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Given: Diagram of a knot or link

Quantum Topology

@ Knot invariants invariants esp.
( colored Jones polynomials
@ Geometric topology

@ Incompressible surfaces in
knot complements

Talk Goal: Discuss a setting @ Geometric structures and data
where, under certain knot esp. hyperbolic geometry and
diagrammatic hypothesis, we study volume

both sides and derive relations
between them.
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@ Setting:
@ Given knot diagram construct state graphs (ribbon graphs)..
@ Build state surfaces spanned by the knot...
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@ Given knot diagram construct state graphs (ribbon graphs)..
Build state surfaces spanned by the knot...
Ribbon graphs relate to Jones polynomials...
Give diagrammatic conditions for state surface incompressibility.
Understand JSJ-decompositions of surface complements... emphasis on
hyperbolic part (“the Guts”)

@ Colored Jones polynomial (CPJ) relations:

@ Boundary slopes relate to degrees of CJP.
@ Coefficients

@ measure how far surfaces are from being fibers
@ detect geometric types of surfaces

@ Guts — relate CJP to volume of hyperbolic knots.
@ Method-Tools:
@ Create ideal polyhedral decomposition of surface complements.

@ Use normal surface theory to get correspondence
topology of surface complement « state graph topology
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State Graphs

Two choices for each crossing, A or B resolution.

/ ~

e T

@ Choice of A or B resolutions for all crossings: state o.
@ Result: Planar link without crossings. Components: state circles.

@ Form a graph by adding edges at resolved crossings. Call this graph H,,.
( Note: n crossings — 2" state graphs)
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Example states

Link diagram All A state All B state

le:

Above: Ha and Hg.
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Example states

Link diagram All A state All B state

le:

Above: Ha and Hg.

@ The Jones polynomial of the knot can be calculated from Ha or Hg:
spanning graph expansion arising from the Bollobas-Riordan ribbon
graph polynomial (Turaev, Dasbach-Futer-K-Lin-Stoltzfus).
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Colored Jones polynomial prelims

ForaknotK,andn =1,2,..., we write its n-colored Jones polynomial:

Jk n(t) == ant™ + Bt™M =L o gkt ) the

Some properties:
@ Jk n(t) is determined by the Jones polynomials of certain cables of K.
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Colored Jones polynomial prelims

ForaknotK,andn =1,2,..., we write its n-colored Jones polynomial:

Jin(t) == ant™ + Bat™ L 4o Bht T ol ik

Some properties:
@ Jk n(t) is determined by the Jones polynomials of certain cables of K.
@ The sequence {Jk n(t)}n is g-holonomic: for every knot the CJP’s satisfy
linear recursion relations in n (Garoufalidis-Le, 2004). Then, for every K,
@ Degrees mp, k, are quadratic (quasi)-polynomials in n.
@ Coefficients an, 5, - .. satisfy recursive relations in n.
Remark. Properties manifest themselves in strong forms for knots with state

graphs that have no edge with both endpoints on a single state circle—-That
is when K is A-adequate (next)
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Semi-adequate links

Lickorish—Thistlethwaite 1987: Introduced A—adequate links (B—adequate
links) in the context of Jones polynomials.

Definition

A link is A—adequate if has a diagram with its graph Ha has no edge with both
endpoints on the same state circle. Similarly B-adequate.
Semi-adequate: A or B-adequate.

Some examples:
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links are abundant!

Some familiar classes and their geometry:
@ all but two of prime knots up to 11 crossings.
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°
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links are abundant!

Some familiar classes and their geometry:
@ all but two of prime knots up to 11 crossings.

@ all alternating knots, (prime are torus links or hyperbolic),

@ all Montesinos knots (mostly hyperbolic),

@ all positive (negative) knots (lots of hyperbolic),

@ many arborescent knots (mostly hyperbolic),

@ all closed 3-braids (prime are torus knots or hyperbolic (Stoimenow),

@ large families of hyperbolic braid and plat closures (A. Giambrone),

@ blackboard cables and Whitehead doubles of semi-adequate knots
(satellites)

@ Question: Is there an algorithm to decide whether a given knot is
semi-adequate?

David Futer, Effie Kalfagianni, and Jessica S. Purcell () June 2013 8/37



CJP of semi-adequate links

@ Collapse each state circle of Hp to a vertex to obtain the state graph Ga.
@ Remove redundant edges to obtain the reduced state graph G.

G &

Jin(t) i= ant™ 4 Gpt™ L oo gkt ol the

@ Extreme Coefficients stabilize; they depend only on G!
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CJP for semi-adequate links, con't

@ ( Armond) (the abs. values of) m-th to last coefficients of Jk n(t) is
independent on n, for n > m.
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State surface

Given a state o, using graph H, and link diagram, form the state surface S,,.

@ Each state circle bounds a disk in S, (nested disks drawn on top).
@ At each edge (for each crossing) attach twisted band.

X

A-resolution

-

B—resolution
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Example state surfaces

0RO

Fig-8 knot Seifert surface

@ For alternating knots: S, and Sg are checkerboard surfaces.
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The surface S, and CJP: Boundary slopes

Theorem (Ozawa, FKP)

The surface Sa = Sa(D) is essential in S® W\ K « D(K) is A-adequate.
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The Jones Slopes Conjecture

@ (Curtis-Taylor) Related 0-slopes of checkerboard surfaces of alternating
knots to degree of Jones polynomial.
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The Jones Slopes Conjecture

@ (Curtis-Taylor) Related 0-slopes of checkerboard surfaces of alternating
knots to degree of Jones polynomial.

@ Slopes Conjecture. (Garoufalidis ) For every knot K the sequence

—4
{Fkn}n;
has finitely many cluster points, each of which is a 9-slope of K.

Similarly, for m, :=max deg Jk »(t), the sequence

-4
{an}n,

has finitely many cluster points, each of which is a 9-slope of K.

@ Remarks:
@ g-holonomicity implies that the sets of cluster points above are finite.
@ (Hatcher) Every knot has finitely many 0-slopes.
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What's known

@ For knots that are A and B-adequate slopes conjecture is know for “both
sides”.

@ (Garoufalidis) torus knots, certain 3-string pretzel knots P(—2,p, q) (
A-adequate not B-adequate)
For pretzel knots the boundary slopes are all known./ For torus knots CJP
has been calculated.

@ (Dunfield—Garoufalidis) Verified conjecture for the class of 2-fusion
knots.— (normal surface theory+character variety techniques to get the
incompressible surface).

@ (van der Veen) Formulated a Slopes conjecture for the multi-colored CP
of links. Showed that Sy verifies it A-adequate links.
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The surface S, and CJP: Coefficients

For an A-adequate link, gy is the stabilized penultimate coefficient of CJP.

Theorem (Futer—K—Purcell)
For an A—adequate diagram D(K), the following are equivalent:

@ The penultimate coefficient is 3, = 0.
@ The reduced graph G, is a tree.
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The surface S, and CJP: Coefficients

For an A-adequate link, gy is the stabilized penultimate coefficient of CJP.

Theorem (Futer—K—Purcell)
For an A—adequate diagram D(K), the following are equivalent:

@ The penultimate coefficient is 3, = 0.
@ The reduced graph G, is a tree.
© Saisafiberin S®\ K: S3\\Sp is Sa x I.

Exercise. Derive Stalling’s result: Positive closed braids are fibered with fiber
obtained from Seifert’s algorithm to the braid diagram.

Stronger statements:
@ (For a hyperbolic link K) Sa is quasifuchsian iff 5 # 0
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The surface S, and CJP: Coefficients

For an A-adequate link, gy is the stabilized penultimate coefficient of CJP.

Theorem (Futer—K—Purcell)
For an A—adequate diagram D(K), the following are equivalent:

@ The penultimate coefficient is 3, = 0.
@ The reduced graph G, is a tree.
© Saisafiberin S®\ K: S3\\Sp is Sa x I.

Exercise. Derive Stalling’s result: Positive closed braids are fibered with fiber
obtained from Seifert’s algorithm to the braid diagram.

Stronger statements:
@ (For a hyperbolic link K) Sa is quasifuchsian iff 5 # 0
@ when g, is large, Sa should be “far from being a fiber” (next).
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Is there more in 3, ? How about in the whole tail?

@ In general, g measures the “size” (in the sense of Guts) of the
hyperbolic part in Jaco-Shalen-Johannson decomposition Sa. This,
combined with work of Agol- W. Thurston- Storm gives: large g implies
large volume for S3 \ K.

@ What about the tail?
@ Recall Ty (t) =1+ it + O(t?).

Theorem (Armond-Dasbach)
Suppose K A-adequate. Then, Tk (t) = 1 if and only if 5, = 0.

Note: if 5 = 0then G is a tree
Thus, Tk (t) = 1 if and only if S is a fiber in S® W K.

@ Question. If Tk (t) # 1 does it contain more information about the
complement of S and the geometry of K than gy ?
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Topology of the state surface complement

@ Mj = S3\\Sa is obtained by removing a neighborhood of S, from S3.

@ On OM, we have the parabolic locus P = remains from 9(S2 ~ K) after
cutting along Sa.
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Topology of the state surface complement

@ Mj = S3\\Sa is obtained by removing a neighborhood of S, from S3.

@ On OM, we have the parabolic locus P = remains from 9(S2 ~ K) after
cutting along Sa.

@ The annulus version of the JSJ decomposition for the pair (Ma, P)
assures that Ma can be cut along along essential annuli, to obtain three
kinds of pieces:

©Q I-bundles (e.g. ¥ x | for ¥ C Sa, . Y x1
although X x| can also occur),

@ Seifert fibered solid tori,

@ Guts(S® K, Sp). Thurston showed 06 Y x0

that the guts admit a hyperbolic metric.

David Futer, Effie Kalfagianni, and Jessica S. Purcell () June 2013 18/37



Topology of Guts and Volume

Guts serve as an indication that a surface Sa is far from being a fiber.
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Topology of Guts and Volume

Guts serve as an indication that a surface Sy is far from being a fiber.

@ If Sais a fiber of Ma =2 S, x I: no guts. (3 =0)

© Guts(S® K, Sp) = 0 iff Ma union of I-bundles and solid tori (book of
I-bundles)

@ If K is a hyperbolic A-adequate link, the guts of a surface Sx also have
implications for hyperbolic volume via the following theorem:

Theorem (Agol-Storm—Thurston)

Let M be a compact 3—manifold with hyperbolic interior of finite volume, and
S C M an embedded essential surface. Then

Vol (M) > —vg x(Guts (M, S)),

where vg ~ 3.6638 is the volume of a regular ideal octahedron.
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The meaning of g, : Special case

D(K) =an A-adequate diagram with Sp the corresponding all-A state surface.

Theorem (F—Kalfagianni—Purcell) m

Let D(K) be an A—adequate diagram such that
every 2—edge loop in G4 comes from a twist region.
Then the surface Sa satisfies

W(Guts (S® < K, S)) = x(Gh) = 1 — Ak p OS¢

twist region
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Let D(K) be an A—adequate diagram such that
every 2—edge loop in G4 comes from a twist region.
Then the surface Sa satisfies

W(Guts (S® < K, S)) = x(Gh) = 1 — Ak p OS¢

twist region

Under the same hypotheses, if K is hyperbolic,

Vol (S® \ K) > vg (B —1).
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D(K) =an A-adequate diagram with Sp the corresponding all-A state surface.

Theorem (F—Kalfagianni—Purcell) m

Let D(K) be an A—adequate diagram such that
every 2—edge loop in G4 comes from a twist region.
Then the surface Sa satisfies

W(Guts (S® < K, S)) = x(Gh) = 1 — Ak p OS¢

twist region

Under the same hypotheses, if K is hyperbolic,

Vol (S® \ K) > vg (B —1).

For alternating knots and links, this follows from work of Lackenby and
Dasbach-Lin.
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The meaning of g, : Special case

D(K) =an A-adequate diagram with Sp the corresponding all-A state surface.

Theorem (F—Kalfagianni—Purcell) m

Let D(K) be an A—adequate diagram such that
every 2—edge loop in G4 comes from a twist region.
Then the surface Sa satisfies

W(Guts (S® < K, S)) = x(Gh) = 1 — Ak p OS¢

twist region

Under the same hypotheses, if K is hyperbolic,

Vol (S® \ K) > vg (B —1).

For alternating knots and links, this follows from work of Lackenby and
Dasbach-Lin.

There are large families non-alternating knots satisfying the hypothesis (A.
Giambrone)
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A worked example

/\X/_\ all-A state
<§>

OO
S0l

Ga = G
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A worked example
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1- |ﬂ/| = X(Ga) = x(Sa)
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A worked example
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1- |ﬂ/| = X(Ga) = x(Sa) = X(Ss\\SA)
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A worked example

/\;(—Il/—\ all-A state
ik
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1—18'] = x(Ga) = x(Sa) = x(S*\\Sa) = x(Guts) = -3

Ga = G
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A worked example

/\j&/—\ all-A state
ik
)

1—18'] = x(Ga) = x(Sa) = x(S*\\Sa) = x(Guts) = -3

Ga = G

vg (|[#'] — 1) = —vgx(Gh) = 10.99...

David Futer, Effie Kalfagianni, and Jessica S. Purcell () June 2013



A worked example

/\j&/—\ all-A state
ik
)

1—18'] = x(Ga) = x(Sa) = x(S*\\Sa) = x(Guts) = -3

Ga = G

vg (|[#'] — 1) = —vgx(Gh) = 10.99...

Vol (S® W K) = 13.64...

David Futer, Effie Kalfagianni, and Jessica S. Purcell () June 2013 21/37



Sample family: positive braids

WJ—X}C\(\/\W {03 03030
\ \ 0201030303
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Sample family: positive braids

\

4.3 .3 3 4
05 05 030503

000K
A ) \
Theorem (F—Kalfagianni—Purcell)

Suppose that K is the closure of a positive braid b = o/*07? - - - o7, where

r; > 3 forall j. In other words, there are k twist reglonsleach with at least 3
crossings.
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Sample family: positive braids

\

4.3 .3 3 4
05 05 030503

000K
A ) \
Theorem (F—Kalfagianni—Purcell)

Suppose that K is the closure of a positive braid b = oi*02 - - - 0;*, where
r; > 3 forall j. In other words, there are k twist regions, each Wlth at least 3
crossings. Then K is hyperbolic, and

%k < VoI (S®~ K) < 10vs(k —1).

Similarly,
Vg (B —1) < VoI (S® <\ K) < 15v3 Gy — 25v3.
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Sample family: positive braids

0,00

4
020103003

YJ(“/\\

Theorem (F—Kalfagianni—Purcell)

Suppose that K is the closure of a positive braid b = oi*02 - - - 0;*, where
r; > 3 forall j. In other words, there are k twist regions, each Wlth at least 3
crossings. Then K is hyperbolic, and

%k < VoI (S®~ K) < 10vs(k —1).

Similarly,
Vg (B —1) < VoI (S® <\ K) < 15v3 Gy — 25v3.
Here, vz = 1.0149... is the volume of a regular ideal tetrahedron and

vg = 3.6638... is the volume of a regular ideal octahedron.
The gap between the upper and lower bounds is a factor of 4.155...

y
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Sample family: Montesinos links

A Montesinos knot or
link is constructed by
connecting n rational
tangles in a cyclic
fashion.
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Sample family: Montesinos links

A Montesinos knot or
link is constructed by
connecting n rational
tangles in a cyclic
fashion.

Every Montesinos link is either A— or B—adequate.
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Sample family: Montesinos links

A Montesinos knot or
link is constructed by

connecting n rational
tangles in a cyclic g\ \
fashion. \

OO0

Every Montesinos link is either A— or B—adequate.

&
§’\

Theorem (F—Kalfagianni—Purcell + Finlinson)
Let K be an A—adequate Montesinos link. Then

vg (B —2) < Vol (S K).

4
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Sample family: Montesinos links

A Montesinos knot or
link is constructed by

connecting n rational
tangles in a cyclic g\ \
fashion. \

OO0

Every Montesinos link is either A— or B—adequate.

&
§’\

Theorem (F—Kalfagianni—Purcell + Finlinson)
Let K be an A—adequate Montesinos link. Then

vg (B —2) < Vol (S K).
If K has length at least four we get two-sided volume estimates:
Vg (max{fk, Bk} —2) < Vol (S® \K) < 4vg (Bk + Bk — 2) + 2vg (#K),
where #K is the number of link components of K.

y
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A coarse Volume Conjecture?

Results and experimental evidence prompt:

Question. Does there exist function B(K) of the coefficients of the colored
Jones polynomials of a knot K, such that for hyperbolic knots, B(K) is
coarsely related to hyperbolic volume Vol (S® \ K) ?
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A coarse Volume Conjecture?

Results and experimental evidence prompt:

Question. Does there exist function B(K) of the coefficients of the colored
Jones polynomials of a knot K, such that for hyperbolic knots, B(K) is
coarsely related to hyperbolic volume Vol (S® \ K) ?

Are there constants C; > 1 and C, > 0 such that

C,;'B(K) —Cz < VoI (S*\K) < C1B(K) + Cy,

for all hyperbolic K?

@ Volume Conjecture (Kashaev, H. Murakami-J. Murakami) predicts
relations between volume and coefficients of CIP

@ Proven results and stabilization properties of CJP prompt more guided
speculations as to where one might look for B(K).
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2—edge loops and I-bundles of S3\\Sa

Every 2—edge loop in Ga gives rise to a disk D that intersects K twice — a
essential product disk (EPD) in the complement of the state surface Sa.

>y b
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Every 2—edge loop in Ga gives rise to a disk D that intersects K twice — a
essential product disk (EPD) in the complement of the state surface Sa.

>y b

@ To find Guts (S3\\Sa), start with S\\S, and remove I-bundle pieces.
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2—edge loops and I-bundles of S3\\Sa

Every 2—edge loop in Ga gives rise to a disk D that intersects K twice — a
essential product disk (EPD) in the complement of the state surface Sa.

>y b

@ To find Guts (S3\\Sa), start with S\\S, and remove I-bundle pieces.

@ When we remove and EPD from S3\\Sa, Euler number x(S3\\Sa) goes
up by 1. Removing a redundant edge from G also increases x(Ga) by 1.
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2—edge loops and I-bundles of S3\\Sa

Every 2—edge loop in Ga gives rise to a disk D that intersects K twice — a
essential product disk (EPD) in the complement of the state surface Sa.

>y b

@ To find Guts (S3\\Sa), start with S\\S, and remove I-bundle pieces.

@ When we remove and EPD from S3\\Sa, Euler number x(S3\\Sa) goes
up by 1. Removing a redundant edge from G also increases x(Ga) by 1.

@ Initially, before the cutting, x(Ga) = x(Sa) = x(S3\\Sa).
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2—edge loops and I-bundles of S3\\Sa

Every 2—edge loop in Ga gives rise to a disk D that intersects K twice — a
essential product disk (EPD) in the complement of the state surface Sa.
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@ To find Guts (S3\\Sa), start with S\\S, and remove I-bundle pieces.

@ When we remove and EPD from S3\\Sa, Euler number x(S3\\Sa) goes
up by 1. Removing a redundant edge from G also increases x(Ga) by 1.

@ Initially, before the cutting, x(Ga) = x(Sa) = x(S3\\Sa).

@ We prove that the maximal I-bundle of S3\\S, is spanned by EPD’s that
correspond to 2—edge loops in Ga.
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2—edge loops and I-bundles of S3\\Sa

Every 2—edge loop in Ga gives rise to a disk D that intersects K twice — a
essential product disk (EPD) in the complement of the state surface Sa.

>y b

@ To find Guts (S3\\Sa), start with S\\S, and remove I-bundle pieces.

@ When we remove and EPD from S3\\Sa, Euler number x(S3\\Sa) goes
up by 1. Removing a redundant edge from G also increases x(Ga) by 1.

@ Initially, before the cutting, x(Ga) = x(Sa) = x(S3\\Sa).

@ We prove that the maximal I-bundle of S®\\S, is spanned by EPD’s that
correspond to 2—edge loops in G,. If this correspondence is bijective,

x(Guts) = x(Sa) + #EPDs = x(Ga \ extra edges) = x(Gj).
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Topology of 3 : most general form

A 2—edge loop in G may correspond to multiple product disks, some of which
are complex. The number of complex disksis  ||Ec|| > 0.

al
9
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Topology of 3 : most general form

A 2—edge loop in G may correspond to multiple product disks, some of which
are complex. The number of complex disksis  ||Ec|| > 0.

Theorem (F—Kalfagianni—Purcell)
Let D(K) be an A—adequate diagram. Then the state surface Sp satisfies

X(Guts (S°\K, Sa)) — [[Ec|]| = x(Gx) = 14k,
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Topology of 3 : most general form

A 2—edge loop in G may correspond to multiple product disks, some of which
are complex. The number of complex disksis  ||Ec|| > 0.

Theorem (F—Kalfagianni—Purcell)

Let D(K) be an A—adequate diagram. Then the state surface Sp satisfies

X(Guts (S°\K, Sa)) — [[Ec|]| = x(Gx) = 14k,

Under favorable conditions (positive braids, “long” Montesinos links, 3-braids),
we get a diagram for which ||E¢|| = 0, hence x(Guts) =1 — |5'|.
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Topology of 3 : most general form

A 2—edge loop in G may correspond to multiple product disks, some of which
are complex. The number of complex disksis  ||Ec|| > 0.

Theorem (F—Kalfagianni—Purcell)

Let D(K) be an A—adequate diagram. Then the state surface Sp satisfies

X(Guts (S°\K, Sa)) — [[Ec|]| = x(Gx) = 14k,

Under favorable conditions (positive braids, “long” Montesinos links, 3-braids),
we get a diagram for which ||E¢|| = 0, hence x(Guts) =1 — |5'|.

Open problem: for each A—adequate link, is there a diagram with ||E¢|| = 0?

David Futer, Effie Kalfagianni, and Jessica S. Purcell () June 2013 26 /37



Tool for the proof: a nice polyhedral decomposition

Our results are proved using normal surface theory in a suitable polyhedral
decomposition of the surface complement S3\\Sa.
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Tool for the proof: a nice polyhedral decomposition

Our results are proved using normal surface theory in a suitable polyhedral
decomposition of the surface complement S3\\Sa.

For alternating links, this is Menasco’s polyhedral decomposition:
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decomposition of the surface complement S3\\Sa.

For alternating links, this is Menasco’s polyhedral decomposition:

@ The two polyhedra are “balloons”
above and below projection plane.
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Our results are proved using normal surface theory in a suitable polyhedral
decomposition of the surface complement S3\\Sa.

For alternating links, this is Menasco’s polyhedral decomposition:
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@ Faces are regions of the diagram.
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Tool for the proof: a nice polyhedral decomposition

Our results are proved using normal surface theory in a suitable polyhedral
decomposition of the surface complement S3\\Sa.

For alternating links, this is Menasco’s polyhedral decomposition:

@ The two polyhedra are “balloons”
above and below projection plane.

@ Faces are regions of the diagram.

@ Edges are at crossings, 4—valent.
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Tool for the proof: a nice polyhedral decomposition

Our results are proved using normal surface theory in a suitable polyhedral
decomposition of the surface complement S3\\Sa.

For alternating links, this is Menasco’s polyhedral decomposition:

@ The two polyhedra are “balloons”
above and below projection plane.

@ Faces are regions of the diagram.

@ Edges are at crossings, 4—valent.

@ Vertices are ideal (at infinity, on K). C//-\]7
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Tool for the proof: a nice polyhedral decomposition

Our results are proved using normal surface theory in a suitable polyhedral
decomposition of the surface complement S3\\Sa.

For alternating links, this is Menasco’s polyhedral decomposition:

@ The two polyhedra are “balloons”
above and below projection plane.

@ Faces are regions of the diagram.

@ Edges are at crossings, 4—valent.

@ Vertices are ideal (at infinity, on K). C//-\]7

@ Faces are checkerboard colored.

@ The union of all the shaded faces is a
checkerboard surface Sp.
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Tool for the proof: a nice polyhedral decomposition

Our results are proved using normal surface theory in a suitable polyhedral
decomposition of the surface complement S3\\Sa.

For alternating links, this is Menasco’s polyhedral decomposition:

@ The two polyhedra are “balloons”
above and below projection plane.

Faces are regions of the diagram.

Edges are at crossings, 4—valent.

Vertices are ideal (at infinity, on K). C//-\]7

Faces are checkerboard colored.

The union of all the shaded faces is a
checkerboard surface Sp.
@ Hence, gluing along white faces only

produces a decomposition of S3\\Sa.

¢ 6 ¢ ¢ ¢
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Polyhedral decomposition of the surface complement

Our surface S, is layered below the plane of projection. We need more
balloons to subdivide S3\\Sa.
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Polyhedral decomposition of S3\\Sa: 3—cells

3—cells:
@ One “upper” 3—cell, above the plane of projection.

@ One “lower” 3—cell for each non-trivial component of complement of state
circles in A—resolution. (Innermost disks are trivial.)

T

Two nontrivial components
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Polyhedral decomposition of S3\\Sa: 3—cells

3—cells:
@ One “upper” 3—cell, above the plane of projection.

@ One “lower” 3—cell for each non-trivial component of complement of state
circles in A—resolution. (Innermost disks are trivial.)

D

Two nontrivial components
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Polyhedral decomposition of S3\\Sa: 3—cells

3—cells:
@ One “upper” 3—cell, above the plane of projection.
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Polyhedral decomposition of S3\\Sa: 3—cells

3—cells:
@ One “upper” 3—cell, above the plane of projection.

@ One “lower” 3—cell for each non-trivial component of complement of state
circles in A—resolution. (Innermost disks are trivial.)

T

Two nontrivial components
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Polyhedral decomposition of S3\\Sx: faces

Faces are checkerboard colored, and come in two distinct flavors:
@ Portions of a 3—cell meeting Sa. These faces are shaded.

@ Disks lying slightly below the plane of projection, with boundary on Sa.

@ One disk for each region of the graph Ha (state circles and red edges).
@ These faces are white.

e
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@ Disks lying slightly below the plane of projection, with boundary on Sa.

@ One disk for each region of the graph Ha (state circles and red edges).
@ These faces are white.
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All polyhedra are glued to the upper polyhedron, along white faces only.
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Polyhedral decomposition of S3\\Sx: edges, vertices

Ideal edges:
@ Run from undercrossing to undercrossing, adjacent to region of Ha.

Ideal vertices:
@ On the link. Portions of the link visible from inside the 3—cell.
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Combinatorial descriptions of Polyhedra

Lower polyhedra are identical to checkerboard polyhedra of alternating
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Combinatorial descriptions of Polyhedra

Lower polyhedra are identical to checkerboard polyhedra of alternating
sublinks.

Upper polyhedron: Ideal edges and shaded faces are sketched by tentacles
on projection of Ha
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Properties of the polyhedra, summarized

The polyhedra have a number of nice properties:
@ Combinatorics entirely dictated by the graph Ha.
@ Checkerboard colored faces: shaded on Sa, white (A — G) away from Sa.

@ No normal bigons.
This gives a quick proof that S, is essential, and a way to control annuli.

@ The maximal I-bundle of S*\\S, is spanned by product disks that live in
individual polyhedra.

@ These product disks correspond to 2—edge loops of G,, allowing us to
detect fibering and compute x(Guts (S3\\Sa)).
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