Jones polynomials and incompressible surfaces

joint with D. Futer and J. Purcell

Geometric Topology in Cortona (in honor of Riccardo Benedetti for his 60th birthday), Cortona, Italy, June 3-7, 2013

David Futer, Effie Kalfagianni, and Jessica S. Purcell ()

June 2013 1 / 37

Talk Goal: Discuss a setting where, under certain knot diagrammatic hypothesis, we study both sides and derive relations between them.

Quantum Topology

• Knot invariants invariants esp. colored Jones polynomials

Geometric topology

- Incompressible surfaces in knot complements
- Geometric structures and data esp. hyperbolic geometry and volume

- Given knot diagram construct state graphs (ribbon graphs)..
- Build state surfaces spanned by the knot...

- Given knot diagram construct state graphs (ribbon graphs)..
- Build state surfaces spanned by the knot...
- Ribbon graphs relate to Jones polynomials...

- Given knot diagram construct state graphs (ribbon graphs)..
- Build state surfaces spanned by the knot...
- Ribbon graphs relate to Jones polynomials...
- Give diagrammatic conditions for state surface incompressibility.

- Given knot diagram construct state graphs (ribbon graphs)..
- Build state surfaces spanned by the knot...
- Ribbon graphs relate to Jones polynomials...
- Give diagrammatic conditions for state surface incompressibility.
- Understand JSJ-decompositions of surface complements... emphasis on hyperbolic part ("the Guts")

- Given knot diagram construct state graphs (ribbon graphs)..
- Build state surfaces spanned by the knot...
- Ribbon graphs relate to Jones polynomials...
- Give diagrammatic conditions for state surface incompressibility.
- Understand JSJ-decompositions of surface complements... emphasis on hyperbolic part ("the Guts")

Setting:

- Given knot diagram construct state graphs (ribbon graphs)..
- Build state surfaces spanned by the knot...
- Ribbon graphs relate to Jones polynomials...
- Give diagrammatic conditions for state surface incompressibility.
- Understand JSJ-decompositions of surface complements... emphasis on hyperbolic part ("the Guts")

Colored Jones polynomial (CPJ) relations:

Boundary slopes relate to degrees of CJP.

Setting:

- Given knot diagram construct state graphs (ribbon graphs)..
- Build state surfaces spanned by the knot...
- Ribbon graphs relate to Jones polynomials...
- Give diagrammatic conditions for state surface incompressibility.
- Understand JSJ-decompositions of surface complements... emphasis on hyperbolic part ("the Guts")

Colored Jones polynomial (CPJ) relations:

- Boundary slopes relate to degrees of CJP.
- Coefficients
 - measure how far surfaces are from being fibers

Setting:

- Given knot diagram construct state graphs (ribbon graphs)..
- Build state surfaces spanned by the knot...
- Ribbon graphs relate to Jones polynomials...
- Give diagrammatic conditions for state surface incompressibility.
- Understand JSJ-decompositions of surface complements... emphasis on hyperbolic part ("the Guts")

Colored Jones polynomial (CPJ) relations:

- Boundary slopes relate to degrees of CJP.
- Coefficients
 - measure how far surfaces are from being fibers
 - detect geometric types of surfaces

Setting:

- Given knot diagram construct state graphs (ribbon graphs)..
- Build state surfaces spanned by the knot...
- Ribbon graphs relate to Jones polynomials...
- Give diagrammatic conditions for state surface incompressibility.
- Understand JSJ-decompositions of surface complements... emphasis on hyperbolic part ("the Guts")

Colored Jones polynomial (CPJ) relations:

- Boundary slopes relate to degrees of CJP.
- Coefficients
 - measure how far surfaces are from being fibers
 - detect geometric types of surfaces
- $\bullet~\mbox{Guts} \rightarrow \mbox{relate CJP}$ to volume of hyperbolic knots.

Setting:

- Given knot diagram construct state graphs (ribbon graphs)..
- Build state surfaces spanned by the knot...
- Ribbon graphs relate to Jones polynomials...
- Give diagrammatic conditions for state surface incompressibility.
- Understand JSJ-decompositions of surface complements... emphasis on hyperbolic part ("the Guts")

Colored Jones polynomial (CPJ) relations:

- Boundary slopes relate to degrees of CJP.
- Coefficients
 - measure how far surfaces are from being fibers
 - detect geometric types of surfaces
- Guts \rightarrow relate CJP to volume of hyperbolic knots.

Method-Tools:

• Create ideal polyhedral decomposition of surface complements.

Setting:

- Given knot diagram construct state graphs (ribbon graphs)..
- Build state surfaces spanned by the knot...
- Ribbon graphs relate to Jones polynomials...
- Give diagrammatic conditions for state surface incompressibility.
- Understand JSJ-decompositions of surface complements... emphasis on hyperbolic part ("the Guts")

Colored Jones polynomial (CPJ) relations:

- Boundary slopes relate to degrees of CJP.
- Coefficients
 - measure how far surfaces are from being fibers
 - detect geometric types of surfaces
- Guts \rightarrow relate CJP to volume of hyperbolic knots.

Method-Tools:

- Create ideal polyhedral decomposition of surface complements.
- Use normal surface theory to get correspondence topology of surface complement ↔ state graph topology

Two choices for each crossing, A or B resolution.

- Choice of A or B resolutions for all crossings: state σ .
- Result: Planar link without crossings. Components: state circles.
- Form a graph by adding edges at resolved crossings. Call this graph H_σ.
 (Note: n crossings → 2ⁿ state graphs)

Example states

Above: H_A and H_B .

Above: H_A and H_B .

 The Jones polynomial of the knot can be calculated from H_A or H_B: spanning graph expansion arising from the Bollobas-Riordan ribbon graph polynomial (Turaev, Dasbach-Futer-K-Lin-Stoltzfus).

For a knot *K*, and n = 1, 2, ..., we write its *n*-colored Jones polynomial:

$$J_{\mathcal{K},n}(t) := \alpha_n t^{m_n} + \beta_n t^{m_n-1} + \cdots + \beta'_n t^{k_n+1} + \alpha'_n t^{k_n}.$$

Some properties:

• $J_{K,n}(t)$ is determined by the Jones polynomials of certain cables of K.

For a knot *K*, and n = 1, 2, ..., we write its *n*-colored Jones polynomial:

$$J_{\mathcal{K},n}(t) := \alpha_n t^{m_n} + \beta_n t^{m_n-1} + \cdots + \beta'_n t^{k_n+1} + \alpha'_n t^{k_n}.$$

- $J_{K,n}(t)$ is determined by the Jones polynomials of certain cables of K.
- The sequence {*J_{K,n}(t)*}_n is *q*-holonomic: for every knot the CJP's satisfy linear recursion relations in *n* (Garoufalidis-Le, 2004).

For a knot *K*, and n = 1, 2, ..., we write its *n*-colored Jones polynomial:

$$J_{\mathcal{K},n}(t) := \alpha_n t^{m_n} + \beta_n t^{m_n-1} + \cdots + \beta'_n t^{k_n+1} + \alpha'_n t^{k_n}.$$

- $J_{K,n}(t)$ is determined by the Jones polynomials of certain cables of K.
- The sequence {*J_{K,n}(t)*}_n is *q*-holonomic: for every knot the CJP's satisfy linear recursion relations in *n* (Garoufalidis-Le, 2004). Then, for every *K*,
- Degrees m_n , k_n are quadratic (quasi)-polynomials in n.

For a knot *K*, and n = 1, 2, ..., we write its *n*-colored Jones polynomial:

$$J_{\mathcal{K},n}(t) := \alpha_n t^{m_n} + \beta_n t^{m_n-1} + \cdots + \beta'_n t^{k_n+1} + \alpha'_n t^{k_n}.$$

- $J_{K,n}(t)$ is determined by the Jones polynomials of certain cables of K.
- The sequence {*J_{K,n}(t)*}_n is *q*-holonomic: for every knot the CJP's satisfy linear recursion relations in *n* (Garoufalidis-Le, 2004). Then, for every *K*,
- Degrees m_n , k_n are quadratic (quasi)-polynomials in n.
- Coefficients $\alpha_n, \beta_n \dots$ satisfy recursive relations in *n*.

For a knot *K*, and n = 1, 2, ..., we write its *n*-colored Jones polynomial:

$$J_{\mathcal{K},n}(t) := \alpha_n t^{m_n} + \beta_n t^{m_n-1} + \cdots + \beta'_n t^{k_n+1} + \alpha'_n t^{k_n}.$$

- $J_{K,n}(t)$ is determined by the Jones polynomials of certain cables of K.
- The sequence {*J_{K,n}(t)*}_n is *q*-holonomic: for every knot the CJP's satisfy linear recursion relations in *n* (Garoufalidis-Le, 2004). Then, for every *K*,
- Degrees m_n , k_n are quadratic (quasi)-polynomials in n.
- Coefficients $\alpha_n, \beta_n \dots$ satisfy recursive relations in *n*.

For a knot *K*, and n = 1, 2, ..., we write its *n*-colored Jones polynomial:

$$J_{\mathcal{K},n}(t) := \alpha_n t^{m_n} + \beta_n t^{m_n-1} + \cdots + \beta'_n t^{k_n+1} + \alpha'_n t^{k_n}.$$

Some properties:

- $J_{K,n}(t)$ is determined by the Jones polynomials of certain cables of K.
- The sequence {*J_{K,n}(t)*}_n is *q*-holonomic: for every knot the CJP's satisfy linear recursion relations in *n* (Garoufalidis-Le, 2004). Then, for every *K*,
- Degrees m_n, k_n are quadratic (quasi)-polynomials in n.
- Coefficients $\alpha_n, \beta_n \dots$ satisfy recursive relations in *n*.

Remark. Properties manifest themselves in strong forms for knots with *state* graphs that have no edge with both endpoints on a single state circle—That is when K is *A*-adequate (next)

Lickorish–Thistlethwaite 1987: Introduced *A–adequate* links (*B–adequate* links) in the context of Jones polynomials.

Definition

A link is A-adequate if has a diagram with its graph H_A has no edge with both endpoints on the same state circle. Similarly *B*-adequate. Semi-adequate: *A* or *B*-adequate.

Some examples:

Some familiar classes and their geometry:

• all but two of prime knots up to 11 crossings.

- all but two of prime knots up to 11 crossings.
- all alternating knots, (prime are torus links or hyperbolic),

- all but two of prime knots up to 11 crossings.
- all alternating knots, (prime are torus links or hyperbolic),
- all Montesinos knots (mostly hyperbolic),

- all but two of prime knots up to 11 crossings.
- all alternating knots, (prime are torus links or hyperbolic),
- all Montesinos knots (mostly hyperbolic),
- all positive (negative) knots (lots of hyperbolic),

- all but two of prime knots up to 11 crossings.
- all alternating knots, (prime are torus links or hyperbolic),
- all Montesinos knots (mostly hyperbolic),
- all positive (negative) knots (lots of hyperbolic),
- many arborescent knots (mostly hyperbolic),
- all closed 3-braids (prime are torus knots or hyperbolic (Stoimenow),
- large families of hyperbolic braid and plat closures (A. Giambrone),
- blackboard cables and Whitehead doubles of semi-adequate knots (satellites)

- all but two of prime knots up to 11 crossings.
- all alternating knots, (prime are torus links or hyperbolic),
- all Montesinos knots (mostly hyperbolic),
- all positive (negative) knots (lots of hyperbolic),
- many arborescent knots (mostly hyperbolic),
- all closed 3-braids (prime are torus knots or hyperbolic (Stoimenow),
- large families of hyperbolic braid and plat closures (A. Giambrone),
- blackboard cables and Whitehead doubles of semi-adequate knots (satellites)
- **Question:** Is there an algorithm to decide whether a given knot is semi-adequate?

- Collapse each state circle of H_A to a vertex to obtain the state graph \mathbb{G}_A .
- Remove redundant edges to obtain the reduced state graph G'_A.

$$J_{\mathcal{K},n}(t) := \alpha_n t^{m_n} + \beta_n t^{m_n-1} + \cdots + \beta'_n t^{k_n+1} + \alpha'_n t^{k_n}.$$

Extreme Coefficients stabilize; they depend only on 𝔅'_A!

- Collapse each state circle of H_A to a vertex to obtain the state graph \mathbb{G}_A .
- Remove redundant edges to obtain the reduced state graph G'_A.

$$J_{\mathcal{K},n}(t) := \alpha_n t^{m_n} + \beta_n t^{m_n-1} + \cdots + \beta'_n t^{k_n+1} + \alpha'_n t^{k_n}.$$

- Extreme Coefficients stabilize; they depend only on G₄['].
- (Lickorish-Thistlethwaite) $|\alpha'_n| = 1$; independent of *n*

- Collapse each state circle of H_A to a vertex to obtain the state graph \mathbb{G}_A .
- Remove redundant edges to obtain the reduced state graph G'_A.

$$J_{\mathcal{K},n}(t) := \alpha_n t^{m_n} + \beta_n t^{m_n-1} + \cdots + \beta'_n t^{k_n+1} + \alpha'_n t^{k_n}.$$

- Extreme Coefficients stabilize; they depend only on G₄['].
- (Lickorish-Thistlethwaite) $|\alpha'_n| = 1$; independent of *n*
- (Dasbach-Lin/ Stoimenow) $\beta'_{\mathcal{K}} := |\beta_n| = 1 \chi(\mathbb{G}'_{\mathcal{A}}), n > 1.$

- Collapse each state circle of H_A to a vertex to obtain the state graph \mathbb{G}_A .
- Remove redundant edges to obtain the reduced state graph G'_A.

$$J_{\mathcal{K},n}(t) := \alpha_n t^{m_n} + \beta_n t^{m_n-1} + \cdots + \beta'_n t^{k_n+1} + \alpha'_n t^{k_n}.$$

- Extreme Coefficients stabilize; they depend only on G₄['].
- (Lickorish-Thistlethwaite) $|\alpha'_n| = 1$; independent of *n*
- (Dasbach-Lin/ Stoimenow) $\beta'_{\mathcal{K}} := |\beta_n| = 1 \chi(\mathbb{G}'_{\mathcal{A}}), n > 1.$

CJP for semi-adequate links, con't

 (Armond) (the abs. values of) *m*-th to last coefficients of J_{K,n}(t) is independent on *n*, for n ≥ m.

CJP for semi-adequate links, con't

 (Armond) (the abs. values of) *m*-th to last coefficients of J_{K,n}(t) is independent on *n*, for n ≥ m. The Tail of the CJP

$$T_{\mathcal{K}}(t) = \sum_{m}^{\infty} \beta_{\mathcal{K}}^{m} t^{m} = 1 + \beta_{\mathcal{K}}' t + O(t^{2}),$$

 β_{κ}^{m} =*m*-th to last coefficients stabilized coefficient.

CJP for semi-adequate links, con't

 (Armond) (the abs. values of) *m*-th to last coefficients of J_{K,n}(t) is independent on *n*, for n ≥ m. The Tail of the CJP

$$T_{\mathcal{K}}(t) = \sum_{m}^{\infty} \beta_{\mathcal{K}}^{m} t^{m} = 1 + \beta_{\mathcal{K}}' t + O(t^{2}),$$

 β_{K}^{m} =*m*-th to last coefficients stabilized coefficient.

• (Armond-Dasbach) $T_{\mathcal{K}}(t)$ only depends on reduced state graph, $\mathbb{G}'_{\mathcal{A}}$
(Armond) (the abs. values of) *m*-th to last coefficients of J_{K,n}(t) is independent on *n*, for n ≥ m.The Tail of the CJP

$$T_{\mathcal{K}}(t) = \sum_{m}^{\infty} \beta_{\mathcal{K}}^{m} t^{m} = 1 + \beta_{\mathcal{K}}' t + O(t^{2}),$$

 β_{K}^{m} =*m*-th to last coefficients stabilized coefficient.

- (Armond-Dasbach) $T_{\mathcal{K}}(t)$ only depends on *reduced state graph*, $\mathbb{G}'_{\mathcal{A}}$
- (Garoufalidis-Le) Discovered higher order stability phenomena in CJP ("higher order tails"); gave closed formulae for the tails.

 (Armond) (the abs. values of) *m*-th to last coefficients of J_{K,n}(t) is independent on *n*, for n ≥ m.The Tail of the CJP

$$T_{\mathcal{K}}(t) = \sum_{m}^{\infty} \beta_{\mathcal{K}}^{m} t^{m} = 1 + \beta_{\mathcal{K}}' t + O(t^{2}),$$

 β_{K}^{m} =*m*-th to last coefficients stabilized coefficient.

- (Armond-Dasbach) $T_{\mathcal{K}}(t)$ only depends on *reduced state graph*, $\mathbb{G}'_{\mathcal{A}}$
- (Garoufalidis-Le) Discovered higher order stability phenomena in CJP ("higher order tails"); gave closed formulae for the tails.

Extreme degrees of CJP

(Thistlethwaite) *D* any diagram of *K*, *c*₋(*D*)=number of negative crossings in *D*. Then

$$k_n \geq -n^2 2c_-(D) + O(n),$$

 $k_n :=$ min deg $J_{K,n}(t)$. We have equality exactly when *D* is *A*-adequate.

 (Armond) (the abs. values of) *m*-th to last coefficients of J_{K,n}(t) is independent on *n*, for n ≥ m.The Tail of the CJP

$$T_{\mathcal{K}}(t) = \sum_{m}^{\infty} \beta_{\mathcal{K}}^{m} t^{m} = 1 + \beta_{\mathcal{K}}' t + O(t^{2}),$$

 β_{K}^{m} =*m*-th to last coefficients stabilized coefficient.

- (Armond-Dasbach) $T_{\mathcal{K}}(t)$ only depends on *reduced state graph*, $\mathbb{G}'_{\mathcal{A}}$
- (Garoufalidis-Le) Discovered higher order stability phenomena in CJP ("higher order tails"); gave closed formulae for the tails.

Extreme degrees of CJP

(Thistlethwaite) *D* any diagram of *K*, *c*₋(*D*)=number of negative crossings in *D*. Then

$$k_n \geq -n^2 2c_-(D) + O(n),$$

 $k_n :=$ min deg $J_{K,n}(t)$. We have equality exactly when *D* is *A*-adequate.

Thus k_n is a quadratic polynomial in n; can be calculated explicitly.

 (Armond) (the abs. values of) *m*-th to last coefficients of J_{K,n}(t) is independent on *n*, for n ≥ m.The Tail of the CJP

$$T_{\mathcal{K}}(t) = \sum_{m}^{\infty} \beta_{\mathcal{K}}^{m} t^{m} = 1 + \beta_{\mathcal{K}}' t + O(t^{2}),$$

 β_{K}^{m} =*m*-th to last coefficients stabilized coefficient.

- (Armond-Dasbach) $T_{\mathcal{K}}(t)$ only depends on *reduced state graph*, $\mathbb{G}'_{\mathcal{A}}$
- (Garoufalidis-Le) Discovered higher order stability phenomena in CJP ("higher order tails"); gave closed formulae for the tails.

Extreme degrees of CJP

(Thistlethwaite) *D* any diagram of *K*, *c*₋(*D*)=number of negative crossings in *D*. Then

$$k_n \geq -n^2 2c_-(D) + O(n),$$

 $k_n :=$ min deg $J_{K,n}(t)$. We have equality exactly when *D* is *A*-adequate.

Thus k_n is a quadratic polynomial in n; can be calculated explicitly.

State surface

Given a state σ , using graph H_{σ} and link diagram, form the state surface S_{σ} .

- Each state circle bounds a disk in S_{σ} (nested disks drawn on top).
- At each edge (for each crossing) attach twisted band.

Example state surfaces

• For alternating knots: S_A and S_B are checkerboard surfaces.

Theorem (Ozawa, FKP)

The surface $S_A = S_A(D)$ is essential in $S^3 \setminus K \Leftrightarrow D(K)$ is A-adequate.

Theorem (Ozawa, FKP)

The surface $S_A = S_A(D)$ is essential in $S^3 \setminus K \Leftrightarrow D(K)$ is A-adequate.

Ozawa's proof was first– We give information about the topology of the surface complement, $S^3 \setminus S_A$, in terms of colored Jones polynomials.

Theorem (Ozawa, FKP)

The surface $S_A = S_A(D)$ is essential in $S^3 \setminus K \Leftrightarrow D(K)$ is A-adequate.

Ozawa's proof was first– We give information about the topology of the surface complement, $S^3 \setminus S_A$, in terms of colored Jones polynomials.

 S_A = state surface with $K = \partial S_A$ an A-adequate knot (one component). The class [K] in $H_1(\partial(S^3 \setminus K))$ is determined by an element in $\mathbf{Q} \cup \{\infty\}$, called *the boundary slope of* S_A .

Theorem (Ozawa, FKP)

The surface $S_A = S_A(D)$ is essential in $S^3 \setminus K \Leftrightarrow D(K)$ is A–adequate.

Ozawa's proof was first– We give information about the topology of the surface complement, $S^3 \setminus S_A$, in terms of colored Jones polynomials.

 S_A = state surface with $K = \partial S_A$ an A-adequate knot (one component). The class [K] in $H_1(\partial(S^3 \setminus K))$ is determined by an element in $\mathbf{Q} \cup \{\infty\}$, called *the boundary slope of* S_A .

Theorem (FKP)

For an A-adequate diagram,

bdry slope of
$$S_A = \lim_{n \to \infty} \frac{-4}{n^2} k_n$$
,

 $k_n := min \deg J_{K,n}(t).$ There is a similar statement for B-adequate knots.

イロト イポト イヨト イヨ

Theorem (Ozawa, FKP)

The surface $S_A = S_A(D)$ is essential in $S^3 \setminus K \Leftrightarrow D(K)$ is A–adequate.

Ozawa's proof was first– We give information about the topology of the surface complement, $S^3 \setminus S_A$, in terms of colored Jones polynomials.

 S_A = state surface with $K = \partial S_A$ an A-adequate knot (one component). The class [K] in $H_1(\partial(S^3 \setminus K))$ is determined by an element in $\mathbf{Q} \cup \{\infty\}$, called *the boundary slope of* S_A .

Theorem (FKP)

For an A-adequate diagram,

bdry slope of
$$S_A = \lim_{n \to \infty} \frac{-4}{n^2} k_n$$
,

 $k_n := min \deg J_{K,n}(t).$ There is a similar statement for B-adequate knots.

イロト イポト イヨト イヨ

● (Curtis-Taylor) Related ∂-slopes of checkerboard surfaces of alternating knots to degree of Jones polynomial.

- (Curtis-Taylor) Related ∂-slopes of checkerboard surfaces of alternating knots to degree of Jones polynomial.
- Slopes Conjecture. (Garoufalidis) For every knot K the sequence

$$\{\frac{-4}{n^2}k_n\}_n,$$

has finitely many cluster points, each of which is a ∂ -slope of K.

- (Curtis-Taylor) Related ∂-slopes of checkerboard surfaces of alternating knots to degree of Jones polynomial.
- Slopes Conjecture. (Garoufalidis) For every knot K the sequence

$$\{\frac{-4}{n^2}k_n\}_n,$$

has finitely many cluster points, each of which is a ∂ -slope of K.

Similarly, for $m_n := \max \deg J_{K,n}(t)$, the sequence

$$\{\frac{-4}{n^2}m_n\}_n,$$

has finitely many cluster points, each of which is a ∂ -slope of K.

- (Curtis-Taylor) Related ∂-slopes of checkerboard surfaces of alternating knots to degree of Jones polynomial.
- Slopes Conjecture. (Garoufalidis) For every knot K the sequence

$$\{\frac{-4}{n^2}k_n\}_n,$$

has finitely many cluster points, each of which is a ∂ -slope of K.

Similarly, for $m_n := \max \deg J_{K,n}(t)$, the sequence

$$\{\frac{-4}{n^2}m_n\}_n,$$

has finitely many cluster points, each of which is a ∂ -slope of K.

Remarks:

- q-holonomicity implies that the sets of cluster points above are finite.
- (Hatcher) Every knot has finitely many ∂-slopes.

- For knots that are A and B-adequate slopes conjecture is know for "both sides".
- (Garoufalidis) torus knots, certain 3-string pretzel knots P(-2, p, q) (*A*-adequate not *B*-adequate)

 For pretzel knots the boundary slopes are all known./ For torus knots CJP
 has been calculated.
- (Dunfield–Garoufalidis) Verified conjecture for the class of 2-fusion knots.— (normal surface theory+character variety techniques to get the incompressible surface).
- (van der Veen) Formulated a Slopes conjecture for the *multi-colored* CP of links. Showed that S_A verifies it A-adequate links.

For an A-adequate link, β'_{κ} is the stabilized penultimate coefficient of CJP.

Theorem (Futer-K-Purcell)

For an A-adequate diagram D(K), the following are equivalent:

- The penultimate coefficient is $\beta'_{K} = 0$.
- 2 The reduced graph G'_A is a tree.

For an A-adequate link, β'_{κ} is the stabilized penultimate coefficient of CJP.

Theorem (Futer-K-Purcell)

For an A-adequate diagram D(K), the following are equivalent:

- The penultimate coefficient is $\beta'_{K} = 0$.
- 2 The reduced graph G'_A is a tree.
- S_A is a fiber in $S^3 \setminus K$:

For an A-adequate link, β'_{κ} is the stabilized penultimate coefficient of CJP.

Theorem (Futer-K-Purcell)

For an A-adequate diagram D(K), the following are equivalent:

- The penultimate coefficient is $\beta'_{K} = 0$.
- 2 The reduced graph G'_A is a tree.
- S_A is a fiber in $S^3 \setminus K$: $S^3 \setminus S_A$ is $S_A \times I$.

For an A-adequate link, β'_{k} is the stabilized penultimate coefficient of CJP.

Theorem (Futer-K-Purcell)

For an A-adequate diagram D(K), the following are equivalent:

- The penultimate coefficient is $\beta'_{K} = 0$.
- 2 The reduced graph G'_A is a tree.
- S_A is a fiber in $S^3 \setminus K$: $S^3 \setminus S_A$ is $S_A \times I$.

Exercise. Derive Stalling's result: *Positive* closed braids are fibered with fiber obtained from Seifert's algorithm to the braid diagram.

For an A-adequate link, β'_{k} is the stabilized penultimate coefficient of CJP.

Theorem (Futer-K-Purcell)

For an A-adequate diagram D(K), the following are equivalent:

- The penultimate coefficient is $\beta'_{K} = 0$.
- 2 The reduced graph G'_A is a tree.
- S_A is a fiber in $S^3 \setminus K$: $S^3 \setminus S_A$ is $S_A \times I$.

Exercise. Derive Stalling's result: *Positive* closed braids are fibered with fiber obtained from Seifert's algorithm to the braid diagram.

Stronger statements:

• (For a hyperbolic link *K*) S_A is *quasifuchsian* iff $\beta'_K \neq 0$

For an A-adequate link, β'_{k} is the stabilized penultimate coefficient of CJP.

Theorem (Futer-K-Purcell)

For an A-adequate diagram D(K), the following are equivalent:

- The penultimate coefficient is $\beta'_{K} = 0$.
- 2 The reduced graph G'_A is a tree.
- S_A is a fiber in $S^3 \setminus K$: $S^3 \setminus S_A$ is $S_A \times I$.

Exercise. Derive Stalling's result: *Positive* closed braids are fibered with fiber obtained from Seifert's algorithm to the braid diagram.

Stronger statements:

- (For a hyperbolic link *K*) S_A is *quasifuchsian* iff $\beta'_K \neq 0$
- when $\beta'_{\mathcal{K}}$ is large, $S_{\mathcal{A}}$ should be "far from being a fiber" (next).

Is there more in β'_{κ} ? How about in the whole tail?

- In general, β'_{K} measures the "size" (in the sense of Guts) of the hyperbolic part in Jaco-Shalen-Johannson decomposition S_{A} . This, combined with work of Agol- W. Thurston- Storm gives: large β'_{K} implies large volume for $S^{3} \setminus K$.
- What about the tail?

• Recall
$$T_{K}(t) = 1 + \beta'_{K}t + O(t^{2})$$
.

Theorem (Armond-Dasbach)

Suppose K A-adequate. Then, $T_K(t) = 1$ if and only if $\beta'_K = 0$.

Note: if $\beta'_{\kappa} = 0$ then \mathbb{G}'_{A} is a tree

Thus, $T_K(t) = 1$ if and only if S_A is a fiber in $S^3 \setminus K$.

Question. If *T_K*(*t*) ≠ 1 does it contain more information about the complement of *S_A* and the geometry of *K* than β'_K?

Topology of the state surface complement

- $M_A = S^3 \setminus S_A$ is obtained by removing a neighborhood of S_A from S^3 .
- On ∂M_A we have the parabolic locus P = remains from $\partial(S^3 \setminus K)$ after cutting along S_A .

Topology of the state surface complement

- $M_A = S^3 \setminus S_A$ is obtained by removing a neighborhood of S_A from S^3 .
- On ∂M_A we have the parabolic locus P = remains from $\partial(S^3 \setminus K)$ after cutting along S_A .
- The annulus version of the JSJ decomposition for the pair (M_A, P) assures that M_A can be cut along along essential annuli, to obtain three kinds of pieces:
- I-bundles (e.g. Σ × I for Σ ⊂ S_A, although Σ×I can also occur),
- Seifert fibered solid tori,
- Guts ($S^3 \setminus K$, S_A). Thurston showed that the guts admit a hyperbolic metric.

Guts serve as an indication that a surface S_A is far from being a fiber.

Guts serve as an indication that a surface S_A is far from being a fiber.

If S_A is a fiber of $M_A = \cong S_A \times I$: no guts. ($\beta'_{\kappa} = 0$)

Guts serve as an indication that a surface S_A is far from being a fiber.

- If S_A is a fiber of $M_A \cong S_A \times I$: no guts. ($\beta'_{\kappa}=0$)
- Quts (S³ \ K, S_A) = Ø iff M_A union of *I*-bundles and solid tori (book of *I*-bundles)

Guts serve as an indication that a surface S_A is far from being a fiber.

- If S_A is a fiber of $M_A = \cong S_A \times I$: no guts. ($\beta'_{\kappa}=0$)
- **2** Guts $(S^3 \setminus K, S_A) = \emptyset$ iff M_A union of *I*-bundles and solid tori (*book of I-bundles*)
- If *K* is a hyperbolic *A*-adequate link, the guts of a surface S_A also have implications for hyperbolic volume via the following theorem:

Guts serve as an indication that a surface S_A is far from being a fiber.

- If S_A is a fiber of $M_A \cong S_A \times I$: no guts. ($\beta'_{\kappa}=0$)
- **2** Guts $(S^3 \setminus K, S_A) = \emptyset$ iff M_A union of *I*-bundles and solid tori (*book of I-bundles*)
- If *K* is a hyperbolic *A*-adequate link, the guts of a surface S_A also have implications for hyperbolic volume via the following theorem:

Theorem (Agol–Storm–Thurston)

Let *M* be a compact 3–manifold with hyperbolic interior of finite volume, and $S \subset M$ an embedded essential surface. Then

$$Vol(M) \geq -v_8 \chi(Guts(M, S)),$$

where $v_8 \approx 3.6638$ is the volume of a regular ideal octahedron.

The meaning of $\beta'_{\mathcal{K}}$: Special case

D(K) =an A-adequate diagram with S_A the corresponding all-A state surface.

Theorem (F–Kalfagianni–Purcell)

Let D(K) be an A-adequate diagram such that every 2-edge loop in G_A comes from a twist region. Then the surface S_A satisfies

$$\chi(Guts(S^3 \setminus K, S_A)) = \chi(G'_A) = 1 - \beta'_K$$

twist region

The meaning of $\beta'_{\mathcal{K}}$: Special case

D(K) =an A-adequate diagram with S_A the corresponding all-A state surface.

Theorem (F–Kalfagianni–Purcell)

Let D(K) be an A-adequate diagram such that every 2-edge loop in G_A comes from a twist region. Then the surface S_A satisfies

$$\chi(Guts(S^3 \setminus K, S_A)) = \chi(G'_A) = 1 - \beta'_K$$

twist region

June 2013

20/37

Corollary

Under the same hypotheses, if K is hyperbolic,

 $Vol(S^3 \setminus K) \geq v_8(\beta'_K - 1).$

David Futer, Effie Kalfagianni, and Jessica S. Purcell ()

The meaning of $\beta'_{\mathcal{K}}$: Special case

D(K) =an A-adequate diagram with S_A the corresponding all-A state surface.

Theorem (F–Kalfagianni–Purcell)

Let D(K) be an A-adequate diagram such that every 2-edge loop in G_A comes from a twist region. Then the surface S_A satisfies

$$\chi(Guts(S^3 \setminus K, S_A)) = \chi(G'_A) = 1 - \beta'_K$$

twist region

Corollary

Under the same hypotheses, if K is hyperbolic,

$$Vol(S^3 \setminus K) \geq v_8(\beta'_K - 1).$$

For alternating knots and links, this follows from work of Lackenby and Dasbach–Lin.

The meaning of β'_{K} : Special case

D(K) =an A-adequate diagram with S_A the corresponding all-A state surface.

Theorem (F–Kalfagianni–Purcell)

Let D(K) be an A-adequate diagram such that every 2-edge loop in G_A comes from a twist region. Then the surface S_A satisfies

$$\chi(Guts(S^3 \setminus K, S_A)) = \chi(G'_A) = 1 - \beta'_K$$

twist region

Corollary

Under the same hypotheses, if K is hyperbolic,

$$Vol(S^3 \setminus K) \geq v_8(\beta'_K - 1).$$

For alternating knots and links, this follows from work of Lackenby and Dasbach–Lin.

There are large families non-alternating knots satisfying the hypothesis (A. Giambrone)

A worked example

A worked example

$$1-|\beta'| = \chi(G_A)$$

David Futer, Effie Kalfagianni, and Jessica S. Purcell ()

$$1 - |\beta'| = \chi(G_A) = \chi(S_A)$$

David Futer, Effie Kalfagianni, and Jessica S. Purcell ()

$$1 - |\beta'| = \chi(G_A) = \chi(S_A) = \chi(S^3 \setminus \backslash S_A)$$

 $1 - |\beta'| = \chi(\mathsf{G}_{\mathsf{A}}) = \chi(\mathsf{S}_{\mathsf{A}}) = \chi(\mathsf{S}^{3} \setminus \setminus \mathsf{S}_{\mathsf{A}}) = \chi(\mathsf{Guts})$

 $1 - |\beta'| = \chi(\mathsf{G}_{\mathsf{A}}) = \chi(\mathsf{S}_{\mathsf{A}}) = \chi(\mathsf{S}^{\mathsf{3}} \setminus \backslash \mathsf{S}_{\mathsf{A}}) = \chi(\mathsf{Guts}) = -3$

 $1 - |\beta'| = \chi(\mathsf{G}_{\mathsf{A}}) = \chi(\mathsf{S}_{\mathsf{A}}) = \chi(\mathsf{S}^{\mathsf{3}} \setminus \backslash \mathsf{S}_{\mathsf{A}}) = \chi(\mathsf{Guts}) = -3$

$$v_8(|\beta'|-1) = -v_8\chi(G'_A) = 10.99...$$

 $1 - |\beta'| = \chi(\mathsf{G}_{\mathsf{A}}) = \chi(\mathsf{S}_{\mathsf{A}}) = \chi(\mathsf{S}^{\mathsf{3}} \setminus \backslash \mathsf{S}_{\mathsf{A}}) = \chi(\mathsf{Guts}) = -3$

 $v_8(|\beta'|-1) = -v_8\chi(G'_A) = 10.99...$

 $Vol(S^3 \setminus K) = 13.64...$

< ロ > < 同 > < 三 >

 $\sigma_2^4 \, \sigma_1^3 \, \sigma_3^3 \, \sigma_2^3 \, \sigma_3^4$

Theorem (F-Kalfagianni-Purcell)

Suppose that *K* is the closure of a positive braid $b = \sigma_{i_1}^{r_1} \sigma_{i_2}^{r_2} \cdots \sigma_{i_k}^{r_k}$, where $r_j \ge 3$ for all *j*. In other words, there are *k* twist regions, each with at least 3 crossings.

Theorem (F–Kalfagianni–Purcell)

Suppose that K is the closure of a positive braid $b = \sigma_{i_1}^{r_1} \sigma_{i_2}^{r_2} \cdots \sigma_{i_k}^{r_k}$, where $r_j \ge 3$ for all j. In other words, there are k twist regions, each with at least 3 crossings. Then K is hyperbolic, and

$$\frac{2v_8}{3} k \leq Vol(S^3 \setminus K) < 10v_3(k-1).$$

Similarly,

$$v_8\,(eta_K'-1)\,\leq\, \mathit{Vol}\,(S^3\smallsetminus K)\,<\,15 v_3\,eta_K'-25 v_3\,.$$

Theorem (F-Kalfagianni-Purcell)

Suppose that K is the closure of a positive braid $b = \sigma_{i_1}^{r_1} \sigma_{i_2}^{r_2} \cdots \sigma_{i_k}^{r_k}$, where $r_j \ge 3$ for all j. In other words, there are k twist regions, each with at least 3 crossings. Then K is hyperbolic, and

$$\frac{2v_8}{3} k \leq Vol(S^3 \setminus K) < 10v_3(k-1).$$

Similarly,

$$v_8 \left(eta_K' - 1
ight) \ \le \ Vol(S^3 \smallsetminus K) \ < \ 15 v_3 \, eta_K' - 25 v_3 \, .$$

Here, $v_3 = 1.0149...$ is the volume of a regular ideal tetrahedron and $v_8 = 3.6638...$ is the volume of a regular ideal octahedron. The gap between the upper and lower bounds is a factor of 4.155...

< 🗆 > < 🗇 >

A Montesinos knot or link is constructed by connecting *n* rational tangles in a cyclic fashion.

A Montesinos knot or link is constructed by connecting *n* rational tangles in a cyclic fashion.

Every Montesinos link is either A- or B-adequate.

A Montesinos knot or link is constructed by connecting *n* rational tangles in a cyclic fashion.

Every Montesinos link is either A- or B-adequate.

Theorem (F-Kalfagianni-Purcell + Finlinson)

Let K be an A-adequate Montesinos link. Then

 $v_8(eta_K'-2) \leq Vol(S^3 \smallsetminus K).$

A Montesinos knot or link is constructed by connecting *n* rational tangles in a cyclic fashion.

Every Montesinos link is either A- or B-adequate.

Theorem (F-Kalfagianni-Purcell + Finlinson)

Let K be an A-adequate Montesinos link. Then

$$v_8(\beta'_K-2) \leq Vol(S^3 \setminus K).$$

If K has length at least four we get two-sided volume estimates:

 $v_8\left(\max\{\beta_{\mathcal{K}},\beta_{\mathcal{K}}'\}-2\right) \leq Vol(S^3 \smallsetminus \mathcal{K}) < 4v_8\left(\beta_{\mathcal{K}}'+\beta_{\mathcal{K}}-2\right)+2v_8\left(\#\mathcal{K}\right),$

where #K is the number of link components of K.

Question. Does there exist function B(K) of the coefficients of the colored Jones polynomials of a knot K, such that for hyperbolic knots, B(K) is coarsely related to hyperbolic volume Vol ($S^3 \setminus K$)?

Question. Does there exist function B(K) of the coefficients of the colored Jones polynomials of a knot K, such that for hyperbolic knots, B(K) is coarsely related to hyperbolic volume Vol ($S^3 \\ K$)? Are there constants $C_1 \ge 1$ and $C_2 \ge 0$ such that

$$C_1^{-1}B(K) - C_2 \leq \operatorname{Vol}(S^3 \setminus K) \leq C_1B(K) + C_2,$$

for all hyperbolic K?

Question. Does there exist function B(K) of the coefficients of the colored Jones polynomials of a knot K, such that for hyperbolic knots, B(K) is coarsely related to hyperbolic volume Vol ($S^3 \\ K$)? Are there constants $C_1 \ge 1$ and $C_2 \ge 0$ such that

$$C_1^{-1}B(K) - C_2 \leq \operatorname{Vol}(S^3 \setminus K) \leq C_1B(K) + C_2,$$

for all hyperbolic K?

 Volume Conjecture (Kashaev, H. Murakami-J. Murakami) predicts relations between volume and coefficients of CJP

Question. Does there exist function B(K) of the coefficients of the colored Jones polynomials of a knot K, such that for hyperbolic knots, B(K) is coarsely related to hyperbolic volume Vol ($S^3 \\ K$)? Are there constants $C_1 \ge 1$ and $C_2 \ge 0$ such that

$$C_1^{-1}B(K) - C_2 \leq \operatorname{Vol}(S^3 \setminus K) \leq C_1B(K) + C_2,$$

for all hyperbolic K?

- Volume Conjecture (Kashaev, H. Murakami-J. Murakami) predicts relations between volume and coefficients of CJP
- Proven results and stabilization properties of CJP prompt more guided speculations as to where one might look for B(K).

Every 2–edge loop in G_A gives rise to a disk *D* that intersects *K* twice — a *essential product disk (EPD)* in the complement of the state surface S_A .

• To find Guts $(S^3 \setminus S_A)$, start with $S^3 \setminus S_A$ and remove *I*-bundle pieces.

- To find Guts $(S^3 \setminus S_A)$, start with $S^3 \setminus S_A$ and remove *I*-bundle pieces.
- When we remove and EPD from S³\\S_A, Euler number χ(S³\\S_A) goes up by 1. Removing a redundant edge from G_A also increases χ(G_A) by 1.

- To find Guts $(S^3 \setminus S_A)$, start with $S^3 \setminus S_A$ and remove *I*-bundle pieces.
- When we remove and EPD from S³\\S_A, Euler number χ(S³\\S_A) goes up by 1. Removing a redundant edge from G_A also increases χ(G_A) by 1.
- Initially, before the cutting, $\chi(G_A) = \chi(S_A) = \chi(S^3 \setminus S_A)$.

- To find Guts $(S^3 \setminus S_A)$, start with $S^3 \setminus S_A$ and remove *I*-bundle pieces.
- When we remove and EPD from S³\\S_A, Euler number χ(S³\\S_A) goes up by 1. Removing a redundant edge from G_A also increases χ(G_A) by 1.
- Initially, before the cutting, $\chi(G_A) = \chi(S_A) = \chi(S^3 \setminus S_A)$.
- We prove that the maximal I-bundle of S³\\S_A is spanned by EPD's that correspond to 2-edge loops in G_A.

- To find Guts $(S^3 \setminus S_A)$, start with $S^3 \setminus S_A$ and remove *I*-bundle pieces.
- When we remove and EPD from S³\\S_A, Euler number χ(S³\\S_A) goes up by 1. Removing a redundant edge from G_A also increases χ(G_A) by 1.
- Initially, before the cutting, $\chi(G_A) = \chi(S_A) = \chi(S^3 \setminus S_A)$.
- We prove that the *maximal I-bundle* of $S^3 \setminus S_A$ is spanned by EPD's that correspond to 2-edge loops in G_A . If this correspondence is bijective,

$$\chi(\mathsf{Guts}) = \chi(\mathsf{S}_{\mathsf{A}}) + \#\mathsf{EPDs} = \chi(\mathsf{G}_{\mathsf{A}} \smallsetminus \mathsf{extra edges}) = \chi(\mathsf{G}_{\mathsf{A}}').$$

Topology of β'_{κ} : most general form

A 2–edge loop in G_A may correspond to multiple product disks, some of which are *complex*. The number of complex disks is $||E_c|| \ge 0$.

Topology of β'_{κ} : most general form

A 2–edge loop in G_A may correspond to multiple product disks, some of which are *complex*. The number of complex disks is $||E_c|| \ge 0$.

Theorem (F–Kalfagianni–Purcell)

Let D(K) be an A-adequate diagram. Then the state surface S_A satisfies

$$\chi(Guts(S^3 \smallsetminus K, S_A)) - ||E_c|| = \chi(G'_A) = 1 - \beta'_K,$$

Topology of $\beta'_{\mathcal{K}}$: most general form

A 2–edge loop in G_A may correspond to multiple product disks, some of which are *complex*. The number of complex disks is $||E_c|| \ge 0$.

Theorem (F-Kalfagianni-Purcell)

Let D(K) be an A-adequate diagram. Then the state surface S_A satisfies

$$\chi(Guts(S^3 \smallsetminus K, S_A)) - ||E_c|| = \chi(G'_A) = 1 - \beta'_K,$$

Under favorable conditions (positive braids, "long" Montesinos links, 3-braids), we get a diagram for which $||E_c|| = 0$, hence $\chi(\text{Guts}) = 1 - |\beta'|$.

Topology of β'_{κ} : most general form

A 2–edge loop in G_A may correspond to multiple product disks, some of which are *complex*. The number of complex disks is $||E_c|| \ge 0$.

Theorem (F-Kalfagianni-Purcell)

Let D(K) be an A-adequate diagram. Then the state surface S_A satisfies

$$\chi(Guts(S^3 \smallsetminus K, S_A)) - ||E_c|| = \chi(G'_A) = 1 - \beta'_K,$$

Under favorable conditions (positive braids, "long" Montesinos links, 3-braids), we get a diagram for which $||E_c|| = 0$, hence $\chi(\text{Guts}) = 1 - |\beta'|$.

Open problem: for each *A*-adequate link, is there a diagram with $||E_c|| = 0$?

Our results are proved using *normal surface theory* in a suitable polyhedral decomposition of the surface complement $S^3 \setminus S_A$.

Our results are proved using *normal surface theory* in a suitable polyhedral decomposition of the surface complement $S^3 \setminus S_A$.

Our results are proved using *normal surface theory* in a suitable polyhedral decomposition of the surface complement $S^3 \setminus S_A$.

For alternating links, this is Menasco's polyhedral decomposition:

 The two polyhedra are "balloons" above and below projection plane.

Our results are proved using *normal surface theory* in a suitable polyhedral decomposition of the surface complement $S^3 \setminus S_A$.

- The two polyhedra are "balloons" above and below projection plane.
- Faces are regions of the diagram.

Our results are proved using *normal surface theory* in a suitable polyhedral decomposition of the surface complement $S^3 \setminus S_A$.

- The two polyhedra are "balloons" above and below projection plane.
- Faces are regions of the diagram.
- Edges are at crossings, 4-valent.

Our results are proved using *normal surface theory* in a suitable polyhedral decomposition of the surface complement $S^3 \setminus S_A$.

- The two polyhedra are "balloons" above and below projection plane.
- Faces are regions of the diagram.
- Edges are at crossings, 4-valent.
- Vertices are ideal (at infinity, on K).

Our results are proved using *normal surface theory* in a suitable polyhedral decomposition of the surface complement $S^3 \setminus S_A$.

- The two polyhedra are "balloons" above and below projection plane.
- Faces are regions of the diagram.
- Edges are at crossings, 4-valent.
- Vertices are ideal (at infinity, on *K*).
- Faces are checkerboard colored.
- The union of all the shaded faces is a checkerboard surface S_A .

Our results are proved using *normal surface theory* in a suitable polyhedral decomposition of the surface complement $S^3 \setminus S_A$.

- The two polyhedra are "balloons" above and below projection plane.
- Faces are regions of the diagram.
- Edges are at crossings, 4–valent.
- Vertices are ideal (at infinity, on K).
- Faces are checkerboard colored.
- The union of all the shaded faces is a checkerboard surface S_A .
- Hence, gluing along white faces only produces a decomposition of S³\\S_A.

Polyhedral decomposition of the surface complement

Our surface S_A is layered below the plane of projection. We need more balloons to subdivide $S^3 \setminus S_A$.

3-cells:

- One "upper" 3-cell, above the plane of projection.
- One "lower" 3–cell for each *non-trivial* component of complement of state circles in *A*–resolution. (Innermost disks are trivial.)

Two nontrivial components

3-cells:

- One "upper" 3-cell, above the plane of projection.
- One "lower" 3–cell for each *non-trivial* component of complement of state circles in *A*–resolution. (Innermost disks are trivial.)

Two nontrivial components

3-cells:

• One "upper" 3-cell, above the plane of projection.

3-cells:

- One "upper" 3-cell, above the plane of projection.
- One "lower" 3–cell for each *non-trivial* component of complement of state circles in *A*–resolution. (Innermost disks are trivial.)

Two nontrivial components

Faces are checkerboard colored, and come in two distinct flavors:

- Portions of a 3–cell meeting S_A . These faces are shaded.
- Disks lying slightly below the plane of projection, with boundary on S_A .
 - One disk for each region of the graph H_A (state circles and red edges).
 - These faces are white.

Faces are checkerboard colored, and come in two distinct flavors:

- Portions of a 3–cell meeting S_A . These faces are shaded.
- Disks lying slightly below the plane of projection, with boundary on S_A .
 - One disk for each region of the graph H_A (state circles and red edges).
 - These faces are white.

David Futer, Effie Kalfagianni, and Jessica S. Purcell ()

June 2013 33 / 37

Faces are checkerboard colored, and come in two distinct flavors:

- Portions of a 3–cell meeting S_A . These faces are shaded.
- Disks lying slightly below the plane of projection, with boundary on S_A .
 - One disk for each region of the graph H_A (state circles and red edges).
 - These faces are white.

All polyhedra are glued to the upper polyhedron, along white faces only.

Polyhedral decomposition of $S^3 \setminus S_A$: edges, vertices

Ideal edges:

• Run from undercrossing to undercrossing, adjacent to region of H_A .

Ideal vertices:

On the link. Portions of the link visible from inside the 3-cell.

Combinatorial descriptions of Polyhedra

Lower polyhedra are identical to checkerboard polyhedra of alternating sublinks.

Combinatorial descriptions of Polyhedra

Lower polyhedra are identical to checkerboard polyhedra of alternating sublinks.

Upper polyhedron: Ideal edges and shaded faces are sketched by *tentacles* on projection of H_A

David Futer, Effie Kalfagianni, and Jessica S. Purcell ()

June 2013 36 / 37

The polyhedra have a number of nice properties:

• Combinatorics entirely dictated by the graph H_A .

The polyhedra have a number of nice properties:

- Combinatorics entirely dictated by the graph H_A .
- Checkerboard colored faces: shaded on S_A , white (A G) away from S_A .

The polyhedra have a number of nice properties:

- Combinatorics entirely dictated by the graph H_A .
- Checkerboard colored faces: shaded on S_A , white (A G) away from S_A .
- No normal bigons.

The polyhedra have a number of nice properties:

- Combinatorics entirely dictated by the graph H_A .
- Checkerboard colored faces: shaded on S_A , white (A G) away from S_A .
- No normal bigons.

This gives a quick proof that S_A is essential, and a way to control annuli.

The polyhedra have a number of nice properties:

- Combinatorics entirely dictated by the graph H_A.
- Checkerboard colored faces: shaded on S_A , white (A G) away from S_A .
- No normal bigons.

This gives a quick proof that S_A is essential, and a way to control annuli.

 The maximal *I*-bundle of S³\\S_A is spanned by product disks that live in individual polyhedra.

The polyhedra have a number of nice properties:

- Combinatorics entirely dictated by the graph H_A.
- Checkerboard colored faces: shaded on S_A , white (A G) away from S_A .
- No normal bigons.

This gives a quick proof that S_A is essential, and a way to control annuli.

- The maximal *I*-bundle of $S^3 \setminus S_A$ is spanned by product disks that live in individual polyhedra.
- These product disks correspond to 2–edge loops of G_A, allowing us to detect fibering and compute χ(Guts (S³\\S_A)).

Some References

- C. Armond, "The head and tail conjecture for alternating knots", arXiv:1112.3995.
- O. Dasbach, X.-S. Lin, "On the head and the tail of the colored Jones polynomial, Compos. Math. 142 (2006), no. 5, pp. 13321342, arXiv:math/0604230
- D. Futer, E. Kalfagianni, and J. Purcell, "Jones polynomials, volume, and essential knot surfaces: a survey." To appear in Proceedings of Knots in Poland III. arXiv:1110.6388.
- D. Futer, E. Kalfagianni, and J. Purcell, "Guts of surfaces and the colored Jones polynomial." Research Monograph, Lecture Notes in Mathematics (Springer), vol. 2069, 2013, x+170 pp., arXiv:1108.3370.
- D. Futer, E. Kalfagianni, and J. Purcell, "Quasifuchsian state surfaces." Transactions of the AMS, to appear. arXiv:1209.5719.
- S. Garoufalidis, T. Q. Le, "Nahm sums, stability and the colored Jones polynomial", arXiv:1112.3905.