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Introduction

By a reflection group I mean a finite subgroup G of Gln (R)

Irreducible reflection groups are classified by Dynkin diagrams:
4 infinite families (An, Bn, Dn, Gn)
a finite number of sporadic groups

The calculation of the ring structure on the cohomology H∗ (G ;R)
has traditionally been not so easy (Feshbach 2001, Swenson 2006,
. . . ).
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Hopf rings

Hopf ring definition

Definition

A (graded) Hopf ring over a field F is a graded F-vector space A
with two product ·,� : A⊗ A→ A and a coproduct ∆: A→ A⊗ A
that satisfy the following conditions:

(A,�,∆) is a Hopf algebra

(A, ·,∆) is a Hopf algebra
∀x , y , z ∈ A, if ∆ (x) =

∑
i x
′
i ⊗ x ′′i , then the following

equality holds:

x · (y ⊗ z) =
∑
i

(
x ′i · y

)
�
(
x ′′i · z

)

If A satisfies conditions 2 and 3, but possibly not 1, it is called an
almost-Hopf ring
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Hopf rings

Almost-Hopf rings from sequences of groups (1)

Assume that we have a sequence of groups {Gn}∞n=0 together with
injective group homomorphisms µk,l : Gk × Gl ↪→ Gn. Under
suitable conditions we can give A =

⊕
n H
∗ (Gn;F) the structure of

an (almost-)Hopf ring.

Definition of the structural maps:

∆: µk,l induces
H∗ (Gk,l ;F)→ H∗ (Gk × Gl ;F) ∼= H∗ (Gk ;F)⊗ H∗ (Gl ;F)

�: if µk,l is injective, the corresponding map at the level of
classifying spaces is homotopy equivalent to a finite covering,
thus it induces a transfer map
H∗ (Gk ;F)⊗ H∗ (Gl ;F) ∼= H∗ (Gk × Gl ;F)→ H∗ (Gk,l ;F)

·: the usual ∪ product
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Hopf rings

Almost-Hopf rings from sequences of groups (2)

Some sequences of groups

The symmetric groups {Σn}n give rise to a Hopf ring

The reflection groups of type Bn {WBn}n give rise to a Hopf
ring
The reflection groups of type Dn {WDn}n give rise to an
almost-Hopf ring (not a full Hopf-ring)
The general linear groups of a finite fields {Gln (F)}n give rise
to a Hopf ring
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Mod 2 cohomology of the symmetric groups

Definition of generators

Consider the (ordered) configuration space
Confn (Rm) = {(x1, . . . , xn) ∈ (Rm)n : xi 6= xj∀i 6= j}. Let
Confn (Rm) be the quotient of Confn (Rm) by the natural action of
Σn. Let Confn (R∞) be the direct limit m ∈ N of Confn (Rm).
This is contractible and has a free Σn-action, hence its quotient
Confn (R∞) is a K (Σn; 1).

Consider the
(
2k l
)
m −

(
2k−1l

)
-codimensional submanifold Xk,l ,m

of Conf l2k (Rm) consisting of the configurations of l2k points that
can be partitioned in l sets consisting each of 2k points that share
their first coordinate.
Xk,l ,m is properly embedded in Confn (Rm). Take its fundamental
class in locally finite homology and consider its Poincaré dual
Tk,l ,m ∈ H∗

(
Confn (Rm) ;F2

)
. There esists a unique cohomology

class γk,l ∈ H∗ (Σn;F2) that restrict to Tk,l ,m for all m >> 0.
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Mod 2 cohomology of the symmetric groups

Theorem (Giusti, Salvatore, Sinha)

The coproduct of γk,l is given by the formula:

∆ (γk,l) =
∑

a+b=l

γk,a ⊗ γk,b

Moreover,
⊕

n H
∗ (Σn;F2) is the commutative Hopf ring generated

by the elements γk,l with the following relations:

γk,l � γk,m =

(
l + m

l

)
γk,l+m

the · product of generators belonging to different components
is 0
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Mod 2 cohomology of the symmetric groups

Graphical description (1)

We can describe graphically this Hopf ring by associating to γk,l a
rectangle that has width l2k and height 1− 2−k . Taking the ·
product of two generators corresponds graphically to stacking one
on top of the other the corresponding boxes, while taking the �
product corresponds to placing their rectangles next to each other
horizontally.
Elements of the Hopf ring

⊕
n H
∗ (Σn;F2) can be described

graphically as diagrams of columns made by such rectangles.
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Mod 2 cohomology of the symmetric groups

Graphical description (2)

To understand graphically the coproduct, divide the rectangles
corresponding to γk,l in l equal parts by drawing vertical
dashed lines. Then cut columns along dashed lines of full
length and partition them into two to make two new diagrams.

For transfer product, we place the diagrams new to each other,
merging two columns that are made of boxes with the same
height into one, with a coefficient of 0 or 1 according to the
relations from the previous slide.
For cup product, consider all possible ways to split the
diagrams into colums, then match columns of the two
diagrams in all possible ways up to automorphism, and stack
matched columns on top of each other.
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Mod 2 cohomology of WBn and WDn

Cohomology of WBn

Let AΣ =
⊕

n H
∗ (Σn;F2) and AB =

⊕
n H
∗ (WBn ;F2). The

projections πn : WBn → Σn induce a Hopf ring monomorphism
AΣ → AB .

Theorem

AB is generated over AΣ by classes δn ∈ Hn (WBn ;F2) with the
additional relations:

δn � δm =

(
n + m

n

)
The product of δn with elements in different components is 0

There is an analogous graphical description, by allowing a further
1× n rectangle that corresponds to δn.
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Mod 2 cohomology of WBn and WDn

Cohomology of WDn
(1)

AD =
⊕

n H
∗ (WDn ;F2) is only an almost-Hopf ring. Let

ρ : AB → AD the restriction map. Let D be a column diagram
representing a class in AB . We consider three cases:

1 if D contains a rectangle corresponding to δ2k+1: ρ (D) = 0

2 if some column of D is made of boxes corresponding to δ2k or
γ1,k (but not δ2k+1): we put D0 = ρ (D)

3 in the other cases, we can define two classes D+ and D− in
AD , conjugate under the action of a reflection in WBn \WDn ,
that satisfy ρ (D) = D+ + D−.

The elements in the form D0, D+ and D− above, for diagrams
made of columns with pairwise different profiles, are linearly
independent and their linear span A′ =

⊕
n A
′
n is a sub-almost-Hopf

ring of AD .
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Mod 2 cohomology of WBn and WDn

Cohomology of WD−n (2)

The products in A′ satisfy some formulas similar to the Bn case,
but we need to take into account the signs 0,+,− by means of the
following rules:

The cup product of diagrams with the same sign is again a
sum of diagrams with that sign. The cup product of diagrams
with opposite signs is 0.
The transfer product of diagrams is a sum of diagrams with
the same sign, determined as in the sign rule for the
multiplication of real numbers.

For example γ+
3,k � γ

−
3,l =

(
k + l
l

)
γ−3,k+l .

H∗
(
WD2n+1 ;F2

)
= A′2n+1, while H∗ (WD2n ;F2) is a free module

over A′2n with basis {1,Hn} and the ring structure is determined by
the additional relation H2

n + γ1,nHn + δ2 � γ2
1,n−1 = 0.
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