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The quantum hyperbolic invariants (QHI)

HN(V , L, ρ, ω) ∈ C/µ2N

are defined for every odd integer N ≥ 3 and (V , L, ρ, ω) such that :

V is a compact oriented 3-manifold, ∂V = ∅ or a union of tori

L is a link in V , and Int(V ) is cusped hyperbolic if L = ∅
(2 compl. cases)

ρ is an augmented PSL(2,C)-character of V \ L, constrained
if L = ∅
ω is a tuple of 1-cohomology classes on V and ∂V satisfying
compatibility constraints ; the pair (ρ, ω) refines ρ.
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When V is the interior of a 1-cusped hyperbolic manifold M,
varying (ρ, ω) the invariants HN(V , ∅, ρ, ω) produce rational

functions Hh
N for each h ∈ H1(M;Z/2Z)

Hh
N : X0,N

rational // C/µ2N

Sh : X0,∞

OO

analytic // C

with :

coverings X0,∞
/Z2

// X0,N
/(Z/NZ)2

// X0 (the geom. cpnt)

The Chern-Simons function Sh.
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The Chern-Simons function Sh is an equivariant formulation of the
Chern-Simons section in gauge theory :

At the natural lift of the hyp. holonomy and h = 0, we have

S0(ρ̃hyp) = exp

(
2

π
Vol(M) + 2πiCS(M)

)
The variation of S0 along lifted paths of characters lies over
the cusp. In terms of dilation coefficients, locally we have

dS0 = − 1

2πi
(log(λ)d log(µ)− log(µ)d log(λ))
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Consider a sequence of points x = {xN ∈ X0,N}N . Define

Hh
∞(x) := lim sup

log |Hh
N(x)|

N
∈ R ∪ {∞}.

The X0,N ’s are curves, the Hh
N ’s are rational : what is Hh

∞(x) ?

QHI ASYMPTOTIC PROBLEM

Study the function Hh
∞(x) : singularities, regularity, etc.

Find a geometric interpretation of Hh
∞(x).

A “volume conjecture” :

For every M there exists x such that Hh
∞(x) = 1

2πVol(M).
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In the simplest case of a closed manifold, the three-sphere :

Theorem

For every link L in S3 and every odd integer N ≥ 3 we have

HN(S3, L, ρtriv , 0) ≡N JN(L)(e2iπ/N)

where JN(L) is the normalized colored Jones polynomial of L.
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Like in the classical case of the Chern-Simons function Sh :

Theorem

For any sequence of closed hyperbolic Dehn fillings Vn of M with
holonomies ρn → ρhyp ∈ X0 and core Ln we have

lim
n→∞

HN(Vn, Ln, ρn, 0) ≡N HN(V , ∅, ρhyp, 0).
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I want to explain some ingredients hidden behind the diagrams :

Hh
N : X0,N

rational // C/µ2N

Sh : X0,∞

OO

analytic // C

First we need to describe simplicially X0, and coverings of it.
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Denote by X0 the geometric component of augmented PSL(2,C)
valued characters of M, and X (∂M̄) the character variety of ∂M̄.

The restriction map res : X0 → X (∂M̄) is regular.

Theorem (Dunfield)

The map res : X0 → X (∂M̄) is birational onto its image.

Fixing a cusp basis, denote the induced map and image by

h : X0 → C∗ × C∗

A0 := h(X0)
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Let T be an ideal triangulation of M without null-homotopic edges.
Then the gluing variety G (T ) 6= ∅ (Segerman-Tilmann), it is a
curve (Neumann-Zagier), and ∃ zhyp ∈ G (T ) with holonomy ρhyp.

Question

Is Dunfield’s theorem true by replacing X0 by compts of G (T ) ?

Problem

zhyp may not be a regular point of G (T ), hence may be
contained in several components

Dunfield’s proof uses the volume rigidity for closed hyperbolic
Dehn fillings of M, and the variation formula of Vol.
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Def. An irreducible component of G (T ) is rich if it contains zhyp
and an infinite sequence of closed hyperbolic Dehn fillings of M
with shape parameters zn → zhyp.

Proposition (Petronio-Porti)

The non negative ideal triangulations of M have rich components.
Hence the max subdivisions of the EP cellulation of M provide a
canonical finite set of rich components of gluing varieties of M.

Corollary

For any rich component Z of a gluing variety G (T ) of M the

(regular) map hZ : Z
holonomy // X0

h // A0 is birational.

14/35 Stéphane Baseilhac Analytic families of quantum hyperbolic invariants



Quantum hyperbolic invariants
Simplicialization

State sums over weakly branched triangulations
Perspectives

Def. An irreducible component of G (T ) is rich if it contains zhyp
and an infinite sequence of closed hyperbolic Dehn fillings of M
with shape parameters zn → zhyp.

Proposition (Petronio-Porti)

The non negative ideal triangulations of M have rich components.
Hence the max subdivisions of the EP cellulation of M provide a
canonical finite set of rich components of gluing varieties of M.

Corollary

For any rich component Z of a gluing variety G (T ) of M the

(regular) map hZ : Z
holonomy // X0

h // A0 is birational.
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We want to complete a square

??
hZ ,∞ //

��

A0,∞

/Z2

��
Z

hZ // A0

where
A0,∞ := {(u, v) ∈ C2 | (eu, ev ) ∈ A0}.
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Define the analytic set (s is the number of tetrahedra of T )

Z∞ = {(l1
0 , l

1
1 , l

1
2 , . . . , l

s
0 , l

s
1 , l

s
2) ∈ C3s |

∀ j ∈ {1, . . . , s}, r ∈ {0, 1, 2}, e l
j
r = ±z j

r , (z j
r )j ,r ∈ Z ,

∀ j ∈ {1, . . . , s}, l j0 + l j1 + l j2 = 0,

∀ E ∈ E (T ),
∑
j ,r

l jr (E ) = 0}.

(Space of Logs of ± shape parameters in Z)
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and similarly the algebraic set

ZN = {(w 1
0 ,w

1
1 ,w

1
2 , . . . ,w

s
0 ,w

s
1 ,w

s
2 ) ∈ C3s |

∀ j ∈ {1, . . . , s}, r ∈ {0, 1, 2}, (w j
r )N = z j

r , (z j
r )j ,r ∈ Z

∀ j ∈ {1, . . . , s},w 1
0 w 1

1 w 1
2 = −ζ

N−1
2 ,

∀ e ∈ E (T ),
∏
j ,r

w j
r (E ) = ζ−1}.

(Space of N-th roots of shape parameters in Z)
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Theorem (Neumann)

(1) The natural lift h̃Z : Z∞ → A0,∞ of hZ maps onto a Zariski
open subset (no lift is missed).

(2) The fibers of the covering Z∞ → Z are affine spaces over an
abelian group C that fits in an exact sequence

0→ Zn(edges) → C → H1(∂M̄;Z)⊕ H1(M̄;Z/2Z)

r−i∗−→ H1(∂V ;Z/2Z)→ 0
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We deduce a diagram

Z∞
hZ ,∞

classical
//

��

A0,∞

/(NZ)2

��
ZN

hZ ,N

quantum
//

��

A0,N

/(Z/NZ)2

��
Z

hZ // A0

A point of Z∞ represents a holonomy in A0 ≈ X0, and for each
choice of h ∈ H1(M̄;Z/2Z), a compatible lift by

exp : H1(∂M̄,C)→ H1(∂M̄,C∗)

of the class associated to the dilation factors of its peripheral
subgroups. The residual Zn(edges) will be irrelevant (extrinsic).
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Moreover, H := C/Zn(edges) has a natural non degenerate skew
symmetric bilinear form B making a commutative diagram

H ⊗ H
B //

��

Z

2×
��

H1(∂M̄;Z)⊗ H1(∂M̄;Z)
· // Z
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21/35 Stéphane Baseilhac Analytic families of quantum hyperbolic invariants



Quantum hyperbolic invariants
Simplicialization

State sums over weakly branched triangulations
Perspectives

The quantum hyperbolic invariants of M are defined by means of
state sums over weakly branched ideal triangulations of M

carrying the spaces ZN defined previously.

The Chern-Simons function of M can be defined similarly, by
replacing ZN by Z∞ and the state sums by a signed sum of

classical dilogarithms.
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Def. A 3-dim. pseudo-manifold triangulation is pre-branched if each
2-face is co-oriented and two co-orientations point inwards and two
outwards each tetrahedron. The triangulation is weakly branched if
its tetrahedra are branched and induce compatible pre-branchings.

A

A

B
B

Figure: A pre-branched tetrahedron with its square edges oriented.
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A B

Figure: Branched tetrahedra inducing the same pre-branching.
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1 Global pre-branchings exist on any triangulation.
2 The global pre-branchings on a triangulation are in 1-to-1

correspondence with the sol. of the gluing equations of the
form (1, 1,−1) on each tetra (‘Z/2-taut angle structures”).

1

0

3

2

Figure: Graph encoding of a branched tetrahedron (∗b = 1).
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2
1

Figure: A graph representing a weak branching of the EP triangulation
of the “figure eight sister” cusped manifold.

The gluing map φ : F i (ui
0, u

i
1, u

i
2)→ F f (uf

0 , u
f
1 , u

f
2) of (branched)

2-faces is determined by the permutation τ ∈ A3 s.t. φ(ui
j ) = uf

τ(j).

This gives a color r ∈ Z/3Z.
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There is a functorial way to assign automorphisms

R ∈ GL(CN ⊗ CN) , Q ∈ GL(CN)

(“amplitude” and ”transition”) to the branched tetrahedra and the
co-oriented faces of a weakly branched triangulation : associate to
the 2-face opposite to the j-th vertex a copy Vj of CN , and put

R =

{
(R i ,j

k,l) : V3 ⊗ V1 → V2 ⊗ V0 if ∗b = +1

(R̄k,l
i ,j ) : V2 ⊗ V0 → V3 ⊗ V1 if ∗b = −1.
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+1
−1

0 

 1 3

2 

2 

3

0 

 1 

Figure: Assigning R±1 to the graph crossings.
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Def. Let (T , b̃) be a weakly branched triangulation of M having a
rich component Z. The state sum function over ZN is :

HN(T , b̃)(w) :=
∑
σ

∏
j

RN(∆j , bj ,w
j)σ
∏
e

(Qr(e)
N )σ

where

σ (a “state”) runs over all maps T (2) → {0, 1, . . . ,N − 1}
RN(∆, b,w) ∈ GL(CN ⊗ CN) is the matrix dilogarithm

QN = T−1S ∈ GL(CN) has projective order 3, with S , T
generating a projective representation of SL(2,Z)

RN(. . .)σ and (QN)σ stand for the entries selected by σ.
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The matrix dilogarithm RN(∆, b,w) ∈ GL(CN ⊗ CN) is derived
from the 6j-symbols of “generic” representations of Uqsl2.

It satisfies highly non trivial tensor/functional “5-term” identities,
the pentagon relations, and equivariance under tetra. symmetries.

Alg. identities ↔ “moves” of triangulations (T , b̃,w)
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A pentagon identity (a non Abelian 3-cocycle relation) :

y

x
2

x

x
3

x
1

=

Figure: x1 = y/x , x2 = y(1− x)/x(1− y), x3 = (1− x)/(1− y)).

y

y/x

(1-x)/(1-y)

x

y(1-x)/x(1-y)
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Theorem

HN(T , b̃)(w), w ∈ ZN , is an invariant of the represented tuple
(V , ρ, ω) up to multiplication by 2N-th roots of 1, and varying w

with fixed h ∈ H1(M;Z/2Z) yields a rational function Hh
N on A0,N .

Strategy :

The state sums are invariant under enhancements of
triangulation moves carrying all the extra structures

The state sums are invariant under weak branching changes.

Two (T , b̃,w)’s are related by such transformations.

A factorization result removing additional cohomological
datas.
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Example : invariance under moves preserving the pre-branching

(0321)

(0123)

(01)

(01)

(01)

(01)

(12)

(12)

(12)
(12)

(12)

(12)

(01)
(01)
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Lift Hh
N : X0,N → C/µ2N to a C-valued function

Hh
N is a rational function : expression in terms of augmented

characters of meridian/longitude ? Poles, periods ?

Find a skein theoretic construction of Hh
N

Find a geometric quantization construction of Hh
N from the

Chern-Simons function and line bundle

Relate Hh
N of link complements to Jones and ADO

invariants of links in S3

...Study the QHI asymptotic problem.
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