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Abstract. We regard one side of the coarea formula as a measure and compute
its density by an area-type formula. As an application, we show the first nontrivial
example of coarea formula for vector-valued sub-Riemannian Lipschitz mappings.
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1. Introduction

Coarea formula is an important tool in different areas of Analysis, as for instance
Geometric Measure Theory and Partial Differential Equations. It has been found
by H. Federer, [7]. As a small historical record, here the author remarks: “The
original motivation leading to the discovery of this theorem was the simplification of
certain arguments in [6]”. Federer proves the coarea formula for Lipschitz mappings
of Riemannian manifolds. Extensions of this formula to various classes of Sobolev
mappings have been recently established by J. Malỳ, D. Swanson and W. P. Ziemer
in [24], where one can find further references. In this paper we are mainly concerned
with coarea formula in the case of sub-Riemannian manifolds, whose distance does
not satisfy a biLipschitz estimate with respect to any Riemannian distance.

More precisely, we study the coarea formula when the Riemannian distance in the
source space is replaced by the sub-Riemannian distance. This yields two substantial
differences with respect to the Riemannian context. First, the Hausdorff dimensions
of level sets may be strictly greater than their topological dimensions. Second, sub-
Riemannian Lipschitz mappings may not be Lipschitz with respect to any Riemannian
distance. According to this picture, we have two possible choices to state a sub-
Riemannian coarea formula. One possibility is to consider Riemannian Lipschitz
mappings, whereas level sets are measured by the sub-Riemannian distance. In this
case the coarea formula is a consequence of three main ingredients: the Riemannian
coarea formula, an area-type formula for higher codimensional smooth submanifolds
and a weak Sard-type theorem, [16], [18], [19], [22], [26]. However, it is rather clear
that the point of coarea formula in the sub-Riemannian setting is that of including also
Lipschitz mappings with respect to the sub-Riemannian distance in the source space.
This is a new difficulty with respect to the Riemannian setting, since sub-Riemannian
Lipschitz mappings may not be differentiable on a set of positive measure, [20]. As
a consequence, we cannot apply the Riemannian coarea formula and this is the first
important obstacle.

On the other hand, for real-valued sub-Riemannian Lipschitz mappings on stratified
groups the coarea formula holds, [20]. The proof is based on a general coarea formula
for functions of bounded variations with respect to vector fields, [12], [15], [23], [25].
Here the key point is to show that we can replace the perimeter measure of upper
level sets with the one codimensional sub-Riemannian Hausdorff measure of level sets.
Unfortunately, this method cannot be extended to vector-valued sub-Riemannian
Lipschitz mappings, since level sets can be seen as boundaries of finite perimeter sets
only in the case of real-valued mappings.

Due to the special symmetries of Euclidean spaces, the proof of the classical coarea
formula for vector-valued Lipschitz mappings relies on a sort of “extension procedure”
by orthogonal projections, that enlarge the dimension of the target to make it locally
bi-Lipschitz equivalent to the source space. This allows for applying a linearization
argument to the extended mapping, along with estimates on its Jacobian, [8]. The
application of this approach to stratified groups seems to entail several drawbacks.
In fact, the target extension should be also an algebraic extension that respects the
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sub-Riemannian distance. Moreover, it is not true that all projections are Lipschitz
continuous with respect to the sub-Riemannian distance.

We overcome these difficulties following a different scheme. We regard one side of
the coarea formula as a set function and then compute its density. This is the original
approach used by Federer in [7], where he first shows that this set function is countably
additive on measurable sets of the source space. In our case, this set function is the
integral of the sub-Riemannian spherical Hausdorff measures of level sets, instead of
either Riemannian Hausdorff measures of 3.1 in [7] or metric Hausdorff measures of
2.10.26 in [8]. Since our method requires that this set function is a Borel regular
measure, in Theorem 2.2 we prove this fact for a Lipschitz mapping of boundedly
compact metric spaces, where the source metric space is countably finite with respect
to a general Carathéodory measure (Definition 2.1). Then we call this set function
the coarea measure.

Our technique differs from [7], since we compute the density of the coarea measure
by a blow-up method in the same way as in [18] we established an upper density
estimate for a family of integrals of “size δ approximating measures”. This leads us
to a coarea inequality for sub-Riemannian Lipschitz mappings of stratified groups.
Let us point out that in the Euclidean context this blow-up approach can be found
in Lemma 2.96 of [1]. After the density of the coarea measure is computed, then its
Borel regularity allows us to apply classical differentiability theorems for measures in
metric spaces, [8].

The main observation of this work is that once any area-type formula is available for
the Hausdorff measure of level sets, then we are able to obtain a sharp lower density
estimate of the coarea measure, hence establishing the coarea formula. Recently
B. Franchi, R. Serapioni and F. Serra Cassano have established area-type formulae
for the spherical Hausdorff measure of intrinsic regular submanifolds of Heisenberg
groups Hn with codimension higher than one, [14]. As an application of the method
described above, we use these results to establish the first nontrivial example of coarea
formula for vector-valued sub-Riemannian Lipschitz mappings.

Theorem 1.1 (Coarea formula). Let f : Hn −→ Rk be a Lipschitz mapping with
1 ≤ k ≤ n. Then we have

(1)

∫
Hn
u(x) JHf(x) dx =

∫
Rk

(∫
f−1(y)

u(x) dS2n+2−k
d (x)

)
dy ,

where u : Hn −→ [0,+∞] is any nonnegative measurable function.

However, this coarea formula should not be regarded as an isolated case, but rather
as a special instance of the general method described above. For instance, one could
check that our approach provides a unified method to get different proofs of either the
Euclidean coarea formulae or the sub-Riemannian coarea formulae of [20]. As a sort
of meta-statement, we may expect that whenever area-type formulae are available in
general stratified groups, then new sub-Riemannian coarea formulae will follow.

Turning to the proof of Theorem 1.1, given in Subsection 4.1, the concrete appli-
cation of our scheme has to face further technical issues. In fact, the coarea measure
corresponds to an integral of measures of level sets, hence the area-type formula of [14]
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has to be applied to a parametrized family of implicit mappings that around regular
points foliate the source space. In particular, the implicit mappings must be defined
on balls of common radius. This requires a “uniform version” of the implicit function
theorem of [14]. More precisely, we have to make explicit the geometric constant
that multiplies the radius of the balls on which the implicit mappings are defined.
Section 3 is devoted to the proof of this quantitative version of the implicit function
theorem. The argument of the proof has some interesting variants with respect to
the classical one, due to noncommutativity of the group law and to the use of the key
Hölder estimate (13) for right translations applied to the left invariant homogeneous
distance. This is a typical feature of the non-abelian case. We also remark that the
blow-up of the coarea measure and the local foliation by implicit mappings give rise
to their “double scale differentiability”, that is expressed in the limit (29). In fact,
we consider a sort of “nonlinear” difference quotient, in the direction δρw, as ρ→ 0,
that is applied to a foliating implicit mapping that also depends on ρ.

Finally, we wish to point out that area-type formulae and implicit function theorems
for Rk-valued mappings on Heisenberg groups are still to be understood for k > n. In
fact, the known results for k ≤ n rely on a representation of the Heisenberg group Hn

as semidirect product of a commutative k-dimensional homogeneous subgroup by a
k-codimensional homogeneous normal subgroup. This factorization is not possible for
k > n. Although under Euclidean regularity area-type formulae and coarea formulae
hold for all codimensions k = 1, . . . , 2n, [21], in the case of sub-Riemannian Lipschitz
mappings, the coarea formula (1) for k > n is not clear. In particular, the simplest
version of this formula for n = 1 and k = 2 is already an intriguing open question.
The study of this case is the object of recent investigations, [17].

2. Coarea measure in metric spaces

In the sequel, we will denote by X and Y two boundedly compact metric spaces,
namely bounded sequences in these spaces admit converging subsequences.

Definition 2.1 (Carathéodory measure). Let a ≥ 0 and let O be a family of open
sets of X. For each E ⊂ X, we define the set function

Γat (E) = βa inf

{
∞∑
j=1

diam(Fj)
a : E ⊂

∞⋃
j=1

Fj, diam(Fj) ≤ t, Fj ∈ O

}
.

The positive number βa plays the role of the geometric constant. According to [8],
we define the Carathéodory measure

Γa(E) = sup
t>0

Γat (E) ,

that is a Borel regular measure on X. In addition, our definition assumes that

θ−1
a Γa ≤ Ha ≤ θa Γa(2)

for some θa > 0. Recall that when O coincides with all open sets of X and 2p βp
equals the volume of the unit Euclidean ball in Rp, we have Γp = Hp that is the
classical p-dimensional Hausdorff measure.
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Since our measures Γa are constructed from family of open sets, we have

lim sup
n→∞

Γat (Kn) ≤ Γat

( ∞⋂
n=1

⋃
j≥n

Kj

)
,

for every equibounded sequence (Kn) of compact sets and for each t > 0. Thus,
for each continuous mapping f : A −→ Y on a closed set A ⊂ X, the function
Y 3 y −→ Γat

(
K ∩ f−1(y)

)
is upper semicontinuous, whenever K is a compact set. It

follows that

(3) Y 3 y −→ Γa
(
K ∩ f−1(y)

)
is Borel.

Since X is boundedly compact, closed sets are union of increasing sequences of com-
pact sets and this easily leads us to the following

Proposition 2.1. Let F and A be closed sets of X and let f : A −→ Y be continuous.
Then y −→ Γa

(
F ∩ f−1(y)

)
is Borel measurable.

Taking into account 2.10.25 of [8], we get the following inequality

(4)

∫ ∗
Y

ΓQ−P
(
E ∩ f−1(ξ)

)
dΓP (ξ) ≤ Lip(f)

ωQ−P ωP βQ−P βP βQ
ωQ

ΓQ(E) ,

where
∫ ∗

denotes the upper integral, E ⊂ X and 0 ≤ P ≤ Q. Since ΓP is a regular
measure, it follows that for every ΓQ negligible set N ⊂ X

ΓQ−P
(
N ∩ f−1(y)

)
= 0 for ΓP -a.e. y ∈ Y .(5)

Theorem 2.1. Let X be ΓQ countably finite and let f : A −→ Y be a Lipschitz
mapping, where A ⊂ X. Then for every ΓQ-measurable set G of X, we have that

Y 3 y −→ ΓQ−P
(
G ∩ f−1(y)

)
is ΓP measurable.(6)

Proof. Let B be a Borel set of X. Since X is ΓQ countably finite, and ΓQ is
Borel regular, taking into account 2.2.2 of [8] we get a countable union of closed sets
T = ∪jFj such that ΓQ(B \ T ) = 0. Taking into account Proposition 2.1 and (5), it
follows that

y −→ ΓQ−P
(
B ∩ f−1(y)

)
is ΓQ measurable. Again, by ΓQ countably finiteness of X and Borel regularity of
ΓQ, 2.2.3 of [8] gives us a countable union of Borel sets E = ∪jGj, with ΓQ(Gj) <∞
such that ΓQ(G \ E) = 0. Finally, by (5), we get (6). 2

Definition 2.2 (Coarea measure). Let X be ΓQ countably finite and let f : A −→ Y
be a Lipschitz mapping defined on a closed set of X. The coarea measure is defined
for every S ⊂ X as

νf (S) = inf

{∫
Y

ΓQ−P
(
G ∩ f−1(y)

)
dΓP (y) : G ⊃ S is ΓQ measurable

}
.

Theorem 2.2. The coarea measure νf is a Borel regular measure on X such that

νf (G) =

∫
Y

ΓQ−P
(
G ∩ f−1(y)

)
dΓP (y)(7)
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for any ΓQ measurable set G of X. Moreover, any ΓQ measurable set is also νf
measurable.

Proof. Clearly, (7) is straightforward from definition of coarea measure. Taking
into account Theorem 2.1, one easily observes that ν is countably subadditive. Now,
we prove that ΓQ measurable sets of X are also ν measurable, hence in particular ν is
a Borel measure. Let E be a ΓQ measurable set, let S ⊂ X and let G ⊃ S be any ΓQ

measurable set. We have ν(G) = ν(G\E)+∩(G∩E) ≥ ν(S∩E)+ν(S∩E), therefore
the arbitrary choice ofG ⊃ S and the definition of ν imply that E is also ν measurable.
To show Borel regularity, we choose any S ⊂ X, hence Lebesgue’s theorem and the
definition of ν give us a ΓQ-measurable set G ⊃ S such that ν(S) = ν(G). Arguing as
in the proof of Theorem 2.1, ΓQ countably finiteness of X gives us a countable union
of Borel sets T = ∪jBj such that T ⊃ G and ΓQ(T \G) = 0. By (4) and (7) we have
ν(T \ G) = 0, then ν(S) ≤ ν(T ) ≤ ν(T \ G) + ν(G) = ν(G) = ν(S), hence ν is also
Borel regular. 2

3. A uniform implicit function theorem

We can think of the Heisenberg group as a 2n + 1 dimensional Hilbert space Hn

equipped with orthogonal subspaces V1 and V2, where dim(V1) = 2n and dim(V2) = 1.
Notice that this notation is not conventional, since Vj commonly denote the layers
of the associated stratified Lie algebra. We have the canonical linear orthogonal
projections πj : Hn −→ Vj and the components xj = πj(x), where x = x1 + x2. The
group operation in Hn is defined as follows

x · y = x+ y + ω(x1, y1) ,

where ω : V1 × V1 −→ V2 is bilinear antisymmetric and non-degenerate, namely,
ω(x1, ·) is non-vanishing for all x1 ∈ V1 \ {0}.

Remark 3.1. One should also observe that the Lie algebra of Hn can be identified
with Hn itself, where V1 and V2 exactly coincide with the canonical layers of the
stratified algebra. Moreover, the group operation along with the fixed scalar product
on Hn also yields a left invariant Riemannian metric on Hn that makes its Lie algebra
isometric to Hn equipped with the fixed scalar product.

The so-called “intrinsic dilations” in Hn are defined as δr(x) = rx1 + r2x2 and then
form a one-parameter group family of group isomorphisms on Hn. A continuous, left
invariant distance d such that d(δrx, δry) = rd(x, y) for all x, y ∈ Hn and r > 0 is
called homogeneous distance of Hn. This left invariant metric on Hn gives the well
known sub-Riemannian distance % on Hn, see for instance [4]. This is an important
example of homogeneous distance. In the sequel, for every homogeneous distance d,
we will use the abbreviation d(v) = d(0, v). Recall that 0 is the unit element of Hn.

Next we introduce the natural class of “smooth mappings” adapted to the stratified
structure of the Heisenberg group. We will follow notation and results of [10, 11],
where these mappings have been introduced in arbitrary stratified groups.

Definition 3.1. Let (e1, . . . , e2n) be an orthonormal basis of V1 and consider the left
invariant vector fields (X1, . . . , X2n) of Hn such that Xj(0) = ej for j = 1, . . . , 2n.
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Let Ω be open set of Hn. A mapping f : Ω −→ Rk is of class C1, or it belongs to
C1(Ω,Rk), if the distributional derivatives Xjf

i exist and are continuous in Ω for all
i = 1, . . . , k and j = 1, . . . , 2n.

Translating the “stratified mean value theorem” (1.41) of [11] into our notation,
we have the estimate

(8) |f(x · y)− f(x)| ≤ C d(y) sup
d(z)≤b d(y),j=1,...,2n

|Xjf(xz)| .

Clearly, introducing the k × (2n+ 1) matrix ∇Hf(x) of entries Xjf
i for i = 1, . . . , k

and j = 1, . . . , 2n, whose (2n + 1)-th column is vanishing, and replacing f with the
y −→ f(y)−∇Hf(x)(x−1y) in (8) we immediately have

(9) f(x · y)− f(x)−∇Hf(x)(y) = o
(
d(y)

)
as d(y)→ 0,

where ∇Hf(x) is identified with a linear mapping through the fixed orthonormal
basis (e1, . . . , e2n+1) of Hn. We say that f satisfying (9) is differentiable at x, hence
f ∈ C1(Ω,Rk) is everywhere differentiable and ∇Hf(x) is continuous. Conversely, it
is easy to check that an everywhere differentiable mapping f such that x −→ ∇Hf(x)
is continuous belongs to C1(Ω,Rk). In fact, in particular

x −→ Xjf
i(x) = lim

t→0

1

t

(
f i(x · etXj)− f i(x)

)
and are continuous functions on Ω. Recall that etX is the unique curve γ such that
γ(0) = 0 and γ̇(t) = X(γ(t)), where X is a left invariant vector field. As a conse-
quence, continuity of x −→ Xjf

i(x) and the obvious formula

f i(x · etXj)− f i(x) =

∫ t

0

Xjf
i(x · esXj) ds

imply that f ∈ C1(Ω,Rk).

Remark 3.2. Although a proof of the previous characterization of C1 smoothness
can be found at Proposition 5.8 of [13], we have decided to add another simple proof
that only uses the stratified mean value theorem of the Folland and Stein’s book,
[11]. This should stress how this theorem immediately imply the pointwise properties
of C1 functions, as soon as the right notion of differentiability (9) is considered. We
also recall that this differentiability is a special instance of the more general and well
known notion of “Pansu differentiability” that includes group-valued mappings, [27].

Remark 3.3. Let us stress that all C1 smooth mappings in the standard sense are also
C1, but the converse does not hold, see for instance Remark 5.9 of [13]. Furthermore,
it is possible to construct mappings of C1(Ω,R) that are not even approximately
differentiable in the Euclidean sense on a set of positive measure, [20].

Definition 3.2. The horizontal Jacobian of a differentiable mapping f : Ω −→ Rk

at x ∈ Ω is the standard Jacobian of the matrix
(
Xjf

i(x)
)i=1,...,k

j=1,...,2n
. We denote this

number by JHf(x). If Vl =
∑2n

j=1 c
j
lXj for l = 1, . . . k and cl = (cil) are orthonormal

vectors of R2n, we denote by JV f(x) the number | det
(
Vlf

i(x)
)
|.
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Remark 3.4. Notice that JHf(x) only depends on the group operation and on the fix
scalar product on Hn. The restricted Jacobian JV f(x) only depends on the horizontal
subspace V of span{X1, . . . , X2n}.
Definition 3.3. Let x→ F (x) be a mapping of metric spaces. The modulus of conti-
nuity of F at x is the function ]0,+∞[3 t→ ωx(t) defined as max

{y:|x−y|≤t}
d
(
F (x), F (y)

)
.

The modulus of continuity of F on a compact set K is set as ]0,+∞[3 t → ωK(t),
that is defined as max

{x,y∈K: d(x,y)≤t}
d
(
F (x), F (y)

)
.

The scalar product of Hn defines a norm in the linear space of homogeneous linear
mappings ‖L‖ = max{x∈V1:|x|=1} |L(x)|, where L : Hn −→ Rk and the Euclidean norm
is fixed on Rk. We will use this norm for the modulus of continuity of the differential
x→ ∇Hf(x). Taking into account that geodesics in Hn are smooth, see for instance
[4], then the following lemma can be easily proved by standard arguments.

Lemma 3.1. Let Ω be an open set of Hn and let f ∈ C1(Ω,Rk). Let K and K0 be
compact sets of Ω such that K ⊂ K0 and any couple of points in K are connected by
at least one geodesic contained in K0. Then for all δ > 0, we get

sup

{
|f(y)− f(x)−∇Hf(x)(y − x)|

%(x, y)
: x, y ∈ K, 0 < %(x, y) ≤ δ

}
≤ ωK0(δ) ,

where ωK0 is the modulus of continuity of x −→ ∇Hf(x) on K0.

In the sequel, Ω will always denote an open set of Hn. The closed ball Dcc
x,r of

center x and radius r will refer to the sub-Riemannian distance. Couples of compact
sets K and K0 as in the previous lemma are given in the following elementary

Lemma 3.2. Any geodesic connecting two points of Dcc
x,r is contained in Dcc

x,2r.

Notice that a more general version of Lemma 3.1 is a consequence of the “stratified
mean value theorem” (1.41) of [11], applied to the Heisenberg group.

Definition 3.4. We say that a commutative subgroup of Hn contained in V1 is a
horizontal subgroup. Every subgroup of Hn containing V2 that is closed with respect
to dilations is a vertical subgroup.

Definition 3.5 (Differentiation with respect to a subgroup). Let f ∈ C1(Ω,Rk) and
let V be horizontal subgroup. Then for x ∈ Ω the partial differential with respect to
V ∂V f(x) : V −→ Rk is defined as

lim
d(v)→0

f(xv)− f(x)− ∂V f(x)(v)

d(v)
= 0 .

Definition 3.6. Let V be a horizontal subgroup. If V ′ is any linear subspace of V1

such that V1 = V ⊕ V ′, then we define the associated mapping J : N × V −→ Hn,
J(u, v) = u · v, where N = V ′ + V2. We say that V is complementary to N and that
(N, V ) is a factorization of Hn. The angle between N and V is defined as the length
of n ∧ v, where n is a unit (2n + 1 − k)-vector of N and v is a unit k vector of V .
We denote this number by |N ∧ V |. If N is the orthogonal complement of V , that
is also a vertical subgroup, we say that (N, V ) is an orthogonal factorization of Hn.
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The canonical projections πN : Hn −→ N and πV : Hn −→ V with respect to (N, V )
are defined by the identity J−1(x) =

(
πN(x), πV (x)

)
.

Remark 3.5. The mapping J of the previous definition is an analytic diffeomorphism.
In fact, let x ∈ Hn, x = x1 + x2 and denote by xV the canonical projection of x1 into
V with respect to the direct product V1 = V ⊕V ′. Then we have the explicit formula
J−1(x) =

(
x− xV − 1

2
ω(x1, xV ), xV

)
.

Definition 3.7. Let f ∈ C1(Ω,Rk), where 1 ≤ k ≤ n. Let x0 ∈ Ω and assume that
∇Hf(x0) : Hn −→ Rk is surjective. Let V be any k-dimensional horizontal subgroup
such that ∇Hf(x0)|V is invertible. Then for any vertical subgroup N complementary
to V we say that (N, V ) is a factorization of Hn that is adapted to ∇Hf(x0).

Remark 3.6. For every vertical subgroup N of Hn with dim(N) ≥ n+ 1, it is possi-
ble to find a horizontal subgroup V that is complementary to N , see Lemma 3.26 of
[14]. Thus, once f ∈ C1(Ω,Rk) has surjective differential ∇Hf(x0) : Hn −→ Rk, the
kernel ker∇Hf(x0) is a vertical subgroup of dimension greater than or equal to n+ 1
and we have a complementary horizontal subgroup V , where ∇Hf(x0)|V is surjective.
Furthermore, the linear space N orthogonal to V is also a vertical subgroup, that does
not necessarily coincide with the kernel of the differential. This shows that the pre-
vious definition is well posed, namely, we can always find an orthogonal factorization
adapted to some surjective differential.

Definition 3.8. When a homogeneous distance is fixed on Hn, the open and the
closed ball of center x and radius r is denoted by Bx,r and Dx,r, respectively. When
a horizontal subgroup V is complementary to N , we also introduce the closed ball
DN
u,r = Du,r ∩ N for all u ∈ N and the closed ball DV

v,r = Dv,r ∩ V for all v ∈ V .
By the mapping J : N × V −→ Hn associated to N and V we introduce a special
notation to denote the group products of closed balls DN

u,r ·DV
v,r = J(DN

u,r ×DV
v,r).

Theorem 3.1. Let k be an integer such that 1 ≤ k ≤ n and consider f ∈ C1(Ω,Rk).
Let x0 ∈ Ω, let ∇Hf(x0) : Hn −→ Rk be surjective and let (N, V ) be a factorization
of Hn adapted to ∇Hf(x0). Let (u0, v0) ∈ N × V be the unique element such that
x0 = J(u0, v0). Let R > 0 be such that Dcc

x0,2R
⊂ Ω and let s, r > 0 be such that

the compact set DN
u0,3s
·DV

v0,3r
is contained in Dcc

x0,R
and (∂V f)(x) is invertible for all

x ∈ DN
u0,3s
·DV

v0,3r
. We denote by ω the modulus of continuity of x→ ∇Hf(x) on the

compact Dcc
x0,2R

. Then for all x̄ ∈ DN
u0,s
· DV

v0,r
, selecting 0 < δx̄ < min{1, s, r} such

that

2ω
(
(1 + c0)δx̄

)
‖
(
∂V f(x̄)

)−1‖ < 1 ,(10)

where c0 only depends on R, s and %(x0) and introducing the constant

κ(x̄) = min

1,

(
1− 2ω

(
(1 + c0)δx̄

)
‖
(
∂V f(x̄)

)−1‖
‖
(
∂V f(x̄)

)−1‖ LipR(f)

)2
 ,(11)

where LipR(f) denotes the Lipschitz constant of f on Dcc
x0,R

with respect to %, there

exists a unique continuous mapping ϕx̄ : DN
ū,κ(x̄)δ2

x̄
−→ DV

v̄,δx̄
such that ϕx̄(ū) = v̄ and
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for all u ∈ DN
ū,κ(x̄)δ2

x̄
there holds

f
(
u · ϕx̄(u)

)
= f(x̄) .(12)

Proof. Let us fix (ū, v̄) ∈ DN
u0,s
× DV

v0,r
and set x̄ = ū · v̄. We first define

Lu,v = (∂V f)(u · v) : V −→ Rk, L̄ = Lū,v̄ and recall that Lu,v is invertible for all
u ·v ∈ DN

u0,3s
·DV

v0,3r
. We introduce g(u, v) = f(u ·v)−f(ū · v̄) and define the mapping

αu(h) = h− T̄
(
g(u, v̄ · h)

)
,

where T̄ = L̄−1 : Rk −→ V and v = v̄ · h. Recall that

DN
ū,s ·DV

v̄,r ⊂ DN
ū0,s
·DV

v̄0,r
⊂ Dcc

x0,R
,

then αu is well defined for all h ∈ DV
r and u ∈ DN

ū,s. We observe that the group
operation restricted to V coincides with the sum of vector spaces, then

αu(h)− αu(h′) = h− h′ + T̄
(
g(u, v̄ · h′)− g(u, v̄ · h)

)
= h− h′ + T̄

(
Lu,v̄·h(h

′ − h) + Eu,v̄·h(h, h
′)
)
,

where Lemma 3.1 and Lemma 3.2 imply that

|Eu,v̄·h(h, h′)| ≤ %(h, h′) ω(%(h, h′))

whenever h, h′ ∈ DV
r and u ∈ DN

ū,s. Therefore taking into account the equality

αu(h)− αu(h′) = T̄
(
Lu,v̄·h − L

)
(h′ − h) + T̄

(
Eu,v̄·h(h, h

′)
)
,

for δ < r and every h, h′ ∈ DV
δ and every u ∈ DN

ū,s, we have

|αu(h)− αu(h′)| ≤ ‖T̄‖
(
‖Lu,v̄·h − L̄‖+ ω(2δ)

)
%(h, h′) .

By homogeneity of %, there is a geometric constant c > 0 only depending on both %
and the subspaces N and V such that %(v) ≤ c %(u · v) for all (u, v) ∈ N × V . Then
%(v̄h) ≤ c

(
R + %(x0)

)
+ 1, where we have chosen δ < min{1, r}. Then there exists

c0 ≥ 1 depending on R, s and %(x0) such that

(13) %
(
(v̄ · h)−1 · (ū−1 · u) · (v̄ · h)

)
≤ c0 %(ū, u)1/2 .

We let δ < min{1, r, s} and observe that for all u ∈ DN
ū,δ2 , we have

%(u · v̄ · h, ū · v̄) ≤ c0 %(ū, u)1/2 + δ ≤ (1 + c0) δ.

This proves that

|αu(h)− αu(h′)| ≤ 2 ‖T̄‖ω
(
(1 + c0)δ

)
%(h, h′) .

Now, we make δ = δx̄ smaller, depending on x̄, such that (10) holds and consider the
constant κ(x̄) defined in (11). Analogously, for all u ∈ DN

ū,κ(x̄)δ2
x̄
, we obtain

|αu(0)| ≤ ‖T̄‖LipR(f) %(u · v̄, ū · v̄) ≤ c0

√
κ(x̄) ‖T̄‖LipR(f) δx̄ .
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Thus, taking into account (11), for all h ∈ DV
δx̄

, we have achieved

|αu(h)| ≤ |αu(0)|+ 2 ‖T̄‖ω
(
(1 + c0)δx̄

)
%(h)

≤ c0

√
κ(x̄)‖T̄‖LipR(f)δx̄ + 2‖T̄‖ω

(
(1 + c0)δx̄

)
δx̄

≤ δx̄ .

It follows that for all u ∈ DN
ū,κ(x̄)δ2

x̄
, the mapping αu : DV

δ(x̄) −→ DV
δ(x̄) is well defined

and it is a contraction, hence we get the unique point ψx̄(u) ∈ DV
δ(x̄) such that

f
(
u · v̄ · ψx̄(u)

)
= f(x̄) . Clearly, ψx̄(ū) = 0 and the argument above gives continuity

of ψx̄ at ū, since we can choose δ arbitrarily small. Then the translated mapping
ϕx̄ = v̄ · ψx̄ : DN

ū,κδ2 −→ DV
v̄,δ is continuous at ū, takes value v̄ at ū and it is the

unique mapping such that f
(
u · ϕx̄(u)

)
= f(x̄) for all u ∈ DN

ū,κ(x̄)δ2
x̄
. Let us pick any

u′ ∈ DN
ū,κ(x̄)δ2

x̄
, hence(
u′, ϕx̄(u′)

)
∈ DN

ū,κ(x̄)δ2
x̄
×DV

v̄,δx̄ ⊂ DN
ū,s ×DV

v̄,r ⊂ DN
u0,2s
×DV

v0,2r

and we can repeat all the previous arguments replacing (ū, v̄) with
(
u′, ϕx̄(u′)

)
, since

DN
u′,s ·DV

ϕx̄(u′),r ⊂ DN
u0,3s
·DV

v0,3r
⊂ Dcc

x0,R
.

This gives in particular the continuity of ϕx̄ at u′ and concludes the proof. 2

As a simple consequence of Theorem 3.1, we obtain the main result of this section.

Theorem 3.2 (Uniform implicit function theorem). Let k be a positive integer such
that k ≤ n and consider f ∈ C1(Ω,Rk). Let x0 ∈ Ω, let ∇Hf(x0) : Hn −→ Rk be
surjective and let (N, V ) be a factorization of Hn adapted to ∇Hf(x0). Let (u0, v0) ∈
N × V be the unique element such that x0 = J(u0, v0). Let R > 0 be such that
Dcc
x0,2R

⊂ Ω and let s, r > 0 be such that DN
u0,3s
· DV

v0,3r
⊂ Dcc

x0,R
and (∂V f)(x) is

invertible for all x ∈ DN
u0,3s
· DV

v0,3r
. We denote by ω the modulus of continuity of

x→ ∇Hf(x) on the compact Dcc
x0,2R

. Let 0 < δ < min{1, s, r} be such that

2ω
(
(1 + c0)δ

)
max

x∈DNu0,s
·DVv0,r

‖
(
∂V f(x)

)−1‖ < 1 ,(14)

where c0 only depends on R, s and %(x0) and let

(15) κ = min

1,


1− 2ω

(
(1 + c0)δ

)
max

x∈DNu0,3s
·DVv0,3r

∥∥(∂V f(x)
)−1∥∥

LipR(f) max
x∈DNu0,3s

·DVv0,3r

∥∥(∂V f(x)
)−1∥∥


2 ,

where LipR(f) denotes the Lipschitz constant of f on Dcc
x0,R

with respect to %. Then

for all (ū, v̄) ∈ DN
u0,s
×DV

v0,r
there exists a unique mapping ϕū,v̄ : DN

ū,κδ2 −→ DV
v̄,δ such

that it is continuous, ϕū,v̄(ū) = v̄ and f
(
u · ϕū,v̄(u)

)
= f(ū · v̄) for all u ∈ DN

ū,κδ2.
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4. Coarea formula in Heisenberg groups

We first construct the coarea measure in Heisenberg groups, where we rely on
notation and terminology of the previous sections.

Lemma 4.1. Let 0 ≤ k ≤ 2n + 1 be an integer and let U be a bounded open set of
Hn containing the unit element 0. Let O = {x · δrU : x ∈ Hn, r > 0} be the family
of translated and dilated copies of U . Then the corresponding measure Γ2n+2−k with
respect to a homogeneous distance is a Carathéodory measure.

Proof. Let c0 > 0 be such that the closed ball of radius c0 and centered at 0 is
contained in U . Let E ⊂ Hn and choose any ε > 0, so that

ω2n+2−k

22n+2−k

∞∑
j=0

diam(Fj)
2n+2−k − ε < H2n+2−k

t (E) ,

where ω2n+2−k is the Lebesgue measure of the unit ball in R2n+2−k, for a suitable
family of open sets {Fj}j∈N that cover E and such that diam(Fj) ≤ t for all j ∈ N.
We choose ξj ∈ Fj and observe that Fj ⊂ ξjδoj/c0U , where oj = diam(Fj). Then

Γ2n+2−k
t diam(U)/c0

(E) ≤ β2n+2−k

(
diam(U)

c0

)2n+2−k ∞∑
j=0

diam(Fj)
2n+2−k

≤ 22n+2−kβ2n+2−k

ω2n+2−k

(
diam(U)

c0

)2n+2−k (
H2n+2−k(E) + ε

)
.

Thus, letting ε → 0+ and t → 0+, we have obtained a metric constant θ2n+2−k > 0
such that Γ2n+2−k ≤ θ2n+2−kH2n+2−k. Taking θ2n+2−k sufficiently large, then estimate
(2) follows. Thus, we have proved that Γ2n+2−k is a Carathéodory measure. 2

Definition 4.1. We denote by Sa the Carathéodory measure constructed with open
O = {Bx,r : x ∈ Hn, r > 0} with respect to a fixed homogeneous distance. This is
the well known spherical Hausdorff measure.

Remark 4.1. Let 0 ≤ k ≤ 2n + 1 be an integer. Clearly the spherical Hausdorff
measure S2n+2−k is a Carathéodory measure. Moreover, following Definition 2.1, it is
an elementary verification to observe that replacing O = {Bx,r : x ∈ Hn, r > 0} with
F = {Dx,r : x ∈ Hn, r > 0} yields the same spherical Hausdorff measure S2n+2−k.

Remark 4.2. Let 0 ≤ k ≤ 2n + 1 be an integer and consider the Carathéodory
measure Γ2n+2−k constructed with open balls O = {Bx,r : x ∈ Hn, r > 0} with respect
to a fixed homogeneous distance d. Since d is left invariant and 1-homogeneous with
respect to dilations, arguing as in Proposition 1.10 of [18], it is easy to check that

(16) S2n+2−k(x · δrE) = r2n+2−k S2n+2−k(E) ,

for any E ⊂ Hn and all x ∈ Hn and r > 0.

Remark 4.3. In particular, by (16) it follows that S2n+2 is left invariant and scales
like the Lebesgue measure L2n+1 on metric balls, hence it is proportional to L2n+1 as
Haar measure of the same group Hn. In particular, S2n+2 is countably finite.
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The next lemma will use the notion of rescaled set Ex,ρ = δ1/ρ

(
x−1 · E

)
and of

rescaled function fx,ρ(ξ) = [f(xδρξ)− f(x)]/ρ.

Lemma 4.2 (Rescaling). Let A be closed in Hn and let f : A −→ Rk be Lipschitz.
Then the coarea measure

νf (E) =

∫
Rk
S2n+2−k(E ∩ f−1(y)

)
dy .(17)

is well defined on sets E of Hn and satisfies νf (E) = ρ2n+2νfx,ρ(Ex,ρ) for all ρ > 0.

Proof. By Remark 4.3, S2n+2 is countably finite, hence Theorem 2.2 ensures
that νf defines a Borel regular measure on Hn, whose measurable sets contain S2n+2

measurable sets. The rescaling property of νf immediately follows by a change of
variable in the integral (17) and applying formula (16). 2

From now on, Hp will denote the p-dimensional Hausdorff measure with respect to
the fixed scalar product of Hn.

Definition 4.2. Following Definition 6.1 of [22], we say that a homogeneous distance
d on Hn is symmetric on all layers if there exists σ : [0,+∞[2−→ [0,+∞[ such that
d(x, 0) = σ(|x1|, |x2|), where |·| denotes the norm arising from the fixed scalar product
on Hn and x = x1 + x2 where xi ∈ Vi.

One can construct many examples of homogeneous distances that are symmetric
on all layers.

Example 1. Consider c ≥ 1 such that |ω(x, y)| ≤ c|x| |y|. It is easy to check that

‖x‖ = max

{
|x1|,

(
|x2|
c

)1/2
}

defines a homogenous norm that satisfies the triangle inequality ‖x · y‖ ≤ ‖x‖+ ‖y‖
with respect to the group operation. Clearly, d(x, y) = ‖x−1y‖ is a homogeneous

distance on Hn that is homogeneous on all layers with σ(t1, t2) = max{t1,
√
t2/c}.

Example 2. Let us equip Hn with a structure of H-type group, where the scalar
product induces a norm | · | such that the generalized complex structure Jz : V1 −→ V1

satisfies |Jz(x)| = |z||x|, J2
z = −|z|2IdV1 and V1×V2 3 (x, z) −→ Jz(x) ∈ V1 is bilinear.

Then defining the group operation setting ω(x, y) = [x, y]/2, the Cygan norm, [5], is
defined as follows

‖x‖ = 4
√
|x1|4 + 16|x2|2

and it satisfies the triangle inequality ‖x·y‖ ≤ ‖x‖+‖y‖. This defines a homogeneous

distance that is symmetric on all layers, where σ(t1, t2) = 4
√
t41 + 16t22.

In view of the previous examples, we denote by ‖·‖d the homogeneous norm arising
from a homogeneous distance, namely, ‖x‖d = d(x, 0) for all x ∈ Hn.

Definition 4.3 (Metric factor). Let d be a homogeneous distance on Hn and let N
be a p-dimensional vertical subgroup of Hn. We denote by D1 the closed ball of Hn

with respect to d, that is centered at the origin and it has radius equal to one. We
define the metric factor of d as the function θp+1(N) = Hp(D1 ∩N).
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Definition 4.4. According to Proposition 6.1 of [22], whenever a homogeneous dis-
tance d on Hn is symmetric on all layers, the metric factor θp+1(N) is constantly
equal to a geometric constant for all p-dimensional vertical subgroups N of Hn. We
denote by αp+1 this geometric constant and by Sp+1

d the spherical Hausdorff measure
corresponding to the Carathéodory measure of Definition 2.1 with βp+1 = αp+1/2

p+1.

In the next theorem, we recall the following area-type formula.

Theorem 4.1 (Franchi, Serapioni and Serra Cassano, [14]). Let k be a positive integer
such that k ≤ n and let f ∈ C1(Ω,Rk). Let x̄ ∈ Ω, let ∇Hf(x̄) : Hn −→ Rk be
surjective and let (N, V ) be a factorization of Hn adapted to ∇Hf(x̄). Let (ū, v̄) ∈
N × V be the unique element such that x̄ = J(ū, v̄) and let s, r > 0 be such that
DN
ū,s ·DV

v̄,r ⊂ Ω, (∂V f)(x) is invertible for all x ∈ DN
ū,s ·DV

v̄,r and there exists a unique

continuous mapping ϕ : DN
ū,s −→ DV

v̄,r such that f
(
u ·ϕ(u)

)
= f(ū · v̄) for all u ∈ DN

ū,s.
Then defining the graph mapping Φ(u) = u · ϕ(u), we have

(18) S2n+2−k
d (Φ(A)) = |N ∧ V |

∫
A

JHf(Φ(u))
JV f(Φ(u))

dH2n+1−k(u) ,

for all measurable sets A ⊂ DN
ū,s, where |N ∧ V | is introduced in Definition 3.6.

The coarea factor has been introduced for linear mappings of linear spaces in [2]
and then extended to homogeneous homomorphisms of stratified groups in [18].

Definition 4.5 (Coarea factor). Let L : Hn −→ Rk be a linear mapping that satisfies
L(δrx) = rL(x) for all x ∈ Hn and r > 0. Then the coarea factor is the unique number
Ck(L) such that

(19) S2n+2
d (D1) Ck(L) =

∫
Rk
S2n+2−k
d

(
D1 ∩ L−1(y)

)
dy .

Remark 4.4. By classical coarea formula, the previous definition yields

Ck(L) =
S2n+2−k
d (D1 ∩N)

H2n+1−k(D1 ∩N)

L2n+1(D1)

S2n+2
d (D1)

JL

where JL is the Jacobian of L with respect to the scalar product of Hn and N is the
kernel of L. On the other hand, by standard covering arguments, the same that show
equality between Hausdorff and Lebesgue measure in Rn, see for instance [3], we have
S2n+2−k
d = H2n+1−k. This shows that

(20) Ck(L) =
L2n+1(D1)

S2n+2
d (D1)

JL .

In the next theorem, we adapt results of [18] to our setting.

Theorem 4.2 (Coarea inequality). Let A ⊂ Hn be a measurable set and consider a
Lipschitz map f : A −→ Rk. Then we have∫

Rk
S2n+2−k
d

(
A ∩ f−1(y)

)
dy ≤

∫
A

Ck

(
∇Hf(x)

)
dS2n+2

d (x) .
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4.1. Proof of the coarea formula. This subsection is entirely devoted to the proof
of Theorem 1.1. First of all, by standard arguments, approximating u by increasing
step functions, it is not restrictive to prove (1) in the case u equals the characteristic
function of a bounded measurable set of Hn. Then we restrict our attention to the
case where f ∈ C1(Ω,Rk). Let us choose x0 ∈ Ω such that ∇Hf(x0) : Hn −→ Rk is
surjective and consider

(21)
νf (Dx0,ρ)

ρ2n+2
=

∫
Rk
S2n+2−k
d (D1 ∩ f−1

x0,ρ
(y)) dy ,

due to Lemma 4.2. Let (N, V ) be a factorization of Hn adapted to ∇Hf(x0), in the
special case where N coincides with the kernel of ∇Hf(x0). We have x0 = u0 · v0,
where (u0, v0) ∈ N × V , hence (∂V f)(x0) : V −→ Rk is invertible and it corresponds
to the differential of v → f(u0 · v) with respect to any norm on V . We apply
the classical inverse mapping theorem, according to which there exist ρ0, ρ1 > 0
such that DV

v0,ρ0
3 v → f(u0 · v) is invertible onto its image. Moreover, this image

contains the Euclidean closed ball DE
f(x0),ρ1

of center f(x0) and radius ρ1. Let us define

L = ∇Hf(x0) and choose any y ∈ L(D1). We have ξ ∈ D1 such that L(ξ) = y and
|y| ≤ ‖L‖ |ξ|. We set c(d) = sup0<‖η‖d≤1 |η| ‖η‖−1

d . Then for all ρ < ρ1/
(
c(d)‖L‖

)
, we

obtain a unique vρy ∈ DV
v0,ρ0

such that

(22) f(u0 · vρy) = f(x0) + ρy .

The inverse mapping theorem also implies that vρy → v0 as ρy → 0, hence the
previous convergence is uniform with respect to |y| ≤ ‖L‖ c(d) as ρ → 0+. We are
now in the position to apply Theorem 3.2. Let s, r, R, κ, δ > 0 be as in this theorem.

Then for all ρ < min{ρ0, r, ρ1

(
c(d)‖L‖

)−1} we have a unique vρy ∈ DV
v0,ρ0

satisfying

(22) and we have ϕρy : DN
u0,κδ2 −→ DV

vρy ,δ continuous that satisfies the conditions

ϕρy(u0) = vρy and
f
(
u · ϕρy(u)

)
= f(x0) + ρy

for every u ∈ DN
u0,κδ2 . The convergence vρy → v0 implies that

DN
u0,κδ2 ·DV

v0,δ/2
⊂ DN

u0,κδ2 ·DV
vρy ,δ

for ρ sufficiently small and all |y| ≤ ‖L‖ c(d). We wish to emphasize here the inde-
pendence of δ from ρy, as a consequence of the “uniform implicit function theorem”.
It follows that

f−1
(
f(x0) + ρy

)
∩DN

u0,κδ2 ·DH
v0,δ/2

= Φρy(DN
u0,κδ2) ∩DN

u0,κδ2 ·DH
v0,δ/2

,

where we have introduced the graph function Φρy : DN
u0,κδ2 −→ DN

u0,κδ2 · DV
vρy ,δ,

Φρy(u) = u · ϕρy(u). There exists σ > 0 such that Dx0,σ ⊂ DN
u0,κδ2 · DV

v0,δ/2
, there-

fore δ1/ρ

(
x−1

0 f−1
(
f(x0) + ρy

))
∩Dσ/ρ = δ1/ρ

(
x−1

0 · Φρy(DN
u0,κδ2)

)
∩Dσ/ρ . Clearly, for

ρ > 0 small, less than σ, we achieve

D1 ∩ δ1/ρ

(
x−1

0 f−1
(
f(x0) + ρy

))
= D1 ∩ f−1

x0,ρ
(y) = D1 ∩ δ1/ρ

(
x−1

0 · Φρy(DN
u0,κδ2)

)
.

Now, we define the subset

(23) Eu0,ρ = {u ∈ DN
u0,κδ2 : d(x0,Φ

ρy(u)) ≤ ρ} ⊂ DN
u0,κδ2 ,
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hence for ρ > 0 small we have proved that

(24) δ1/ρ

(
x−1

0 · Φρy(Eu0,ρ)
)

= D1 ∩ f−1
x0,ρ

(y)

for every y ∈ L(D1). Formula (24) is the key point to represent the S2n+2−k
d in integral

form and then to compute its limit as ρ→ 0+. In fact, due to (16) and applying the
area type formula (18), we get

(25) S2n+2−k
d

(
D1 ∩ f−1

x0,ρ
(y)
)

=
1

ρ2n+2−k |N ∧ V |
∫
Eu0,ρ

JHf(Φρy(u))
JV f(Φρy(u))

dH2n+1−k(u) .

Next, we perform some suitable changes of variable on Eu0,ρ that will lead to a sort of
“uniform differentiability” of the family {Φρy}ρy, as we will see below. We first define

x−1
0 · Φρy(u) = w · ϕx0,ρy(w),

where w = x−1
0 ·u·v0 and ϕx0,ρy(w) = ϕρy(x0·w·v−1

0 )−v0. We define τx−1
0

(u) = x−1
0 ·u·v0

and notice that τx−1
0

: N −→ N . Since τx−1
0

preserves H2n+1−k defined on N , we have∫
Eu0,ρ

JHf(Φρy(u))
JV f(Φρy(u))

dH2n+1−k(u) =

∫
τ
x−1
0

(Eu0,ρ)

JHf(Φρy(τx0(w)))
JV f(Φρy(τx0(w)))

dH2n+1−k(w) ,

where τx0 = (τx−1
0

)−1. We observe that (Φρy ◦ τx0)(w) = x0 · w · ϕx0,ρy(w), then

τx−1
0

(Eu0,ρ) =
{
w ∈ cv−1

0
(DN

κδ2) : ‖w · ϕx0,ρy(w)‖d ≤ ρ
}
,

where cx : N → N is defined as cx(n) = x · n · x−1. We define the rescaled set
Fu0,ρ = δ1/ρ

(
τx−1

0
(Eu0,ρ)

)
, so that we have

Fu0,ρ =
{
w ∈ δ1/ρ

(
cv−1

0
(Dκδ2) ∩N

)
: ‖w · δ1/ρ(ϕ

x0,ρy(δρw))‖d ≤ 1
}

and then∫
Eu0,ρ

JHf(Φρy(u))
JV f(Φρy(u))

dH2n+1−k(u) = ρ2n+2−k
∫
Fu0,ρ

JHf(x0 · Φx0,ρy(δρw))
JV f(x0 · Φx0,ρy(δρw))

dH2n+1−k(w) ,

where we have set Φx0,ρv(w) = w · ϕρv(w). Taking into account (25), we get

(26) S2n+2−k
d

(
D1 ∩ f−1

x0,ρ
(y)
)

= |N ∧ V |
∫
Fu0,ρ

JHf(x0 · Φx0,ρy(δρw))
JV f(x0 · Φx0,ρy(δρw))

dH2n+1−k(w) .

Now, we wish to study the limit of δ1/ρ(ϕ
x0,ρy(δρw)) as ρ → 0+. Let us point out

that that this limit amounts the above mentioned “uniform differentiability”, since
we are considering the family of functions {ϕx0,ρy}ρy that varies with ρy. We set
L0 = L|V = ∂V f(x0) : V −→ Rk and T = L−1

0 , hence taking into account Lemma 3.1

|ρy − L0(ϕx0,ρy(w))| = |f(x0 · Φx0,ρy(w))− f(x0)− L0(ϕx0,ρy(w))|
≤ ω(‖Φx0,ρy(w)‖%) ‖Φx0,ρy(w)‖% ,
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since w ∈ cv−1
0

(DN
κδ2) belongs in particular to the kernel of L and x0 ·Φx0,ρy(w) ∈ Dcc

x0,R
.

Recall that % is the sub-Riemannian distance and ω is the modulus of continuity of
∇Hf on Dcc

x0,2R
, according to Theorem 3.2. This in turn implies that

(27) |ϕx0,ρy(w)− ρ T (y)| ≤ ‖T‖ω(‖Φx0,ρy(w)‖%) ‖Φx0,ρy(w)‖% .
Now, we wish to make ‖Φx0,ρy(w)‖% uniformly small in ρy and w. To do this, we
observe that a uniform Hölder continuity for w → Φx0,ρy(w) holds with respect to
ρy. Let w,w′ ∈ cv−1

0
(DN

κδ2) and recall that cv−1
0

(DN
κδ2) is contained in the kernel of L.

Then the equalities

L0(ϕx0,ρy(w)−1 · ϕx0,ρy(w′))

= L(Φx0,ρy(w)−1 · Φx0,ρy(w′))

= f
(
x0 · Φx0,ρy(w′)

)
− f

(
x0 · Φx0,ρy(w)

)
− L(Φx0,ρy(w)−1 · Φx0,ρy(w′)) ,

along with the estimate

|f
(
x0 · Φx0,ρy(w′)

)
− f

(
x0 · Φx0,ρy(w)

)
− L(Φx0,ρy(w)−1 · Φx0,ρy(w′))|

≤ 2 ‖Φx0,ρy(w)−1 · Φx0,ρy(w′)‖% ω(‖Φx0,ρy(w)−1 · Φx0,ρy(w′)‖%)
lead us to

|ϕx0,ρy(w)−1 · ϕx0,ρy(w′)| = |ϕx0,ρy(w′)− ϕx0,ρy(w)|
≤ 2 ‖T‖ ‖Φx0,ρy(w)−1 · Φx0,ρy(w′)‖% ω(‖Φx0,ρy(w)−1 · Φx0,ρy(w′)‖%) ,

where we have used the fact that %(v, v′) = |v − v′| for all v, v′ ∈ V . Since Φx0,ρy(w)
belongs in particular to Dcc

R for all w ∈ cv−1
0

(DN
κδ2), we are allowed to assume that

R > 0 sufficiently small such that

4 ‖T‖ω(t) < 1 for all 0 < t < 2R.

It follows that

(28) |ϕx0,ρy(w′)− ϕx0,ρy(w)| ≤ C ‖w−1w′‖1/2
% ,

for all w,w′ ∈ cv−1
0

(DN
κδ2), where C > 0 is such that

‖vw−1w′v‖% ≤ C ‖w−1w′‖1/2
%

for all v ∈ DV
δ and w ∈ cv−1

0
(DN

κδ2). We now fix any compact set K of Hn and replace

w with δρw in (27), where w varies in K. Then

|ϕx0,ρy(δρw)| ≤ |ϕx0,ρy(δρw)− ϕx0,ρy(0)|+ |ϕx0,ρy(0)|
≤ C ρ1/2 ‖w‖1/2

% + |vρy − v0| .
It follows that Φx0,ρy(δρw) goes to zero as ρ→ 0+, uniformly in w ∈ K and y ∈ L(D1).
The estimate (27) gives

|ϕx0,ρy(δρw)− ρ T (y)|
ρ

≤ 2 ‖T‖ω
(
Φx0,ρy(δρw)

)
(‖w‖% + |T (y)|) .

The following “uniform differentiability” follows

(29) sup
w∈K, y∈L(D1)

∣∣∣∣ϕx0,ρy(δρw)

ρ
− T (y)

∣∣∣∣ −→ 0 as ρ→ 0+.
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This limit is the key for the final steps of the proof. For technical reasons, we have
to introduce

F λ
u0,ρ

=
{
w ∈ δ1/ρ

(
cv−1

0
(Dκδ2) ∩N

)
: ‖w · δ1/ρ(ϕ

x0,ρy(δρw))‖d ≤ λ
}
,

then we observe that

c1(‖w‖+ ‖δ1/ρ(ϕ
x0,ρy(δρw))‖d) ≤ ‖w · δ1/ρ(ϕ

x0,ρy(δρw))‖d ≤ λ

for some constant c1 > 0 implies that Fu0,ρ ⊂ DN
λ/c1

. Let us consider

SλN(y) = {w ∈ N : w · T (y) ∈ Dλ}.
We pick λ′ < 1 such that

(30) H2n+1−k
|·| (∂Sλ

′

N ) = H2n+1−k
|·| ({w ∈ N : ‖w · T (y)‖d = λ′}) = 0 .

The conjunction of the previous equalities and (29) immediately yields

1Fλ′u0,ρ
(w)→ 1Sλ′N (y)(w)

for H2n+1−k
|·| -a.e. w ∈ N as ρ→ 0+. It follows that

lim inf
ρ→0+

∫
Fu0,ρ

JHf(x0 · Φx0,ρy(δρw))
JV f(x0 · Φx0,ρy(δρw))

dH2n+1−k(w)

≥ lim inf
ρ→0+

∫
Fλ′u0,ρ

JHf(x0 · Φx0,ρy(δρw))
JV f(x0 · Φx0,ρy(δρw))

dH2n+1−k(w)

=

∫
Sλ
′
N (y)

JHf(x0)

JV f(x0)
dH2n+1−k(w) .

Since we can choose λ′ < 1 satisfying (30) that is arbitrarily close to one, we get

lim inf
ρ→0+

∫
Fu0,ρ

JHf(x0 · Φx0,ρy(δρw))
JV f(x0 · Φx0,ρy(δρw))

dH2n+1−k(w) ≥
∫
A1
N (y))

JHf(x0)

JV f(x0)
dH2n+1−k(w) .

where A1
N(y) = {w ∈ N : ‖w ·T (y)‖d < 1}. Taking into account (26) and the classical

coarea formula applied to the canonical projection πV : Hn −→ V , we have

lim inf
ρ→0+

∫
L(D1)

S2n+2
d

(
D1 ∩ f−1

x0,ρ
(y)
)
dy ≥ |N ∧ V | JHf(x0)

JV f(x0)

∫
L(D1)

H2n+1−k(S1
N(y)) dy .

We define Φy
0 : N −→ Hn as Φy

0(n) = n · T (y) and observe that

D1 ∩ L−1(y) = {Φy
0(n) : n ∈ N} ∩D1 = Φy

0

(
S1
N(y)

)
.

Then the area-type formula (18) gives

(31) lim inf
ρ→0+

∫
L(D1)

S2n+2−k
d

(
D1 ∩ f−1

x0,ρ
(y)
)
dy ≥

∫
L(D1)

S2n+2−k
d

(
D1 ∩ L−1(y)

)
dy .

Due to (21), we have proved that

lim inf
ρ→0+

νf (Dx0,ρ)

ρ2n+2
≥
∫

Rk
S2n+2−k
d

(
D1 ∩ L−1(y)

)
dy .
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Taking into account Definition 4.5, we have the lower density estimate

(32) lim inf
ρ→0+

νf (Dx0,ρ)

S2n+2
d (Dx0,ρ)

≥ Ck

(
∇Hf(x0)

)
.

Approximating by an increasing sequence of measurable step functions converging to
x −→ Ck

(
∇Hf(x)

)
, the conjunction of (32) and both 2.9.4 and 2.9.2 of [8] gives∫

Rk
S2n+2−k
d

(
G0 ∩ f−1(y)

)
dy ≥

∫
G0

Ck

(
∇Hf(x)

)
dS2n+2

d (x) ,

where G0 = {x ∈ Ω : ∇Hf(x) is surjective}. The weak Sard type theorem, [18], is an
immediate of Theorem 4.2, namely, we have∫

Rk
S2n+2−k
d

(
(Ω \G0) ∩ f−1(y)

)
dy = 0 .

Furthermore, Theorem 4.2 also provides the opposite inequality, hence∫
Rk
S2n+2−k
d

(
Ω ∩ f−1(y)

)
dy =

∫
Ω

Ck

(
∇Hf(x)

)
dS2n+2

d (x) .

Taking into account (20) and observing that the classical Jacobian J∇Hf(x) coincides
with JHf(x) we get∫

Rk
S2n+2−k
d

(
Ω ∩ f−1(y)

)
dy =

∫
Ω

JHf(x) dx .

Outer approximation of measurable sets by open sets extends the previous formula
to all measurable sets. Finally, in the case f : Hn −→ Rk is Lipschitz, taking into
account the validity of a Whitney type theorem, see Theorem 6.8 of [13], then the
proof follows by standard arguments, see for instance Theorem 3.5 of [20]. 2
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