Analytic families of quantum hyperbolic invariants

Stéphane Baseilhac Joint work with R. Benedetti

Cortona, June 2013

Plan of the talk

(1) Quantum hyperbolic invariants
(2) Simplicialization
(3) State sums over weakly branched triangulations

4 Perspectives

Plan of the talk

(1) Quantum hyperbolic invariants
(2) Simplicialization
(3) State sums over weakly branched triangulations

4 Perspectives

The quantum hyperbolic invariants (QHI)

$$
\mathcal{H}_{N}(V, L, \rho, \omega) \in \mathbb{C} / \mu_{2 N}
$$

are defined for every odd integer $N \geq 3$ and (V, L, ρ, ω) such that :

- V is a compact oriented 3-manifold, $\partial V=\emptyset$ or a union of tori
- L is a link in V, and $\operatorname{Int}(V)$ is cusped hyperbolic if $L=\emptyset$ (2 compl. cases)
- ρ is an augmented $\operatorname{PSL}(2, \mathbb{C})$-character of $V \backslash L$, constrained if $L=\emptyset$
- ω is a tuple of 1-cohomology classes on V and ∂V satisfying compatibility constraints; the pair (ρ, ω) refines ρ.

When V is the interior of a 1-cusped hyperbolic manifold M, varying (ρ, ω) the invariants $\mathcal{H}_{N}(V, \emptyset, \rho, \omega)$ produce rational functions \mathcal{H}_{N}^{h} for each $h \in H^{1}(M ; \mathbb{Z} / 2 \mathbb{Z})$

$$
\begin{aligned}
\mathcal{H}_{N}^{h} & : X_{0, N} \xrightarrow{\text { rational }} \mathbb{C} / \mu_{2 N} \\
& \uparrow \\
\mathcal{S}^{h}: & X_{0, \infty} \xrightarrow{\text { analytic }} \mathbb{C}
\end{aligned}
$$

with :

- coverings $X_{0, \infty} \xrightarrow{/ \mathbb{Z}^{2}} X_{0, N} \xrightarrow{/(\mathbb{Z} / N \mathbb{Z})^{2}} X_{0}$ (the geom. cpnt)
- The Chern-Simons function \mathcal{S}^{h}.

The Chern-Simons function \mathcal{S}^{h} is an equivariant formulation of the Chern-Simons section in gauge theory :

- At the natural lift of the hyp. holonomy and $h=0$, we have

$$
\mathcal{S}^{0}\left(\tilde{\rho}_{\text {hyp }}\right)=\exp \left(\frac{2}{\pi} \operatorname{Vol}(M)+2 \pi i \mathrm{CS}(M)\right)
$$

- The variation of \mathcal{S}^{0} along lifted paths of characters lies over the cusp. In terms of dilation coefficients, locally we have

$$
d \mathcal{S}^{0}=-\frac{1}{2 \pi i}(\log (\lambda) d \log (\mu)-\log (\mu) d \log (\lambda))
$$

Consider a sequence of points $\mathbf{x}=\left\{x_{N} \in X_{0, N}\right\}_{N}$. Define

$$
\mathcal{H}_{\infty}^{h}(\mathbf{x}):=\lim \sup \frac{\log \left|\mathcal{H}_{N}^{h}(\mathbf{x})\right|}{N} \in \mathbb{R} \cup\{\infty\}
$$

The $X_{0, N}$'s are curves, the \mathcal{H}_{N}^{h} 's are rational : what is $\mathcal{H}_{\infty}^{h}(\mathbf{x})$?

Consider a sequence of points $\mathbf{x}=\left\{x_{N} \in X_{0, N}\right\}_{N}$. Define

$$
\mathcal{H}_{\infty}^{h}(\mathbf{x}):=\lim \sup \frac{\log \left|\mathcal{H}_{N}^{h}(\mathbf{x})\right|}{N} \in \mathbb{R} \cup\{\infty\}
$$

The $X_{0, N}$'s are curves, the \mathcal{H}_{N}^{h} 's are rational : what is $\mathcal{H}_{\infty}^{h}(\mathbf{x})$?

QHI ASYMPTOTIC PROBLEM

- Study the function $\mathcal{H}_{\infty}^{h}(\mathbf{x})$: singularities, regularity, etc.
- Find a geometric interpretation of $\mathcal{H}_{\infty}^{h}(\mathbf{x})$.

A "volume conjecture" :
For every M there exists \mathbf{x} such that $\mathcal{H}_{\infty}^{h}(\mathbf{x})=\frac{1}{2 \pi} \operatorname{Vol}(M)$.

In the simplest case of a closed manifold, the three-sphere :

Theorem

For every link L in S^{3} and every odd integer $N \geq 3$ we have

$$
H_{N}\left(S^{3}, L, \rho_{\text {triv }}, \mathbf{0}\right) \equiv_{N} J_{N}(L)\left(e^{2 i \pi / N}\right)
$$

where $J_{N}(L)$ is the normalized colored Jones polynomial of L.

Like in the classical case of the Chern-Simons function \mathcal{S}^{h} :

Theorem

For any sequence of closed hyperbolic Dehn fillings V_{n} of M with holonomies $\rho_{n} \rightarrow \rho_{\text {hyp }} \in X_{0}$ and core L_{n} we have

$$
\lim _{n \rightarrow \infty} \mathcal{H}_{N}\left(V_{n}, L_{n}, \rho_{n}, \mathbf{0}\right) \equiv_{N} \mathcal{H}_{N}\left(V, \emptyset, \rho_{\text {hyp }}, \mathbf{0}\right) .
$$

Plan of the talk

(1) Quantum hyperbolic invariants

(2) Simplicialization

(3) State sums over weakly branched triangulations

4 Perspectives

I want to explain some ingredients hidden behind the diagrams :

$$
\begin{aligned}
\mathcal{H}_{N}^{h} & : X_{0, N} \xrightarrow{\text { rational }} \mathbb{C} / \mu_{2 N} \\
& \uparrow \\
\mathcal{S}^{h}: & X_{0, \infty} \xrightarrow{\text { analytic }} \mathbb{C}
\end{aligned}
$$

First we need to describe simplicially X_{0}, and coverings of it.

Denote by X_{0} the geometric component of augmented $\operatorname{PSL}(2, \mathbb{C})$ valued characters of M, and $X(\partial \bar{M})$ the character variety of $\partial \bar{M}$.

The restriction map res : $X_{0} \rightarrow X(\partial \bar{M})$ is regular.

Theorem (Dunfield)

The map res : $X_{0} \rightarrow X(\partial \bar{M})$ is birational onto its image.

Fixing a cusp basis, denote the induced map and image by

$$
\begin{aligned}
\mathfrak{h}: X_{0} & \rightarrow \mathbb{C}^{*} \times \mathbb{C}^{*} \\
A_{0} & :=\mathfrak{h}\left(X_{0}\right)
\end{aligned}
$$

Let T be an ideal triangulation of M without null-homotopic edges.
Then the gluing variety $G(T) \neq \emptyset$ (Segerman-Tilmann), it is a curve (Neumann-Zagier), and $\exists z_{\text {hyp }} \in G(T)$ with holonomy $\rho_{\text {hyp }}$.

Question

Is Dunfield's theorem true by replacing X_{0} by compts of $G(T)$?

Let T be an ideal triangulation of M without null-homotopic edges.
Then the gluing variety $G(T) \neq \emptyset$ (Segerman-Tilmann), it is a curve (Neumann-Zagier), and $\exists z_{\text {hyp }} \in G(T)$ with holonomy $\rho_{\text {hyp }}$.

Question

Is Dunfield's theorem true by replacing X_{0} by compts of $G(T)$?

Problem

- $z_{\text {hyp }}$ may not be a regular point of $G(T)$, hence may be contained in several components
- Dunfield's proof uses the volume rigidity for closed hyperbolic Dehn fillings of M, and the variation formula of Vol.

Def. An irreducible component of $G(T)$ is rich if it contains $z_{\text {hyp }}$ and an infinite sequence of closed hyperbolic Dehn fillings of M with shape parameters $z_{n} \rightarrow z_{\text {hyp }}$.

Proposition (Petronio-Porti)

The non negative ideal triangulations of M have rich components. Hence the max subdivisions of the EP cellulation of M provide a canonical finite set of rich components of gluing varieties of M.

Def. An irreducible component of $G(T)$ is rich if it contains $z_{h y p}$ and an infinite sequence of closed hyperbolic Dehn fillings of M with shape parameters $z_{n} \rightarrow z_{\text {hyp }}$.

Proposition (Petronio-Porti)

The non negative ideal triangulations of M have rich components. Hence the max subdivisions of the EP cellulation of M provide a canonical finite set of rich components of gluing varieties of M.

Corollary

For any rich component Z of a gluing variety $G(T)$ of M the (regular) map $\mathfrak{h}_{Z}: Z \xrightarrow{\text { holonomy }} X_{0} \xrightarrow{\mathfrak{h}} A_{0}$ is birational.

We want to complete a square

where

$$
A_{0, \infty}:=\left\{(u, v) \in \mathbb{C}^{2} \mid\left(e^{u}, e^{v}\right) \in A_{0}\right\} .
$$

Define the analytic set (s is the number of tetrahedra of T)

$$
\begin{aligned}
& Z_{\infty}=\left\{\left(I_{0}^{1}, I_{1}^{1}, I_{2}^{1}, \ldots, I_{0}^{s}, I_{1}^{s}, I_{2}^{s}\right) \in \mathbb{C}^{3 s}\right. \\
& \forall j \in\{1, \ldots, s\}, r \in\{0,1,2\}, e^{l_{r}^{j}}= \pm z_{r}^{j},\left(z_{r}^{j}\right)_{j, r} \in Z, \\
& \forall j \in\{1, \ldots, s\}, I_{0}^{j}+I_{1}^{j}+I_{2}^{j}=0, \\
&\left.\forall E \in E(T), \sum_{j, r} l_{r}^{j}(E)=0\right\} .
\end{aligned}
$$

(Space of Logs of \pm shape parameters in Z)
and similarly the algebraic set

$$
\begin{aligned}
& Z_{N}=\left\{\left(w_{0}^{1}, w_{1}^{1}, w_{2}^{1}, \ldots, w_{0}^{s}, w_{1}^{s}, w_{2}^{s}\right) \in \mathbb{C}^{3 s} \mid\right. \\
& \forall j \in\{1, \ldots, s\}, r \in\{0,1,2\},\left(w_{r}^{j}\right)^{N}=z_{r}^{j},\left(z_{r}^{j}\right)_{j, r} \in Z \\
& \forall j \in\{1, \ldots, s\}, w_{0}^{1} w_{1}^{1} w_{2}^{1}=-\zeta^{\frac{N-1}{2}}, \\
& \left.\forall e \in E(T), \prod_{j, r} w_{r}^{j}(E)=\zeta^{-1}\right\} .
\end{aligned}
$$

(Space of N-th roots of shape parameters in Z)

Theorem (Neumann)

(1) The natural lift $\tilde{\mathfrak{h}}_{Z}: Z_{\infty} \rightarrow A_{0, \infty}$ of \mathfrak{h}_{Z} maps onto a Zariski open subset (no lift is missed).
(2) The fibers of the covering $Z_{\infty} \rightarrow Z$ are affine spaces over an abelian group C that fits in an exact sequence

$$
\begin{aligned}
0 \rightarrow \mathbb{Z}^{n(\text { edges })} \rightarrow C \rightarrow H^{1}(\partial \bar{M} ; \mathbb{Z}) \oplus & H^{1}(\bar{M} ; \mathbb{Z} / 2 \mathbb{Z}) \\
& \xrightarrow{r-i^{*}} H^{1}(\partial V ; \mathbb{Z} / 2 \mathbb{Z}) \rightarrow 0
\end{aligned}
$$

We deduce a diagram

A point of Z_{∞} represents a holonomy in $A_{0} \approx X_{0}$, and for each choice of $h \in H^{1}(\bar{M} ; \mathbb{Z} / 2 \mathbb{Z})$, a compatible lift by

$$
\exp : H^{1}(\partial \bar{M}, \mathbb{C}) \rightarrow H^{1}\left(\partial \bar{M}, \mathbb{C}^{*}\right)
$$

of the class associated to the dilation factors of its peripheral subgroups. The residual $\mathbb{Z}^{n(e d g e s)}$ will be irrelevant (extrinsic).

Moreover, $H:=C / \mathbb{Z}^{n(\text { edges })}$ has a natural non degenerate skew symmetric bilinear form B making a commutative diagram

Plan of the talk

(1) Quantum hyperbolic invariants

(2) Simplicialization
(3) State sums over weakly branched triangulations

4 Perspectives

The quantum hyperbolic invariants of M are defined by means of state sums over weakly branched ideal triangulations of M carrying the spaces Z_{N} defined previously.

The Chern-Simons function of M can be defined similarly, by replacing Z_{N} by Z_{∞} and the state sums by a signed sum of classical dilogarithms.

Def. A 3-dim. pseudo-manifold triangulation is pre-branched if each 2-face is co-oriented and two co-orientations point inwards and two outwards each tetrahedron. The triangulation is weakly branched if its tetrahedra are branched and induce compatible pre-branchings.

A
Figure: A pre-branched tetrahedron with its square edges oriented.

A

B

Figure: Branched tetrahedra inducing the same pre-branching.
(1) Global pre-branchings exist on any triangulation.
(2) The global pre-branchings on a triangulation are in 1-to-1 correspondence with the sol. of the gluing equations of the form ($1,1,-1$) on each tetra (' $\mathbb{Z} / 2$-taut angle structures").

Figure: Graph encoding of a branched tetrahedron ($*_{b}=1$).

Figure: A graph representing a weak branching of the EP triangulation of the "figure eight sister" cusped manifold.

The gluing map $\phi: F^{i}\left(u_{0}^{i}, u_{1}^{i}, u_{2}^{i}\right) \rightarrow F^{f}\left(u_{0}^{f}, u_{1}^{f}, u_{2}^{f}\right)$ of (branched) 2-faces is determined by the permutation $\tau \in A_{3}$ s.t. $\phi\left(u_{j}^{i}\right)=u_{\tau(j)}^{f}$.

This gives a color $r \in \mathbb{Z} / 3 \mathbb{Z}$.

There is a functorial way to assign automorphisms

$$
R \in \mathrm{GL}\left(\mathbb{C}^{N} \otimes \mathbb{C}^{N}\right) \quad, \quad \mathcal{Q} \in \mathrm{GL}\left(\mathbb{C}^{N}\right)
$$

("amplitude" and "transition") to the branched tetrahedra and the co-oriented faces of a weakly branched triangulation : associate to the 2-face opposite to the j-th vertex a copy V_{j} of \mathbb{C}^{N}, and put

$$
R= \begin{cases}\left(R_{k, j}^{i, j}\right): V_{3} \otimes V_{1} \rightarrow V_{2} \otimes V_{0} & \text { if } *_{b}=+1 \\ \left(\bar{R}_{i, j}^{k, l}\right): V_{2} \otimes V_{0} \rightarrow V_{3} \otimes V_{1} & \text { if } *_{b}=-1\end{cases}
$$

Figure: Assigning $R^{ \pm 1}$ to the graph crossings.

Def. Let (T, \tilde{b}) be a weakly branched triangulation of M having a rich component Z. The state sum function over Z_{N} is:

$$
\mathcal{H}_{N}(T, \tilde{b})(w):=\sum_{\sigma} \prod_{j} \mathrm{R}_{N}\left(\Delta_{j}, b_{j}, w^{j}\right)_{\sigma} \prod_{e}\left(\mathcal{Q}_{N}^{r(e)}\right)_{\sigma}
$$

where

- σ (a "state") runs over all maps $T^{(2)} \rightarrow\{0,1, \ldots, N-1\}$
- $\mathrm{R}_{N}(\Delta, b, w) \in \mathrm{GL}\left(\mathbb{C}^{N} \otimes \mathbb{C}^{N}\right)$ is the matrix dilogarithm
- $\mathcal{Q}_{N}=T^{-1} S \in \mathrm{GL}\left(\mathbb{C}^{N}\right)$ has projective order 3 , with S, T generating a projective representation of $S L(2, \mathbb{Z})$
- $\mathrm{R}_{N}(\ldots)_{\sigma}$ and $\left(\mathcal{Q}_{N}\right)_{\sigma}$ stand for the entries selected by σ.

The matrix dilogarithm $\mathrm{R}_{N}(\Delta, b, w) \in \mathrm{GL}\left(\mathbb{C}^{N} \otimes \mathbb{C}^{N}\right)$ is derived from the $6 j$-symbols of "generic" representations of $U_{q} s l_{2}$.

It satisfies highly non trivial tensor/functional " 5 -term" identities, the pentagon relations, and equivariance under tetra. symmetries.

Alg. identities \leftrightarrow "moves" of triangulations (T, \tilde{b}, w)

A pentagon identity (a non Abelian 3-cocycle relation) :

Figure: $\left.x_{1}=y / x, x_{2}=y(1-x) / x(1-y), x_{3}=(1-x) /(1-y)\right)$.

Theorem

$\mathcal{H}_{N}(T, \tilde{b})(w), w \in Z_{N}$, is an invariant of the represented tuple (V, ρ, ω) up to multiplication by $2 N$-th roots of 1 , and varying w with fixed $h \in H^{1}(M ; \mathbb{Z} / 2 \mathbb{Z})$ yields a rational function \mathcal{H}_{N}^{h} on $A_{0, N}$.

Strategy :

- The state sums are invariant under enhancements of triangulation moves carrying all the extra structures
- The state sums are invariant under weak branching changes.
- Two (T, \tilde{b}, w)'s are related by such transformations.
- A factorization result removing additional cohomological datas.

Example : invariance under moves preserving the pre-branching

Plan of the talk

(1) Quantum hyperbolic invariants

(2) Simplicialization
(3) State sums over weakly branched triangulations

4 Perspectives

- Lift $\mathcal{H}_{N}^{h}: X_{0, N} \rightarrow \mathbb{C} / \mu_{2 N}$ to a \mathbb{C}-valued function
- \mathcal{H}_{N}^{h} is a rational function : expression in terms of augmented characters of meridian/longitude? Poles, periods?
- Find a skein theoretic construction of \mathcal{H}_{N}^{h}
- Find a geometric quantization construction of \mathcal{H}_{N}^{h} from the Chern-Simons function and line bundle
- Relate \mathcal{H}_{N}^{h} of link complements to Jones and ADO invariants of links in S^{3}
- ...Study the QHI asymptotic problem.

