohomology algebra

A presentation for H⇤(M(A ),Z)
The inclusions �• : ⌃• ,! Sal(A ) give rise to a commutative triangle

H⇤(|| Sal(A )||)
M

Y 02C,Y 0◆Y
rkY 0=q

H⇤(Y 0)⌦Hq(M(A [Y 0]))

H⇤(Y )⌦Hq(M(A [Y ]))

P

fY◆Y 0 �⇤
Y

��⇤
Y 0

with fY◆Y 0 := ◆⇤ ⌦ bY 0 obtained from ◆ : Y ,! Y 0 and the Brieskorn map b.

Proof. Carrier lemma and ‘combinatorial Brieskorn’.

This defines a ‘compatibility condition’ on �Y H
⇤(Y )⌦H⇤(M(A [Y ]));

the (subalgebra of) compatible elements is isomorphic to H⇤(M(A ),Z).



Integer cohomology algebra

A presentation for H⇤(M(A ),Z)
More succinctly, define an ‘abstract’ algebra as the direct sum

M

Y 2C(A )

H⇤(Y,Z)⌦HcodimY (M(A [Y ]),Z)

with multiplication of ↵,↵0 in the Y , resp. Y 0 component, as

(↵ ⇤ ↵0)Y 00 :=

8

>

>

>

<

>

>

>

:

fY◆Y 00(↵) ^ fY 0◆Y 00(↵0) if Y \ Y 0 ◆ Y 00 and

rkY 00 = rkY + rkY 0,

0 else.

Note: this holds in general (beyond complexified).

Question: is this completely determined by C(A )?



C(A ) “rules”, if A has a unimodular basis

Recall that a centered toric arrangement is defined by a d⇥n integer matrix

A = [↵1, . . . ,↵n].

Theorem. [Callegaro-D. ‘15] If (S, rk,m) is an arithmetic matroid associated

to a matrix A that has a maximal minor equal to 1, then the matrix A can

be reconstructed from the arithmetic matroid up to sign reversal of columns.

Since the poset C(A ) encodes the multiplicity data, this means that, in this

case, the poset in essence determines the arrangement.



An example

Consider the following two complexified toric arrangements in T = (C⇤)2.

A1: A2

Clearly C(A1) ' C(A2).

There is an “ad hoc” ring isomorphism H⇤(M(A1,Z) ! H⇤(M(A2,Z);

H⇤(M(A1),Z) and H⇤(M(A2),Z) are not isomorphic as H⇤(T,Z)-modules.



The long game

Abelian arrangements

Let A = [a1, . . . , an] 2 Md⇥n(Z)

(Central) hyperplane

arrangement

�i : Cd ! C

z 7!
P

j ajizj
Hi := ker�i

A = {H1, . . . , Hn}

M(A ) := Cd \ [A

(Centered) toric

arrangement

�i : (C⇤)d ! C⇤

z 7!
Q

j z
aji

j

Ki := ker�i

A = {K1, . . . ,Kn}

M(A ) := (C⇤)d \ [A

(Centered) elliptic

arrangement

�i : Ed ! E

z 7!
P

j ajizj
Li := ker�i

A = {L1, . . . , Ln}

M(A ) := Ed \ [A

Having a blast! Doing pretty good.
Even Betti numbers

are unknown...
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Towards a comprehensive abstract theory

Tomorrow:

Ansatz: “periodic arrangements”

L(A �)

A �

F(A �)

C(A )

A

F(A )

Poset of

intersections

Poset (category)

of polyhedral faces

/Zd (as acyclic

categories)
/Zd(as posets)

/Zd

Abstractly: group actions on semimatroids!


