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Compute Gröbner toric degenerations of F`4 and F`5

Compare them with the degenerations obtained using
representation theory techniques
( Littelman(1998),Berenstein-Zelevinsky(2001),
Caldero(2002),Alexeev-Brion (2005)).



Why toric degenerations ?

Toric varieties give a powerful dictionary which translates
combinatorial properties to algebraic and geometric properties.
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Why toric degenerations?

=⇒ Extend this dictionary to a larger class of varieties.

Use a toric degeneration, i.e a flat family ϕ : F → A1 for
which the fibre over 0 is a toric variety and all the other fibres
are isomorphic to the variety F`n.



Why flag varieties?

Let k be any field.

Definition
The set of all complete flags

V : {0} = V0 ( V1 ( · · · ( Vn−1 ( Vn = kn

in kn is denoted by F`n and it has an algebraic variety structure.

F`n can be embedded in Gr(1,kn)× · · · × Gr(n− 1,kn).
It can also be seen as SLn/B.
=⇒ Flag varieties are a good toy model because of their

additional structures.
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Plücker embedding

F`n := {V : {0} = V0 ( V1 ( · · · ( Vn−1 ( Vn = kn}

F`n ⊂ Gr(1,kn)× · · · × Gr(n− 1, kn)

Using Plücker embeddings F`n becomes a subvariety of
P(

n
1)−1 × · · · × P(

n
n−1)−1 and it has defining ideal

In ⊂ k[pJ : ∅ 6= J ( {1, . . . ,n}].



Example: F`3

Let n = 3 then

F`3 = {(`,H) ∈ Gr(1,k3)× Gr(2, k3) : ` ⊂ H}.

It is a subvariety of Gr(1,k3)× Gr(2,k3) ∼= P2 × P2.

It is defined in k[p1, p2, p3, p12, p13, p23] by the ideal
I3 = 〈p3p12 − p2p13 + p1p23〉.
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Toric degenerations

We are looking for a flat family ϕ : F → A1 for which the fibre
over 0 is a toric variety and all the other fibres are isomorphic to
the variety F`n.
After the embedding we have F`n ⊂ P(

n
1)−1 × · · · × P(

n
n−1)−1 and

F`n = V(In).

Toric varieties inside P(
n
1)−1 × · · · × P(

n
n−1)−1 are defined by toric

ideals, i.e. binomial and prime.

=⇒ We need a flat family ϕ : F → A1 such that the fibre over 0
is defined by a toric ideal, i.e. binomial and prime and the
general fibre is isomorphic to V(In).

=⇒ Consider Gröbner degenerations.
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Gröbner toric degenerations

Definition
Let f =

∑
auxu with u ∈ Zn be a polynomial in k[x1, . . . , xn]. For

each w ∈ Rn we define its initial form to be

inw(f) =
∑

w·u is minimal

auxu.

Example: generator of I3
Consider k[p1, p2, p3, p12, p13, p23] and the polynomial

f = p3p12 − p2p13 + p1p23 =

= p(0,0,1,1,0,0) − p(0,1,0,0,1,0) + p(1,0,0,0,0,1)

then in(1,0,0,0,0,0)(f) = p3p12 − p2p13
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Definition
If I is an ideal in S, then its initial ideal with respect to w is

inw(I) = 〈inw(f) : f ∈ I〉.

There exists a flat family ϕ : F → A1 for which the fibre over 0
is isomorphic to V(inw(I)) and all the other fibres are isomorphic
to the variety V(I). This is called a Gröbner degeneration of V(I).



Example: F`3

For F`3 the defining ideal is I3 = 〈p3p12 − p2p13 + p1p23〉. If
w = (1,0,0,0,0,0) then

inw(I3) = 〈p3p12 − p2p13〉

which is prime and binomial hence it defines a toric variety. The
flat family defining this toric degeneration is given by

It = 〈p3p12 − p2p13 + tp1p23〉
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Given F`n ⊂ P(
n
1)−1 × · · · × P(

n
n−1)−1 and let In be the defining

ideal, i.e. F`n = V(In).

Problem
Find embedded (possibly not normal) toric degenerations of
V(In).

Using Gröbner degenerations the problem translates in

Algebraic reformulation

Find toric initial ideals of In.

Consider the tropicalization of X.
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Tropicalization

Let I ⊂ k[x1, ..., xn] and X = V(I).

Definition
The tropicalization trop(X) of X is defined to be

{w ∈ Rn : inw(I) does not contain monomials}

The tropical variety trop(X) has a fan structure such that
inw(I) = inw′(I) for all w′,w in the relative interior of a cone
C ∈ trop(X).
Each cone C corresponds to a different initial ideal.
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Example

Let X be V(x2 − y + yx). Then trop(X) ⊂ R2.

〈x2 + yx〉

〈x2 − y〉

〈−y + xy〉
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Example: trop(F`3)

The tropicalization of F`3 has 3 maximal cones. The three toric
initial ideals are:

〈p3p12 − p2p13〉
〈p3p12 + p1p23〉
〈−p2p13 + p1p23〉.

The three corresponding toric varieties are all isomorphic.



Compute Gröbner toric degenerations of F`4 and F`5

Compare them with the degenerations associated to the string
polytopes for F`4 and F`5
(Littelman(1998), Berenstein-Zelevinsky (2001),Caldero
(2002), Alexeev-Brion (2004) )



Results

Theorem (Bossinger,Lamboglia,Mincheva,Mohammadi)

There are 4 non isomorphic Gröbner toric degeneration of the flag
variety F`4. Among these 4 there is one not isomorphic to any of
the degenerations coming from string polytopes.

A similar result holds for F`5 where we find 180 toric
degenerations and 168 are new.



The tropicalization trop(F`4) has 78 maximal cones grouped in
five S4 o Z2-orbits.

Orbit Size Prime F-vector of associated polytope
1 24 Yes (42, 141, 202, 153, 63, 13)
2 12 Yes (40, 132, 186, 139, 57, 12)
3 12 Yes (42, 141, 202, 153, 63, 13)
4 24 Yes (43, 146, 212, 163, 68, 14)
5 6 No

Orbit Combinatorially equivalent polytopes
1 String 2
2 String 1 (Gelfand-Tsetlin)
3 String 3 and FFLV
4 -

String 4



Results

The tropicalization trop(F`5) has 69780 maximal cones grouped
in 536 S5 o Z2-orbits.

=⇒ 180 of them give rise to toric initial ideals which define 180
non-isomorphic toric degenerations.

=⇒ 168 of the 180 are not isomorphic to any toric
degenerations constructed from representation theory
techniques.



What about the non-prime initial ideal?

What if all the cones of trop(X) give non-prime initial ideals?

=⇒ Find a new embedding of the variety.

=⇒ Re-embedding procedure (ToricDegenerations, a
Macaulay2 package to compute Gröbner toric
degenerations
[L.Bossinger,S.Lamboglia,K.Mincheva,F.Mohammadi])

Proposition
For F`4 the procedure gives rise to three new toric
degenerations. The polytopes associated to two of them are
combinatorially equivalent to the String 4 polytope.
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Example

Let X = V(I) ⊂ P2 with I = 〈xz + xy + yz〉. Then the toric variety
has three maximal cones and the initial ideals are

〈xy + yz〉 〈xy + xz〉 〈zy + zx〉

which are all non prime.



Re-embedding procedure

Input:Non prime initial ideal inC(I) = 〈xy + yz〉.
1 Compute the primary decomposition of inC(I)

=⇒ 〈y〉 · 〈x + z〉;
2 Compute the binomials that generate 〈x + y〉 but are not in

inC(I)
=⇒ x + y;

3 Let I′ ∈ C[x, y, z, u] be the ideal I + 〈u− x − y〉. Then
V(I) ∼= V(I′).

4 Tropicalize V(I′) and check if there are toric initial ideals
such that inC(I) ⊂ inC′(I′) ∩ C[x, y, z]
=⇒ inC′(I′) = 〈x + y, y2 − zu〉.


