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Abstract: We prove a weighted Almost Sure Limit Theorem in the setting of Random Iterative Models. This

Theorem generalizes previous results obtained for sequences of normalized partial sums and some other classes of

random sequences.

1. Introduction

Let (Sn) be the partial sums of iid real valued random variables (Xn) with mean 0 and variance 1,
defined on a probability space (Ω,A, P ). The classical Almost Sure Central Limit Theorem can be stated
as follows: P -almost surely,

lim
n→∞

1
log n

n∑

k=1

1
k

(
1A

( Sk√
k

)− P
( Sk√

k
∈ A

))
= 0,

for all Borel sets A ⊆ IR such that λ(∂A) = 0. Here and in the sequel λ denotes the Lebesgue measure on
(IR,B(IR)). For the proof, by a classical principle in the theory of pointwise Central Limit Theorem, (see
[6], p. 202), it is enough to show that, for any bounded 1-Lipschitz function f : IR → IR, almost surely
one has

(1.1) lim
n→∞

1
log n

n∑

k=1

1
k

(
f
( Sk√

k

)−E
[
f
( Sk√

k

)])
= 0,

The proof of (1.1) relies on a suitable estimate of

Cov
(
f
( Sp√

p

)
, f

( Sq√
q

))
= E

[
f
( Sp√

p

)
f
( Sq√

q

)]−E
[
f
( Sp√

p

)]
E

[
f
( Sq√

q

)]
,

for p ≤ q integers. Typically such a kind of estimate looks as

(1.2)
∣∣∣Cov

(
f
( Sp√

p

)
, f

( Sq√
q

))∣∣∣ ≤ const
√

p

q

(see for instance [6], Lemma p.203), and it is easy to prove (see Lemma (6.1) of the present paper) that
we can get it from an analogous one for

∣∣∣
∣∣∣E

[
f
( Sq√

q

)]∣∣∣ Sp√
p

]
−E

[
f
( Sq√

q

)]∣∣∣
∣∣∣
1
,

where
∣∣∣∣ ·

∣∣∣∣
1

denotes the L1(Ω,A, P )- norm. Note that the two random variables Sn+1√
n+1

, Sn√
n

are linked
by the iterative equation

Sn+1√
n + 1

=
√

n

n + 1
Sn√

n
+

Xn+1√
n + 1

=
√

n

n + 1
Sn√

n
+ Vn+1,
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where Vn+1 = Xn+1√
n+1

. In this paper we consider a system of random d-dimensional vectors (Zn) defined
on a probability space (Ω,A, P ) by a recursive relation Zn+1 = Fn+1(Zn, Vn+1) and, under suitable
assumptions, we prove an estimate for

(1.3) ϑ(Zq, Zp)
.= sup

f∈L1

∣∣∣∣E[f(Zq)|Zp]−E[f(Zq)]
∣∣∣∣

1
,

where L1 denotes the set of bounded 1-Lipschitz functions f : IRd → IR. Such an estimate (which will
be in terms of the sequence (Fn)) allows us to prove an Almost Sure Limit Theorem (ASLT from now
on) for the sequence (Zn); this result enlarges the classical Almost Sure Central Limit Theorem since it
concerns “general” weights and not “logarithmic” weights only; some new particular cases are pointed
out in (5.9). Previous results in this direction can be found for instance in [1] and [7]; with respect to the
results of [1], our Theorem enlightens the fact that weak theorems are not necessary in order to obtain
Almost Sure Limit Theorems; moreover, condition (1.7) of [1] is more difficult to be checked than our
condition (2.11) (see Remark (2.12)); last, our examples (4.1) (in particular (4.1)(iii) and 4.1(iv) ), (4.4),
(4.5) are new (see also Example (5.9)). On the other hand, with respect to [7] our Theorem is wider
in that it concerns a general “Iterative Model” (Zn) (see definition (2.1)), and not only a sequence of
normalized partial sums (Sn/

√
n).

We stress the fact that the setting of iterative models considered here is rather large: see section 4 for some
illuminating examples. The coefficient ϑ(Zq, Zp) defined in (1.3) is clearly a measure of the dependence
of Zq and Zp. It is known in the literature (see [2] for details an the references therein); we shall call
it coefficient of ϑ-dependence; in sections 3 and 4 we show how to calculate it in some cases. Another
frequently used measure of dependence between random variables is the Rosenblatt coefficient (see section
6 for its definition); in the same section 6 we present a typical situation in which the Rosenblatt coefficient
can be obtained from the ϑ-coefficient.
Acknowledgement. The authors wish to thank Prof. L. Pratelli for helpful suggestions and an unknown
referee for having pointed out an error in the proof of Theorem (2.9).

2. Main results

On the probability space (Ω,A, P ) we are given a filtration (An). Following [3], p. 183 we introduce the
concept of Iterative Lipschitzian Model:

(2.1) Definition. An Iterative Lipschitzian Model adapted to (An) is a sequence (Zn) of random
d-dimensional vectors such that, for every n ∈ IN, Zn is An-measurable and

(2.2) Zn+1 = Fn+1(Zn, Vn+1)

where,
(i) for every n ∈ IN, Fn is a measurable function from IRd × Γ to IRd (where (Γ,G) is a measurable

space), αn- Lipschitzian in its first argument, independent on the second, i. e., for each z1, z2 ∈ IRd,
v ∈ Γ

|Fn(z1, v)− Fn(z2, v)| ≤ αn|z1 − z2|.
Here and in the sequel | · | denotes the euclidean norm in IRd.

(ii) (Vn) is a sequence of random variables with values in (Γ,G), and Vn+1 is independent of An for
every n ∈ IN.

Our first result is the following.

(2.3) Theorem. Assume that supn E[|Zn|] = C < +∞. Then, for p < q integers, we have

(2.4) ϑ(Zq, Zp) ≤ 2 Cαp+1 × · · · × αq.

Write

(2.5) g(k) =
k∏

h=1

1
αh

.
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Then (2.4) can be written as

(2.6) ϑ(Zq, Zp) ≤ 2C
g(p)
g(q)

.

The proof of Theorem (2.3) is in Section 3. Before stating our second result (the ASLT for the sequence
(Zn)) we must recall some preliminary notions and make some remarks.

(i) Let (T, C, τ) be some probability space and consider a sequence (fn) of elements of L2(τ). Let
ah,k =

∫
fhfkdτ. A system of functions (fn) such that the quadratic form defined on `2 by (xn) 7→∑

h,k ah,kxhxk is bounded, is said quasi orthogonal. Say also that a sequence c = (cn) ∈ `2 is universal
when the series

∑
k ckψk converges almost everywhere for every orthonormal system of functions (ψn).

According to Schur’s Theorem ([8], pag. 56), if c is universal, then the series
∑

k ckfk converges almost
everywhere for any quasi-orthogonal system of functions (fn).

(ii) Assume that (Zn) is an iterative Lipschitzian model, such that

(2.7) αn < 1 ∀n ≥ 2,

∞∑

k=2

log αk = −∞

(2.8) lim inf
n→∞

αn > 0.

Condition (2.7) amounts clearly to assuming that g, defined in (2.5), is strictly increasing to +∞, so that
we can suppose that it defined on [1, +∞) and strictly increasing to +∞. On the other hand, condition
(2.8) is equivalent to lim sup

x→∞
g(x + 1)/g(x) < +∞. We can now state our result.

(2.9) Theorem. (ASLT for iterative models). Let (Zn) be an iterative Lipschitzian model such that
supn E[|Zn|] = C < +∞. Let ϕ : [1,+∞) → IR+ be a strictly increasing function with

lim
x→+∞

ϕ(x) = +∞

and for which there exists a constant β > 0 such that

(2.10) ϕ(x + 1) ≤ ϕ(x) + β ∀x ∈ IR+.

Assume moreover that the composed function G = g ◦ ϕ−1 verifies the condition

(2.11) sup
n

( ∑

k≤n

G(k)
G(n)

+
∑

k>n

G(n)
G(k)

)
< +∞.

Let E = {A ∈ B(IRd), λ(∂A) = 0}. Then, for every A ∈ E
(a) for every decreasing sequence (cn) satisfying the condition lim infn→∞(cn+1/cn) > 0 and such

that
∑

n c2
n(log n)2 < ∞ we have, almost surely,

lim
n→∞

c[ϕ(n)]

n∑

k=1

(ϕ(k + 1)− ϕ(k))(1A(Zk)− P (Zk ∈ A)) = 0;

(b) almost surely we have

lim
n→∞

∑n
k=1(ϕ(k + 1)− ϕ(k))(1A(Zk)− P (Zk ∈ A))

ϕ(n)
= 0.

(2.12) Remark. If the iterative model (Zn) satisfies (2.7) and (2.8), a function ϕ verifying the two
conditions (2.10) and (2.11) is easily found: in fact we can take, for instance

ϕ(x) = log g(x).

The proofs of Theorem (2.9) and Remark (2.12) will be given in Section 5.
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3. The coefficient of ϑ-dependence and proof of Theorem (2.3)

Theorem (2.3) follows easily from a general result (Proposition (3.2)), which we state and prove in this
section. Let T and S be two d-dimensional random vectors defined on a probabilty space (Ω,A, P ) and
assume that E[|T |] < +∞; let L1 be the set of bounded functions f : IRd → IR which are Lipschitzian of
constant 1.

(3.1) Definition. For T and S as above, we define the ϑ-coefficient of dependence as

ϑ(T, S) .= sup
f∈L1

∣∣∣∣E[f(T )|S]−E[f(T )]
∣∣∣∣

1
,

where
∣∣∣∣ · ∣∣∣∣

1
denotes the norm in L1(Ω,A, P ).

We are interested in the following situation: assume that T = φ(S, V ), where V is a random variable
defined on (Ω,A, P ) with values in a measurable space (Γ,G), independent on S, and φ : IRd × Γ → IRd

is a measurable function β-Lipschitzian in its first argument, independent on the second, i. e. for every
s1, s2 ∈ IRd and v ∈ Γ we have

|φ(s1, v)− φ(s2, v)| ≤ β|s1 − s2|.
We prove our general result:

(3.2) Proposition. Assume that S is integrable. Then

ϑ(T, S) ≤ 2βE[|S|].

Proof. It is easy to see that, for every f ∈ L1 we have

E[f(T )|S] =
∫

f ◦ φ(S, v)dµV (v),

where µV denotes the law of V . Hence

ϑ(T, S) = sup
f∈L1

∣∣∣∣
∫

f ◦ φ(S, v)dµV (v)−E[
∫

f ◦ φ(S, v)dµV (v)]
∣∣∣∣

1
.

The relation

∣∣
∫

f ◦ φ(s1, v)dµV (v)−
∫

f ◦ φ(s2, v)dµV (v)
∣∣ ≤

∫
|φ(s1, v)− φ(s2, v)|dµV (v) ≤ β|s1 − s2|,

shows that the function s 7→ ∫
f ◦ φ(s, v)dµV (v) is β-Lipschitzian, hence

ϑ(T, S) ≤ β sup
g∈L1

∣∣∣∣g(S)−E[g(S)]
∣∣∣∣

1
= β sup

{ ∫
|g|dµS , g ∈ L1,

∫
gdµS = 0

}
,

where µS is the law of S. The statement of the proposition follows from a simple lemma.

(3.3) Lemma. Let µ be a probability measure on IRd, with
∫ |x|dµ(x) < ∞. Then

sup
{ ∫

|g|dµ, g ∈ L1,

∫
gdµ = 0

} ≤ 2
∫
|x|dµ(x).

Proof. Let g ∈ L1 with
∫

gdµ = 0. Then

(3.4) |g(0)| = |
∫

(g(x)− g(0))dµ(x)| ≤
∫
|x|dµ(x),

hence
∫ |g(x)|dµ(x) ≤ ∫ |g(x)− g(0)|dµ(x) + |g(0)| ≤ 2

∫ |x|dµ(x), and the lemma is proved.
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(3.5) Remark. Though not relevant in this context, note that in (3.3) it is possible to find a better
estimate; in fact, one can replace the vector 0 (used in (3.4)) with any vector x0 ∈ IRd and then take the
infimum with respect to x0, so getting the bound

2 inf
x0∈IRd

∫
|x− x0|dµ(x).

We can now deduce Theorem (2.3) from Proposition (3.2); in fact from relation (2.2) it is easily seen by
induction that

Zq = φq−p(Zp, Vp+1, . . . , Vq)

where φq−p is some function, (αp+1 × · · · × αq)-Lipschitzian in the first argument and (Vp+1, . . . , Vq) is a
random variable with values in (Γq−p,Gq−p), independent on Zp (of course φ1 = Fp+1 for every p).

(3.6) Remark. We point out the important particular case (to be encountered later, see Example (4.5))
in which αn ≤ α (constant) for every n. In this case we find

ϑ(Zq, Zp) ≤ 2 C αq−p.

4. Some examples

In this section we give some relevant examples of iterative Lipschitzian models. All the involved sequences
of random variables are tacitly assumed to be defined on the basic probability space (Ω,A, P ).
(4.1) Example. Let (Xn) be a sequence of independent r. v.’s and (γn) a sequence of positive numbers.
Put Sn =

∑n
k=1 γkXk and assume that, for every n, Sn ∈ L1(Ω,A, P ). Suppose that there exists a

sequence (an) of real numbers such that

sup
n

E
[∣∣Sn

an

∣∣] = C < +∞.

For every integer n define Zn = Sn

an
and consider the maps Fn(z, v) = an−1

an
z + v. Observe that

Zn+1 = Fn+1(Zn, Vn+1), with Vn+1 =
γn+1Xn+1

an

Theorem (2.3) gives, for p < q,

(4.2) ϑ(Zq, Zp) ≤ 2 C
ap

aq
.

We are in the above setting if for instance
(i) supn E[|Xn|] < +∞.

In this case we can take an =
∑n

k=1 γk, as it is easily seen.

(ii) If σ2
n = E[X2

n] < +∞ for every n, another suitable choice for (an) is an =
( ∑n

k=1 σ2
kγ2

k

)1/2

.
(iii) γn = 1 for every n, (Xn) are independent identically distributed and their common distribution

belongs to the domain of attraction of a stable distribution Φ with exponent α ∈ (1, 2]. This means that
there exist two sequences of numbers (an) and (bn) such that the distribution of Sn

an
− bn = Zn− bn tends

to Φ. In this case it is known (see [5], lemma 2.3) that E[|Sn|] ≤ Can for a suitable constant C.
(iv) Let p > 1, and consider the class Fp of distribution functions verifying

(
F (−x) ∨ (1− F (x)

)
= O(

x−p
)

x → +∞.

Let again γn = 1 for every n, (Xn) be independent identically distributed with their common law
belonging to Fp. According to part b) of Lemma 2.2 in [5], if F ∈ Fp, 1 < p < 2, then E

∣∣Sn

∣∣ ≤ Cpn
1/p.

And if p = 2 and EX2 = ∞, then E
∣∣Sn

∣∣ ≤ C
(
nEX21{

|X|≤n1/2
})1/2, which gives other examples of the

same kind as above.
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(4.3) Example. Let (Xn) be a sequence of independent random variables with supn E[|Xn|] = C < +∞.

Put Mn = max(X1, . . . , Xn), Zn = Mn

n . Then E[|Zn|] ≤
∑n

k=1
E[|Xk|]
n ≤ C < +∞.

Put Fn(z, v) = max
(

n−1
n z, v

n

)
. Then Fn is ((n−1)/n)-Lipschitzian and we have Zn+1 = Fn+1(Zn, Vn+1),

with Vn+1 = Xn+1
n+1 . Theorem (2.3) applies and we get

ϑ(Zq, Zp) ≤ C
p

q
.

(4.4) Example. Let Xn be a sequence of independent identically distributed complex-valued random
variables and let f1, f2, . . . be complex-valued functions defined on some metric space (T,d), and form
the quantities

Zn(t) =
∑Nn

k=1 <(Xkfk(t))
Bn(t)

, Bn(t) = ‖
Nn∑

k=1

<(Xkfk(t))‖2,P .

where (Nn) is some given sequence of integers. Here t is fixed and we write more simply Zn := Zn(t),
Bn := Bn(t). It is clear that

Zn+1 =
Bn

Bn+1
Zn + Vn+1, Vn+1 =

∑Nn+1
k=Nn+1 <(Xkfk(t))

Bn+1

Define Fn+1(x, y) = Bn

Bn+1
x + y. Then we have Zn+1 = Fn+1(Zn, Vn+1). According to Definition (2.1),

(Zn) is an iterative Lipschitzian model. Now by contruction supn E|Zn| = C < ∞. Indeed, by Cauchy-
Schwarz inequality, E[|Zn(t)|] = E

[∣∣ ∑Nn

k=1 <(Xkfk(t))
∣∣]/Bn(t) ≤ 1 so that Theorem (2.3) applies in force

with C = 1, and we get for p ≤ q:

ϑ(Zp, Zq) ≤ 2
Bp

Bq
.

(4.5) Example. Let (Mn) be a sequence of square d× d matrices with elements in IR, and let ||Mn|| be
the sequence of their norms. We assume that ρ

.= supn ||Mn|| < 1. We consider the autoregressive model

Zn+1 = Fn+1(Zn, εn+1) = MnZn + εn+1,

with initial state Z0, where ε = (εn) is a noise independent on Z0. We assume that |Z0| is integrable.
Moreover the (εn) are independent and supn E[|εn|] = C < +∞. By induction one sees easily that Zn

and εn+1 are independent. Put

Bj =
{

Id for j = 0;∏n
k=n−j+1 Mk for 1 ≤ j ≤ n.

Then Zn can be written in the closed form Zn = BnZ0 +
∑n

k=1 Bn−kεk. We have

sup
n

E[|Xn|] ≤ ρnE[|Z0|] + C

n∑

k=1

ρn−k ≤ E[|Z0|] + C
1

1− ρ
= C1.

Since Fn is ||Mn||-Lipschitzian, we deduce from Theorem (2.3) that

ϑ(Zq, Zp) ≤ C1ρ
q−p, q ≥ p.

5. Proof of Theorem (2.9)

As we saw in the Introduction, in order to prove (2.9) it is enough to prove an analogous result by
substituting 1A with any bounded function f ∈ L1. So, fix f ∈ L1. Throughout the present section we
put, for every integer n

Yn = f(Zn)−E[f(Zn)].
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Assertion (b) of Theorem (2.9) easily follows easily from assertion (a): take the sequence (cn) defined by
cn = 1√

n log2 n
, and observe that (cn) is universal by Rademacher-Menchov Theorem, (asserting that a

sequence (cn) is universal if
∑

n c2
n log2 n < +∞). Now we have

∣∣ ∑n
k=1(ϕ(k + 1)− ϕ(k))Yk

∣∣
ϕ(n)

≤ log2 ϕ(n)√
ϕ(n)

∣∣∣c[ϕ(n)]

n∑

k=1

(ϕ(k + 1)− ϕ(k))Yk

∣∣∣,

and the second term of the above inequality tends to 0 by assertion (a); hence we prove assertion (a).
With no loss of generality we can assume β = 1 in (2.10). This is plain if β ≤ 1: if β > 1, we prove first
the result for the function ϕ̃

.= β−1ϕ; in order to get the desired conclusion for the function ϕ also, we
need only to observe that

c[ϕ(n)] ≤ c[ϕ(n)β−1].

We now observe that the relation

ϕ(x + 1) ≤ ϕ(x) + 1 ∀x ∈ IR+

implies (in fact, is equivalent) to

(5.1) ϕ−1(x) + 1 ≤ ϕ−1(x + 1) ∀x ∈ IR+.

Put ψ(k) = [ϕ−1(k)] for every integer k. From (5.1) we get also

(5.2) ψ(k) + 1 ≤ ψ(k + 1) ∀k ∈ IN∗.

Relation (5.2) implies in turn

(5.3) ϕ
(
ψ(k)

)− ϕ
(
ψ(k − 1)

) ≤ ϕ
(
ψ(k)

)− ϕ
(
ψ(k − 2) + 1

) ≤ ϕ
(
ϕ−1(k)

)− ϕ
(
ϕ−1(k − 2)

)
= 2.

We now need two Lemmas.

(5.4) Lemma. Let p ≤ q be two integers. Then, for every g ∈ L1 the following inequality holds

|Cov(Yp, Yq)| ≤ sup |g|ϑ(Zp, Zq).

The proof of the above Lemma is quite similar to the proof of Lemma (6.1), and is omitted.

(5.5) Remark. Note that the function g defined by the formula g(x) =
(
f(x) − E[f(Zn)]

)+ belongs to
L1; moreover sup |g| ≤ 2 sup |f |. Thus, Lemma (5.4) implies that

(5.6) |Cov(Y +
p , Y +

q )| ≤ 2 sup |f |ϑ(Zp, Zq).

By (5.6), with no loss of generality we can assume in what follows that Yn ≥ 0 for all n: if this is not
true, it is sufficient to write Yn = Y +

n − Y −
n .

(5.7) Lemma. We have limn→∞ cn

∑n
k=1 Yψ(k) = 0, P -almost surely.

Proof. For h ≤ k we have, by Lemma (5.4) and relations (2.6) and (5.2),

|Cov(Yψ(h), Yψ(k))| ≤ 2 C
G(h)

G(k − 1)
.

Now condition (2.11) assures that the sequence
(
Yψ(n)

)
is quasi orthogonal by lemma 7.4.3 p. 139 of [10].

The result thus follows from Kronecker’s Lemma.
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We can now pass to the proof of point (a) of (2.9). For every n put

Un = cn

n∑

k=1

Yψ(k), Vn = cn

ψ(n)−1∑

k=1

(ϕ(k + 1)− ϕ(k))Yk, Tn = c[ϕ(n)]

n∑

k=1

(ϕ(k + 1)− ϕ(k))Yk.

It is easily verified that (Vn) converges to 0 iff (Tn) does; in fact, for ψ(r) ≤ n ≤ ψ(r + 1)− 1 we have

Vr
cr+1

cr
≤ Tn ≤ Vr+1

cr−1

cr+1
.

Hence, by Lemma (5.7), it is enough to prove that (Un − Vn) converges to 0 almost surely. Now

Un − Vn = cn

( n∑

k=1

Yϕ−1(k) −
ψ(n)−1∑

k=1

(ϕ(k + 1)− ϕ(k))Yk

)

= cn

( n∑

k=1

Yϕ−1(k) −
n∑

k=1

ψ(k)−1∑

j=ψ(k−1)

(ϕ(j + 1)− ϕ(j))Yj

)
= cn

n∑

k=1

ψ(k)∑

j=ψ(k−1)

δjYj ,

where we put

δj =
{

ϕ(j)− ϕ(j + 1) for ψ(k − 1) ≤ j ≤ ψ(k)− 1,
1 for j = ψ(k).

We have easily, by (5.3)

(5.8)
ψ(k)∑

j=ψ(k−1)

|δj | = 1 +
ψ(k)−1∑

j=ψ(k−1)

(ϕ(j + 1)− ϕ(j)) = 1 +
[
ϕ
(
ψ(k)

)− ϕ
(
ψ(k − 1)

)] ≤ 3.

Put now Rk =
∑ψ(k)

j=ψ(k−1) δjYj . We have to prove that lim
n→∞

cn

n∑

k=1

Rk = 0 almost surely.

We need a bound for Cov(Rh, Rk). We have

Cov(Rh, Rk) =
ψ(h)−1∑

i=ψ(h−1)

ψ(k)−1∑

j=ψ(k−1)

δiδjCov
(
Yi, Yj

)
.

Now, for every i, j with ψ(h− 1) ≤ i ≤ ψ(h), ψ(k − 1) ≤ j ≤ ψ(k), we have, again by (5.4) and (2.6),

|Cov(Yi, Yj)| ≤ C1
G(h)

G(k − 2)
.

Condition (2.11) and relation (5.8) assure that the sequence (Rn) is quasi orthogonal, and we can now
argue as in the proof of Lemma (5.7). The Theorem is proved.

(5.9) Examples We give here some particular cases:
(i) We refer to Example (4.1) (i). Assume that γn = nβ , where β > −1. Then Theorem (2.9) gives

lim
n→∞

1
log n

n∑

k=1

1
k

(
1A

(
Zk

)− P
(
Zk ∈ A

))
= 0.

On the other hand, in the case γn = n−1 we get limn→∞ 1
log log n

∑n
k=1

1
k log k

(
1A

(
Zk

)−P
(
Zk ∈ A

))
= 0.

(ii) We refer here to Example (4.5). In this case it is easy to see that limn→∞ 1
n

∑n
k=1

(
1A(Zk) −

P (Zk ∈ A)
)

= 0.
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We conclude this section by proving Remark (2.12). For ϕ(x) = log g(x) we have ϕ−1(x) = g−1(ex),
hence G(x) = ex. Condition (2.11) is verified since

∑

k≤n

G(k)
G(n)

+
∑

k>n

G(n)
G(k)

=
∑

k≤n

ek

en
+

∑

k>n

1
ek−n

;

now the first sum is equal to en+1−1
en(e−1) , which is bounded as n → ∞, while the second sum is equal to∑

j e−j < ∞.

6. From the ϑ-dependence coefficient to the Rosenblatt coefficient

Let T and S be two r. v.’s defined on (Ω,A, P ). The coefficient of ϑ-dependence ϑ(T, S) is useful in some
cases in order to estimate the Rosenblatt coefficient of dependence of S and T , defined as

α(T, S) .= sup
A,B

|Cov(1A(S), 1B(T ))|,

where the sup is taken over all Borel sets in IR.

(6.1) Lemma. Let A be any Borel set in IR. Then,

sup
f∈L1

|Cov(1A(S), f(T ))| ≤ ϑ(T, S).

Proof. For any function f : IRd → IR such that f(T ) is integrable we have

|Cov(1A(S), f(T ))| = |E[1A(S)f(T )]−E[1A(S)]E[f(T )]|
= |E[1A(S)E[f(T )|S]]−E[1A(S)E[f(T )]]|
= |E[1A(S)

(
E[f(T )|S]−E[f(T )]

)
]| ≤

∣∣∣∣(E[f(T )|S]−E[f(T )]
∣∣∣∣

1
.

(6.2) Remark. If g is L-Lipschitzian, since g/L is in L1 we have from (6.1)

|Cov(1A(S), g(T ))| = L|Cov(1A(S),
g

L
(T ))| ≤ L sup

f∈L1

|Cov(1A(S), g(T ))| ≤ Lϑ(T, S).

(6.3) Proposition. Let QT (ε) = supx P (x < T ≤ x + ε), ε > 0. be the concentration function of T .
Then for every x ∈ IR,

(6.4) |Cov(1A(S), 1(−∞,x](T ))| ≤ inf
ε

(1
ε
ϑ(T, S) + QT (ε)

)
.

Proof. Fix ε > 0. Put gε(t) =
(
1 + x−t

ε 1(x,x+ε](t)
)

and consider the (1/ε)-Lipschitz function fε(t) =
1(−∞,x](t) + gε(t). In view of Remark (6.2), we have

|Cov(1A(S), 1(−∞,x](T ))| = |Cov(1A(S), fε(T ))−Cov(1A(S), gε(T ))|
≤ |Cov(1A(S), fε(T ))|+ |Cov(1A(S), gε(T ))| ≤ 1

ε
θ(T, S) + QT (ε).

Since ε > 0 is arbitrary, the proof is achieved.

We now consider a case in which the infimum in (6.4) can be explicitly calculated. Assume that T is such
that, for some fixed γ > 0 and for every ε > 0,

(6.5) QT (ε) ≤ C1ε
γ .

(6.6) Proposition. We have

(6.7) sup
A,x

|Cov(1A(S), 1(−∞,x](T ))| ≤ C2(γ)
(
ϑ(T, S)

)γ/(γ+1)
.

Proof. We introduce the bound of QT given in (6.5) into the infimum in (6.4). Then such infimum can
be found by means of elementary calculus. It is attained for ε =

(
ϑ(T, S)/C1

)1/(γ+1) proving (6.7).
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(6.8) Remark. Assumption (6.5) is simply γ-holderianity of the distribution function of T , since

P (x < T ≤ x + ε) = FT (x + ε)− FT (x).

If the law of T has a bounded density, then (6.5) holds with γ = 1. A uniform version of (6.5) for a
sequence of random variables is considered in the paper [2] (formula (2.9) pag. 317).
We now discuss another relevant case in which (6.5) holds. Let (Xn) be a sequence of independent
identically distributed random variables with distribution belonging to the domain of attraction of a
stable distribution Φ with exponent α ∈ (1, 2] (see section 4, example (4.1) (iii)). Put, as in section 4,
Zn = Sn

an
. For p < q we consider T = Zq and S = Zp, so that our task is to bound the concentration

function of Zq. This can be done by using the following result (see [9], pag 68 for the proof).

(6.9) Lemma. Let (Xn) be a sequence of independent random variables and put Sn = X1 + · · ·+ Xn. Let
λ1, λ2, . . . , λn be positive numbers such that λk ≤ λ, k = 1, . . . , n. Let (Xs

k) denotes a symetrized version
of (Xk). Then

(6.10) QSn(λ) ≤ C3λ
( n∑

k=1

λk2P{|Xs
k| ≥ (λk/2)})−1/2

,

For each k = 1, . . . , q take λk = λ = aqε in (6.10). We get

QZq (ε) = QSq (aqε) ≤ C3aqε
(
a2

qε
2q

(
1− F (aq(ε/2)) + F (−aq(ε/2))

))−1/2

= C3

(
q
(
1− F (aq(ε/2)) + F (−aq(ε/2))

))−1/2
.

By formulas (5.6) and (5.9) p. 575 of [4] we know that λαq
(
1 − F (aqλ) + F (−aqλ)

) → C4 > 0. Hence,
for large q we obtain QZq (ε) ≤ C5ε

α/2.

In [5] the following statement is proved:

(6.11) Proposition. For large q and every p ≤ q we have

sup
A,x

|Cov(1A(Zp), 1(−∞,x](Zq))| ≤ Cα

(ap

aq

)α/(α+2)

.

It is also a consequence of Proposition (6.6) and formula (4.2) above.
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