Computing toric degenerations of flag varieties

Sara Lamboglia

University of Warwick

with Lara Bossinger, Kalina Mincheva and Fatemeh Mohammadi (arXiv 1702.05505)

Compute Gröbner toric degenerations of $\mathcal{F}\ell_4$ and $\mathcal{F}\ell_5$

Compare them with the degenerations obtained using representation theory techniques (Littelman(1998),Berenstein-Zelevinsky(2001), Caldero(2002),Alexeev-Brion (2005)).

Toric varieties give a powerful dictionary which translates combinatorial properties to algebraic and geometric properties.

Why toric degenerations?

 \implies Extend this dictionary to a larger class of varieties.

Use a **toric degeneration**, i.e a flat family $\varphi : \mathcal{F} \to \mathbb{A}^1$ for which the fibre over **0** is a **toric variety** and all the **other fibres** are isomorphic to the variety $\mathcal{F}\ell_n$.

Let \Bbbk be any field.

Definition

The set of all complete flags

$$\mathcal{V}: \{0\} = V_0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_{n-1} \subsetneq V_n = \mathbb{k}^n$$

in \mathbb{k}^n is denoted by $\mathcal{F}\ell_n$ and it has an algebraic variety structure.

Let \Bbbk be any field.

Definition

The set of all complete flags

$$\mathcal{V}: \{0\} = V_0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_{n-1} \subsetneq V_n = \Bbbk^n$$

in \mathbb{k}^n is denoted by $\mathcal{F}\ell_n$ and it has an algebraic variety structure.

Let \Bbbk be any field.

Definition

The set of all complete flags

$$\mathcal{V}: \{0\} = V_0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_{n-1} \subsetneq V_n = \Bbbk^n$$

in \mathbb{k}^n is denoted by $\mathcal{F}\ell_n$ and it has an algebraic variety structure.

Let \Bbbk be any field.

Definition

The set of all complete flags

$$\mathcal{V}: \{0\} = V_0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_{n-1} \subsetneq V_n = \mathbb{k}^n$$

in \mathbb{k}^n is denoted by $\mathcal{F}\ell_n$ and it has an algebraic variety structure.

 $\mathcal{F}\ell_n$ can be embedded in $\operatorname{Gr}(1, \mathbb{k}^n) \times \cdots \times \operatorname{Gr}(n-1, \mathbb{k}^n)$. It can also be seen as SL_n/B .

Let \Bbbk be any field.

Definition

The set of all complete flags

 $\mathcal{V}: \{0\} = V_0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_{n-1} \subsetneq V_n = \Bbbk^n$

in \mathbb{k}^n is denoted by $\mathcal{F}\ell_n$ and it has an algebraic variety structure.

 $\mathcal{F}\ell_n$ can be embedded in $\operatorname{Gr}(1, \mathbb{k}^n) \times \cdots \times \operatorname{Gr}(n-1, \mathbb{k}^n)$. It can also be seen as SL_n/B .

 \implies Flag varieties are a good toy model because of their additional structures.

$$\mathcal{F}\ell_n := \{\mathcal{V}: \{0\} = V_0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_{n-1} \subsetneq V_n = \mathbb{k}^n\}$$
$$\mathcal{F}\ell_n \subset \operatorname{Gr}(1,\mathbb{k}^n) \times \cdots \times \operatorname{Gr}(n-1,\mathbb{k}^n)$$
Using Plücker embeddings $\mathcal{F}\ell_n$ becomes a subvariety of

 $\mathbb{P}^{\binom{n}{1}-1} \times \cdots \times \mathbb{P}^{\binom{n}{n-1}-1}$ and it has defining ideal

 $I_n \subset \mathbb{k}[p_J: \emptyset \neq J \subsetneq \{1, \ldots, n\}].$

Let n = 3 then

 $\mathcal{F}\!\ell_3 = \{(\ell, H) \in \operatorname{Gr}(1, \Bbbk^3) \times \operatorname{Gr}(2, \Bbbk^3) : \ell \subset H\}.$

It is a subvariety of $\operatorname{Gr}(1, \mathbb{k}^3) \times \operatorname{Gr}(2, \mathbb{k}^3) \cong \mathbb{P}^2 \times \mathbb{P}^2$.

It is defined in $\mathbb{k}[p_1, p_2, p_3, p_{12}, p_{13}, p_{23}]$ by the ideal $I_3 = \langle p_3 p_{12} - p_2 p_{13} + p_1 p_{23} \rangle$.

Let n = 3 then

 $\mathcal{F}\!\ell_3 = \{(\ell, H) \in \operatorname{Gr}(1, \Bbbk^3) \times \operatorname{Gr}(2, \Bbbk^3) : \ell \subset H\}.$

It is a subvariety of $Gr(1, \mathbb{k}^3) \times Gr(2, \mathbb{k}^3) \cong \mathbb{P}^2 \times \mathbb{P}^2$.

It is defined in $\mathbb{k}[p_1, p_2, p_3, p_{12}, p_{13}, p_{23}]$ by the ideal $I_3 = \langle p_3 p_{12} - p_2 p_{13} + p_1 p_{23} \rangle.$

Let n = 3 then

 $\mathcal{F}\ell_3 = \{(\ell, H) \in \operatorname{Gr}(1, \Bbbk^3) \times \operatorname{Gr}(2, \Bbbk^3) : \ell \subset H\}.$

It is a subvariety of $\operatorname{Gr}(1, \mathbb{k}^3) \times \operatorname{Gr}(2, \mathbb{k}^3) \cong \mathbb{P}^2 \times \mathbb{P}^2$. It is defined in $\mathbb{k}[p_1, p_2, p_3, p_{12}, p_{13}, p_{23}]$ by the ideal $I_3 = \langle p_3 p_{12} - p_2 p_{13} + p_1 p_{23} \rangle$. We are looking for a flat family $\varphi : \mathcal{F} \to \mathbb{A}^1$ for which the fibre over 0 is a toric variety and all the other fibres are isomorphic to the variety $\mathcal{F}\ell_n$.

After the embedding we have $\mathcal{F}\ell_n \subset \mathbb{P}^{\binom{n}{1}-1} \times \cdots \times \mathbb{P}^{\binom{n}{n-1}-1}$ and $\mathcal{F}\ell_n = V(I_n)$.

We are looking for a flat family $\varphi : \mathcal{F} \to \mathbb{A}^1$ for which the fibre over 0 is a toric variety and all the other fibres are isomorphic to the variety $\mathcal{F}\ell_n$.

After the embedding we have $\mathcal{F}\ell_n \subset \mathbb{P}^{\binom{n}{1}-1} \times \cdots \times \mathbb{P}^{\binom{n}{n-1}-1}$ and $\mathcal{F}\ell_n = V(I_n)$.

Toric varieties inside $\mathbb{P}^{\binom{n}{1}-1} \times \cdots \times \mathbb{P}^{\binom{n}{n-1}-1}$ are defined by toric ideals, i.e. binomial and prime.

We are looking for a flat family $\varphi : \mathcal{F} \to \mathbb{A}^1$ for which the fibre over 0 is a toric variety and all the other fibres are isomorphic to the variety $\mathcal{F}\ell_n$.

After the embedding we have $\mathcal{F}\ell_n \subset \mathbb{P}^{\binom{n}{1}-1} \times \cdots \times \mathbb{P}^{\binom{n}{n-1}-1}$ and $\mathcal{F}\ell_n = V(I_n)$.

Toric varieties inside $\mathbb{P}^{\binom{n}{1}-1} \times \cdots \times \mathbb{P}^{\binom{n}{n-1}-1}$ are defined by toric ideals, i.e. binomial and prime.

⇒ We need a flat family $\varphi : \mathcal{F} \to \mathbb{A}^1$ such that the fibre over 0 is defined by a toric ideal, i.e. binomial and prime and the general fibre is isomorphic to $V(I_n)$.

We are looking for a flat family $\varphi : \mathcal{F} \to \mathbb{A}^1$ for which the fibre over 0 is a toric variety and all the other fibres are isomorphic to the variety $\mathcal{F}\ell_n$.

After the embedding we have $\mathcal{F}\ell_n \subset \mathbb{P}^{\binom{n}{1}-1} \times \cdots \times \mathbb{P}^{\binom{n}{n-1}-1}$ and $\mathcal{F}\ell_n = V(I_n)$.

Toric varieties inside $\mathbb{P}^{\binom{n}{1}-1} \times \cdots \times \mathbb{P}^{\binom{n}{n-1}-1}$ are defined by toric ideals, i.e. binomial and prime.

- ⇒ We need a flat family $\varphi : \mathcal{F} \to \mathbb{A}^1$ such that the fibre over 0 is defined by a toric ideal, i.e. binomial and prime and the general fibre is isomorphic to $V(I_n)$.
- ⇒ Consider Gröbner degenerations.

Gröbner toric degenerations

Definition

Let $f = \sum a_{\mathbf{u}} x^{\mathbf{u}}$ with $\mathbf{u} \in \mathbb{Z}^n$ be a polynomial in $\Bbbk[x_1, \ldots, x_n]$. For each $\mathbf{w} \in \mathbb{R}^n$ we define its *initial form* to be

$$\operatorname{in}_{\mathbf{w}}(f) = \sum_{\mathbf{w}:\mathbf{u} \text{ is minimal}} a_{\mathbf{u}} x^{\mathbf{u}}.$$

Gröbner toric degenerations

Definition

Let $f = \sum a_{\mathbf{u}} x^{\mathbf{u}}$ with $\mathbf{u} \in \mathbb{Z}^n$ be a polynomial in $\Bbbk[x_1, \ldots, x_n]$. For each $\mathbf{w} \in \mathbb{R}^n$ we define its *initial form* to be

$$\operatorname{in}_{\mathbf{w}}(f) = \sum_{\mathbf{w} \cdot \mathbf{u} \text{ is minimal}} a_{\mathbf{u}} x^{\mathbf{u}}.$$

Example: generator of I_3

Consider $\Bbbk[p_1,p_2,p_3,p_{12},p_{13},p_{23}]$ and the polynomial

$$f = p_3 p_{12} - p_2 p_{13} + p_1 p_{23} =$$

$$= p^{(0,0,1,1,0,0)} - p^{(0,1,0,0,1,0)} + p^{(1,0,0,0,0,1)}$$

Gröbner toric degenerations

Definition

Let $f = \sum a_{\mathbf{u}} x^{\mathbf{u}}$ with $\mathbf{u} \in \mathbb{Z}^n$ be a polynomial in $\mathbb{k}[x_1, \dots, x_n]$. For each $\mathbf{w} \in \mathbb{R}^n$ we define its *initial form* to be

$$\operatorname{in}_{\mathbf{w}}(f) = \sum_{\mathbf{w} \cdot \mathbf{u} \text{ is minimal}} a_{\mathbf{u}} x^{\mathbf{u}}.$$

Example: generator of I_3

Consider $\Bbbk[p_1,p_2,p_3,p_{12},p_{13},p_{23}]$ and the polynomial

$$f = p_3 p_{12} - p_2 p_{13} + p_1 p_{23} =$$
$$= p^{(0,0,1,1,0,0)} - p^{(0,1,0,0,1,0)} + p^{(1,0,0,0,0,1,0)}$$

then
$$in_{(1,0,0,0,0)}(f) = p_3 p_{12} - p_2 p_{13}$$

Definition

If I is an ideal in S, then its *initial ideal* with respect to **w** is

 $\operatorname{in}_{\mathbf{w}}(I) = \langle \operatorname{in}_{\mathbf{w}}(f) : f \in I \rangle.$

There exists a flat family $\varphi : \mathcal{F} \to \mathbb{A}^1$ for which the fibre over 0 is isomorphic to $V(in_{\mathbf{w}}(I))$ and all the other fibres are isomorphic to the variety V(I). This is called a *Gröbner degeneration* of V(I).

For $\mathcal{F}\ell_3$ the defining ideal is $I_3 = \langle p_3 p_{12} - p_2 p_{13} + p_1 p_{23} \rangle$. If **w** = (1, 0, 0, 0, 0, 0) then

 $\operatorname{in}_{\mathbf{w}}(I_3) = \langle p_3 p_{12} - p_2 p_{13} \rangle$

which is prime and binomial hence it defines a toric variety. The flat family defining this toric degeneration is given by

 $I_t = \langle p_3 p_{12} - p_2 p_{13} + t p_1 p_{23} \rangle$

For $\mathcal{F}\ell_3$ the defining ideal is $I_3 = \langle p_3 p_{12} - p_2 p_{13} + p_1 p_{23} \rangle$. If **w** = (1, 0, 0, 0, 0, 0) then

$$\operatorname{in}_{\mathbf{w}}(I_3) = \langle p_3 p_{12} - p_2 p_{13} \rangle$$

which is prime and binomial hence it defines a toric variety. The flat family defining this toric degeneration is given by

 $I_t = \langle p_3 p_{12} - p_2 p_{13} + t p_1 p_{23} \rangle$

Problem

Find embedded (possibly not normal) toric degenerations of $V(I_n)$.

Problem

Find embedded (possibly not normal) toric degenerations of $V(I_n)$.

Using Gröbner degenerations the problem translates in

Problem

Find embedded (possibly not normal) toric degenerations of $V(I_n)$.

Using Gröbner degenerations the problem translates in

Algebraic reformulation

Find toric initial ideals of I_n .

Problem

Find embedded (possibly not normal) toric degenerations of $V(I_n)$.

Using Gröbner degenerations the problem translates in

Algebraic reformulation

Find toric initial ideals of I_n .

Consider the *tropicalization* of *X*.

Let $I \subset \Bbbk[x_1, ..., x_n]$ and X = V(I).

Definition

The tropicalization trop(X) of *X* is defined to be

 $\{\mathbf{w} \in \mathbb{R}^n : in_{\mathbf{w}}(I) \text{ does not contain monomials}\}$

Let $I \subset \Bbbk[x_1, ..., x_n]$ and X = V(I).

Definition

The tropicalization trop(X) of X is defined to be

 $\{\mathbf{w} \in \mathbb{R}^n : in_{\mathbf{w}}(I) \text{ does not contain monomials}\}$

The tropical variety $\operatorname{trop}(X)$ has a fan structure such that $\operatorname{in}_{\mathbf{w}}(I) = \operatorname{in}_{\mathbf{w}'}(I)$ for all \mathbf{w}', \mathbf{w} in the relative interior of a cone $C \in \operatorname{trop}(X)$. Each cone *C* corresponds to a different initial ideal.

Let *X* be $V(x^2 - y + yx)$. Then trop(*X*) $\subset \mathbb{R}^2$. $\langle -yx \rangle \quad \langle -y+xy \rangle$

Let *X* be $V(x^2 - y + yx)$. Then trop(*X*) $\subset \mathbb{R}^2$. $+yx\rangle \langle -y+xy\rangle$

Let *X* be $V(x^2 - y + yx)$. Then trop(*X*) $\subset \mathbb{R}^2$. $\langle x^2$ $2 + yx\rangle \langle -y + xy\rangle$

Let *X* be $V(x^2 - y + yx)$. Then trop(*X*) $\subset \mathbb{R}^2$. $\langle x^2 \rangle$ $\langle x^2 + yx \rangle \quad \langle -y + xy \rangle$

Example: trop($\mathcal{F}\ell_3$)

The tropicalization of $\mathcal{F}\ell_3$ has 3 maximal cones. The three toric initial ideals are:

 $\langle p_{3}p_{12} - p_{2}p_{13} \rangle$ $\langle p_{3}p_{12} + p_{1}p_{23} \rangle$ $\langle -p_{2}p_{13} + p_{1}p_{23} \rangle$.

The three corresponding toric varieties are all isomorphic.

Compute Gröbner toric degenerations of $\mathcal{F}\ell_4$ and $\mathcal{F}\ell_5$

Compare them with the degenerations associated to the string polytopes for $\mathcal{F}\ell_4$ and $\mathcal{F}\ell_5$ (Littelman(1998), Berenstein-Zelevinsky (2001), Caldero (2002), Alexeev-Brion (2004))

Results

Theorem (Bossinger,Lamboglia,Mincheva,Mohammadi)

There are 4 non isomorphic Gröbner toric degeneration of the flag variety $\mathcal{F}\ell_4$. Among these 4 there is one not isomorphic to any of the degenerations coming from string polytopes.

A similar result holds for $\mathcal{F}\ell_5$ where we find 180 toric degenerations and 168 are new.

The tropicalization trop($\mathcal{F}\ell_4$) has 78 maximal cones grouped in five $S_4 \rtimes \mathbb{Z}_2$ -orbits.

Orbit	Size	Prime	F-vector of associated polytope
1	24	Yes	(42, 141, 202, 153, 63, 13)
2	12	Yes	(40, 132, 186, 139, 57, 12)
3	12	Yes	(42, 141, 202, 153, 63, 13)
4	24	Yes	(43, 146, 212, 163, 68, 14)
5	6	No	

Orbit	Combinatorially equivalent polytopes		
1	String 2		
2	String 1 (Gelfand-Tsetlin)		
3	String 3 and FFLV		
4	-		
	String 4		

Results

The tropicalization trop($\mathcal{F}\ell_5$) has 69780 maximal cones grouped in 536 $S_5 \rtimes \mathbb{Z}_2$ -orbits.

- \implies 180 of them give rise to toric initial ideals which define 180 non-isomorphic toric degenerations.
- \implies 168 of the 180 are not isomorphic to any toric degenerations constructed from representation theory techniques.

What about the non-prime initial ideal?

What if all the cones of trop(X) give non-prime initial ideals?

 \implies Find a new embedding of the variety.

What about the non-prime initial ideal?

What if all the cones of trop(X) give non-prime initial ideals?

- \implies Find a new embedding of the variety.
- Re-embedding procedure (ToricDegenerations, a Macaulay2 package to compute Gröbner toric degenerations [L.Bossinger,S.Lamboglia,K.Mincheva,F.Mohammadi])

What about the non-prime initial ideal?

What if all the cones of trop(X) give non-prime initial ideals?

- \implies Find a new embedding of the variety.
- Re-embedding procedure (ToricDegenerations, a Macaulay2 package to compute Gröbner toric degenerations [L.Bossinger,S.Lamboglia,K.Mincheva,F.Mohammadi])

Proposition

For $\mathcal{F}\ell_4$ the procedure gives rise to three new toric degenerations. The polytopes associated to two of them are combinatorially equivalent to the String 4 polytope.

Let $X = V(I) \subset \mathbb{P}^2$ with $I = \langle xz + xy + yz \rangle$. Then the toric variety has three maximal cones and the initial ideals are

$$\langle xy + yz \rangle$$
 $\langle xy + xz \rangle$ $\langle zy + zx \rangle$

which are all non prime.

Re-embedding procedure

Input:Non prime initial ideal $in_C(I) = \langle xy + yz \rangle$.

- 1 Compute the primary decomposition of $in_C(I)$ $\implies \langle y \rangle \cdot \langle x + z \rangle$;
- 2 Compute the binomials that generate $\langle x + y \rangle$ but are not in $\operatorname{in}_{C}(I)$

 \implies x + y;

- **3** Let $I' \in \mathbb{C}[x, y, z, u]$ be the ideal $I + \langle u x y \rangle$. Then $V(I) \cong V(I')$.
- **④** Tropicalize *V*(*I'*) and check if there are toric initial ideals such that in_{*C*}(*I*) ⊂ in_{*C'*}(*I'*) ∩ $\mathbb{C}[x, y, z]$ ⇒ in_{*C'*}(*I'*) = $\langle x + y, y^2 - zu \rangle$.