Combinatorics and topology of small arrangements

Elía Saini

Université de Fribourg - Universität Freiburg Swiss National Science Foundation SNSF

20-th February 2017

Main definitions

- A complex hyperplane arrangement is a finite collection $\mathcal{A}=\left\{H_{1}, \ldots, H_{m}\right\}$ of affine hyperplanes in \mathbb{C}^{d}.
- The complement manifold $M(\mathcal{A})$ is $\mathbb{C}^{d} \backslash \bigcup_{j=1}^{m} H_{j}$.
- Problem: study the topology of $M(\mathcal{A})$.

Central arrangements

- A complex hyperplane arrangement $\mathcal{A}=\left\{H_{1}, \ldots, H_{m}\right\}$ in \mathbb{C}^{d} is central if all the H_{j} 's contain the origin.
- Result: to understand $M(\mathcal{A})$ we can study the central case.

Underlying matroid of an arrangement

For a complex central hyperplane arrangement $\mathcal{A}=\left\{H_{1}, \ldots, H_{m}\right\}$ in \mathbb{C}^{d} pick linear forms $\alpha_{1}, \ldots, \alpha_{m} \in\left(\mathbb{C}^{d}\right)^{*}$ with $H_{j}=\operatorname{ker} \alpha_{j}$. The underlying matroid $M_{\mathcal{A}}$ of \mathcal{A} is the pair $\left(E_{\mathcal{A}}, \Im_{\mathcal{A}}\right)$ where:

- $E_{\mathcal{A}}=\{1, \ldots, m\}$;
- $\Im_{\mathcal{A}}=\left\{S \subseteq E_{\mathcal{A}} \mid\left\{\alpha_{j}\right\}_{j \in S}\right.$ are linearly independent $\}$. $M_{\mathcal{A}}$ does not depend on the choice of the α_{j} 's.

Rank of an arrangement

The rank of a complex central hyperplane arrangement $\mathcal{A}=\left\{H_{1}, \ldots, H_{m}\right\}$ in \mathbb{C}^{d} is the rank of its underlying matroid $M_{\mathcal{A}}$. We say that \mathcal{A} is essential if its rank is maximal.

Main question

Which topological information is encoded by the combinatorics?

Orlik-Solomon theorem

> Theorem (Orlik and Solomon, 1980)
> For a complex central hyperplane arrangement $\mathcal{A}=\left\{H_{1}, \ldots, H_{m}\right\}$ in \mathbb{C}^{d} the cohomology ring $H^{*}(M(\mathcal{A}), \mathbb{Z})$ depends only on the underlying matroid $M_{\mathcal{A}}$.

Randell isotopy theorem

Theorem (Randell, 1989)

Let \mathcal{A}_{t} be a smooth one-parameter family of complex central hyperplane arrangements in \mathbb{C}^{d}. If the underlying matroid $M_{\mathcal{A}_{t}}$ does not depend on t, so does the diffeomorphism type of $M\left(\mathcal{A}_{t}\right)$.

Rybnikov matroid

Theorem (Rybnikov, 1997)
There exist complex central hyperplane arrangements with same underlying matroid but different fundamental group of the corresponding complement manifolds.

The underlying matroid $M_{\mathcal{A}}$ does not completely determine the topology of the complement manifold of an arrangement.

Projective line arrangements

Theorem (Nazir and Yoshinaga, 2012)

Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{m}\right\}$ and $\mathcal{B}=\left\{K_{1}, \ldots, K_{m}\right\}$ be complex central essential hyperplane arrangements in \mathbb{C}^{3} with same underlying matroid. If $m \leq 7$, then the complement manifolds $M(\mathcal{A})$ and $M(\mathcal{B})$ are diffeomorphic.

Moreover, up to 8 hyperplanes in \mathbb{C}^{3} the combinatorics determines the topology of the complement manifold.

A diffeomorphism result

Theorem (Gallet and S., 2017)

Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{m}\right\}$ and $\mathcal{B}=\left\{K_{1}, \ldots, K_{m}\right\}$ be complex central essential hyperplane arrangements in \mathbb{C}^{d} with same underlying matroid. If $m \leq 7$, then the complement manifolds $M(\mathcal{A})$ and $M(\mathcal{B})$ are diffeomorphic.

Further questions

- Find wider classes of matroids for which our statement holds.
- Describe more refined combinatorial invariants to study the topology of the complement manifold of an arrangement.

A small bibliography

國 Matteo Gallet and Elia Saini，The diffeomorphism type of small hyperplane arrangements is combinatorially determined，to appear in Advances in Geometry．

睩 Peter Orlik and Louis Solomon，Combinatorics and topology of complements of hyperplanes，Invent．Math． 56 （1980），no．2， 167－189．

围 Richard Randell，Lattice－isotopic arrangements are topologically isomorphic，Proc．Amer．Math．Soc． 107 （1989）， no．2，555－559．

