Basics	Tools	Main results	Further questions	References
õo				

Combinatorics and topology of small arrangements

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF

20-th February 2017

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF

Basics	Tools	Main results	Further questions	References
Complex hyper	plane arrangements			
Main de	finitions			

- A complex hyperplane arrangement is a finite collection $\mathcal{A} = \{H_1, \ldots, H_m\}$ of affine hyperplanes in \mathbb{C}^d .
- The complement manifold $M(\mathcal{A})$ is $\mathbb{C}^d \setminus \bigcup_{i=1}^m H_i$.
- **Problem:** study the topology of $M(\mathcal{A})$.

Gennuous

Basics	Tools	Main results	Further questions	References	
Complex hyperplane arrangements					

Central arrangements

- A complex hyperplane arrangement A = {H₁,..., H_m} in C^d is central if all the H_i's contain the origin.
- **Result:** to understand M(A) we can study the central case.

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF

Basics	Tools	Main results	Further questions	References
Combinatorics				

Underlying matroid of an arrangement

For a complex central hyperplane arrangement $\mathcal{A} = \{H_1, \ldots, H_m\}$ in \mathbb{C}^d pick linear forms $\alpha_1, \ldots, \alpha_m \in (\mathbb{C}^d)^*$ with $H_j = \ker \alpha_j$. The **underlying matroid** $M_{\mathcal{A}}$ of \mathcal{A} is the pair $(E_{\mathcal{A}}, \mathfrak{I}_{\mathcal{A}})$ where:

•
$$E_{\mathcal{A}} = \{1, \ldots, m\};$$

• $\mathfrak{I}_{\mathcal{A}} = \{ S \subseteq E_{\mathcal{A}} \mid \{\alpha_j\}_{j \in S} \text{ are linearly independent} \}.$

 $M_{\mathcal{A}}$ does **not** depend on the choice of the α_j 's.

Basics	Tools	Main results	Further questions	References
Combinatorics				

Rank of an arrangement

The **rank** of a complex central hyperplane arrangement $\mathcal{A} = \{H_1, \ldots, H_m\}$ in \mathbb{C}^d is the rank of its underlying matroid $M_{\mathcal{A}}$. We say that \mathcal{A} is **essential** if its rank is maximal.

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF

Basics	Tools	Main results	Further questions	References
00				
Problem				

Which topological information is encoded by the combinatorics?

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF

Basics	Tools	Main results	Further questions	References
	00			
00				
Combinatorial results				

Orlik-Solomon theorem

Theorem (Orlik and Solomon, 1980)

For a complex central hyperplane arrangement $\mathcal{A} = \{H_1, \ldots, H_m\}$ in \mathbb{C}^d the **cohomology ring** $H^*(\mathcal{M}(\mathcal{A}), \mathbb{Z})$ depends only on the underlying matroid $M_{\mathcal{A}}$.

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF

Basics	Tools	Main results	Further questions	References	
	00				
00					
Combinatorial results					

Randell isotopy theorem

Theorem (Randell, 1989)

Let A_t be a **smooth one-parameter** family of complex central hyperplane arrangements in \mathbb{C}^d . If the underlying matroid M_{A_t} does **not** depend on t, so does the **diffeomorphism** type of $M(A_t)$.

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF

Basics	Tools	Main results	Further questions	References
00	•			
A counterexample				

Rybnikov matroid

Theorem (Rybnikov, 1997)

There exist complex central hyperplane arrangements with **same** underlying matroid but **different** fundamental group of the corresponding complement manifolds.

The underlying matroid M_A does **not** completely determine the topology of the complement manifold of an arrangement.

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF

Basics	Tools	Main results	Further questions	References
00		•0		
õ				
Small hyperplan	e arrangements			

Projective line arrangements

Theorem (Nazir and Yoshinaga, 2012)

Let $\mathcal{A} = \{H_1, \ldots, H_m\}$ and $\mathcal{B} = \{K_1, \ldots, K_m\}$ be complex central essential hyperplane arrangements in \mathbb{C}^3 with same underlying matroid. If $m \leq 7$, then the complement manifolds $M(\mathcal{A})$ and $M(\mathcal{B})$ are diffeomorphic.

Moreover, up to 8 hyperplanes in \mathbb{C}^3 the combinatorics **determines** the topology of the complement manifold.

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF

Basics	Tools	Main results	Further questions	References		
		00				
00						
0						
Small hyperplane arrangements						

A diffeomorphism result

Theorem (Gallet and S., 2017)

Let $\mathcal{A} = \{H_1, \ldots, H_m\}$ and $\mathcal{B} = \{K_1, \ldots, K_m\}$ be complex central essential hyperplane arrangements in \mathbb{C}^d with same underlying matroid. If $m \leq 7$, then the complement manifolds $M(\mathcal{A})$ and $M(\mathcal{B})$ are diffeomorphic.

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF

Basics	Tools	Main results	Further questions	References
00 00 0			•	
Further questions				

- Find wider classes of matroids for which our statement holds.
- Describe more **refined** combinatorial invariants to study the topology of the complement manifold of an arrangement.

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF

Basics	Tools	Main results	Further questions	References
				•
00				
Defense				
References				

A small bibliography

- Matteo Gallet and Elia Saini, The diffeomorphism type of small hyperplane arrangements is combinatorially determined, to appear in Advances in Geometry.
- Peter Orlik and Louis Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), no. 2, 167–189.
- Richard Randell, Lattice-isotopic arrangements are topologically isomorphic, Proc. Amer. Math. Soc. 107 (1989), no. 2, 555–559.

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF