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The Bounded Negativity Property

Definition

We say that a surface X has the Bounded Negativity Property if
there exists a number b(X ) such that

C 2 ≥ −b(X )

holds for all reduced (and irreducible) curves C ⊂ X .

Example

For P2 it suffices to take b(P2) = 0.

For the Hirzebruch surface Fn, b(Fn) = n suffices.
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The Bounded Negativity Conjecture

Conjecture

Every complex surface has the Bounded Negativity Property.

Remark

This conjecture fails in positive characteristic!
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Birational invariance

Problem

Let X and Y be birationally equivalent complex projective surfaces.
Has X the Bounded Negativity Property if and only if Y does?

Remark

This is not known in general even if Y is just the blow up of X
at a single point!

Remark

Of course, if BNC is true, then the above Problem has positive
answer.
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Effective birational equivalence

Problem

Even if BNC is true, it is interesting to compare the numbers

b(X ) and b(Y )

in terms of the complexity of the birational map f : Y → X.

Example

Let f : X → P2 be the blow up of s general points. Then the
(−1)-curve conjecture due to De Fernex predicts that b(X ) = 1 is
independent of the number of points blown up.

Remark

The above statement fails completely for arbitrary points.
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Transversal configurations of curves

Definition

Let X be a smooth projective surfaces and let C = {C1, ...,Ck} be
a configuration of curves in X . Then we say that C is a transversal
configuration if

1 all curves are (irreducible) smooth,

2 all pairwise intersection points are transversal (locally look like
x1x2 = 0),

3 there is no point where all curves meet.
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Harbourne index

Definition

Let X be a smooth complex projective surface and let
C = {C1, ...,Ck} be a configuration of curves in X (here we do not
assume anything about types of singularities). Denote by
C = C1 + ... + Ck the associated divisor to C. The H-index of C is
defined as

H(X ; C) :=
C 2 −

∑
p∈Sing(C)m

2
p(C )

s
,

where s is equal to the number of singular points of C and mp

denotes the multiplicity of p ∈ Sing(C).
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Global Harbourne index

Definition

Let X be a smooth complex projective surface. Then the global
Harbourne index of X is defined as

H(X ) := inf
C
H(X ; C).
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How negative are H-indices

Remark

No example of a surface with H(X ) = −∞ is known.

Remark

For an arbitrary surface X one has always H(X ) ≤ −2.
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The relation between H-indices and BNC

Remark

If H(X ) is finite, then the BNC holds on blow ups of X at
Sing(C).

Remark

Even if H(X ) = −∞, the Bounded Negativity Property might
still hold for X and its blow ups.
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Global H-index P2

Conjecture

H(P2) = −4.5
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Harbourne indices for line arrangements

Theorem (Linear global H-index of P2, [1])

Let us denote by HL(P2) the global Harbourne index of P2 in the
class of line arrangements. Then

HL(P2) ≥ −4.

Theorem (Hirzebruch)

Let L be an arrangement of d lines in the complex projective plane
P2. Then

t2 +
3

4
t3 ≥ d +

∑
k≥5

(k − 4)tk , (1)

provided td = td−1 = 0.

Here tk = tk(L) denotes the number of points where exactly k
lines from L meet, for k ≥ 2.
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How negative can we really get?

Example (Wiman’s configuration)

There exists a configuration of 45 lines with

t3 = 120

t4 = 45

t5 = 36

With P the set of all singular points of the configuration, this
configuration gives

H(P2;L) = −225

67
≈ −3.36.
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Further developments

Theorem (Conical global H-index of P2, [5])

Let us denote by HC (P2) the global Harbourne index of P2 in the
class of transversal conic arrangements. Then

HC (P2) ≥ −4.5.

Theorem (X. Roulleau, [3])

There exist a configuration of cubic curves with the H-index equal
to (asymptotically) −4.
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Further developments

Theorem (Degree d global H-index of P2, [4])

Let us denote by Hd(P2) the global Harboune index of P2 in the
class of transversal curve configurations such that each irreducible
component has degree d ≥ 3. Then

Hd(P2) ≥ −4− 5

2
d2 +

9

2
d .
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Generalizations

Let Sn ⊂ P3
C be a smooth hypersurface of degree n ≥ 4 containing

a line configuration L with s ≥ 1 singular points.

Theorem ([6])

One has

H(Sn,L) > −4− 2n(n − 1)2

s
.
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Zariski decompositions

Definition

Let X be a projective surface and assume that D is a
pseudoeffective Z-divisor. Then D can be written uniquely as a
sum D = P + N of Q divisors such that

1 P is nef,

2 N is effective and has negative definite intersection matrix if
N 6= 0,

3 P.Ni = 0 for every component of N.
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Finiteness of Zariski denominators

Conjecture (Bounded Denominators Conjecture)

Let X be a smooth projective surface and assume that D is an
integral pseudoeffective divisor on X . Let D = P +

∑
i aiNi be the

Zariski decomposition with ai ∈ Q. Then there exists an integer
d(X ) such that denominators of all ai are bounded from above by
d(X ) for all D.
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The BNC equivalent to the BDC

Theorem ([2])

For a smooth projective surface X over an algebraically closed field
the following two statements are equivalent:

X has bounded Zariski denominators,

X has bounded negativity.
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A useful application

Remark

One of the most important applications of the presented
equivalence is the following. It can be shown that if D = P + N is
the Zariski decomposition, then for sufficiently divisible integers
m ≥ 1 one has

H0(X ,OX (mD)) = H0(X ,OX (mP)).

Sufficiently divisible means then we need to pass to multiple mD in
order to clear denominators. For minimal models with the Kodaira
dimension 0 it is easy to see that d(X ) = 2ρ−1!, and thus we have
obtained (according to our best knowledge) the first effective
description of m.
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Last but not least

Thank you for your attention.
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