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Given: Diagram of a knot or link

Talk Goal: Discuss a setting
where, under certain knot
diagrammatic hypothesis, we study
both sides and derive relations
between them.

Quantum Topology
Knot invariants invariants esp.
colored Jones polynomials

Geometric topology
Incompressible surfaces in
knot complements

Geometric structures and data
esp. hyperbolic geometry and
volume
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Outline

Setting:
Given knot diagram construct state graphs (ribbon graphs)..
Build state surfaces spanned by the knot...
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Understand JSJ-decompositions of surface complements... emphasis on
hyperbolic part (“the Guts”)

Colored Jones polynomial (CPJ) relations:
Boundary slopes relate to degrees of CJP.
Coefficients

measure how far surfaces are from being fibers
detect geometric types of surfaces

Guts → relate CJP to volume of hyperbolic knots.

Method-Tools:
Create ideal polyhedral decomposition of surface complements.
Use normal surface theory to get correspondence
topology of surface complement ↔ state graph topology
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State Graphs

Two choices for each crossing, A or B resolution.

Choice of A or B resolutions for all crossings: state σ.

Result: Planar link without crossings. Components: state circles.

Form a graph by adding edges at resolved crossings. Call this graph Hσ.
( Note: n crossings → 2n state graphs)
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Example states

Link diagram All A state All B state

Above: HA and HB .
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Example states

Link diagram All A state All B state

Above: HA and HB .

The Jones polynomial of the knot can be calculated from HA or HB :
spanning graph expansion arising from the Bollobas-Riordan ribbon
graph polynomial (Turaev, Dasbach-Futer-K-Lin-Stoltzfus).
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Colored Jones polynomial prelims

For a knot K , and n = 1, 2, . . . , we write its n-colored Jones polynomial:

JK ,n(t) := αntmn + βntmn−1 + · · · + β′

ntkn+1 + α′

ntkn .

Some properties:

JK ,n(t) is determined by the Jones polynomials of certain cables of K .
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JK ,n(t) := αntmn + βntmn−1 + · · · + β′

ntkn+1 + α′

ntkn .

Some properties:

JK ,n(t) is determined by the Jones polynomials of certain cables of K .

The sequence {JK ,n(t)}n is q-holonomic: for every knot the CJP’s satisfy
linear recursion relations in n (Garoufalidis-Le, 2004). Then, for every K ,

Degrees mn, kn are quadratic (quasi)-polynomials in n.

Coefficients αn, βn . . . satisfy recursive relations in n.

Remark. Properties manifest themselves in strong forms for knots with state
graphs that have no edge with both endpoints on a single state circle—-That
is when K is A-adequate (next)
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Semi-adequate links

Lickorish–Thistlethwaite 1987: Introduced A–adequate links (B–adequate
links) in the context of Jones polynomials.

Definition
A link is A–adequate if has a diagram with its graph HA has no edge with both
endpoints on the same state circle. Similarly B-adequate.
Semi-adequate: A or B-adequate.

Some examples:
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Semi-adequate links are abundant!

Some familiar classes and their geometry:

all but two of prime knots up to 11 crossings.
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all but two of prime knots up to 11 crossings.

all alternating knots, (prime are torus links or hyperbolic),

all Montesinos knots (mostly hyperbolic),

all positive (negative) knots (lots of hyperbolic),

many arborescent knots (mostly hyperbolic),

all closed 3-braids (prime are torus knots or hyperbolic (Stoimenow),

large families of hyperbolic braid and plat closures (A. Giambrone),

blackboard cables and Whitehead doubles of semi-adequate knots
(satellites)

Question: Is there an algorithm to decide whether a given knot is
semi-adequate?
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CJP of semi-adequate links

Collapse each state circle of HA to a vertex to obtain the state graph GA.

Remove redundant edges to obtain the reduced state graph G
′

A.

JK ,n(t) := αntmn + βntmn−1 + · · · + β′

ntkn+1 + α′

ntkn .

Extreme Coefficients stabilize; they depend only on G′

A!
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CJP for semi-adequate links, con’t

( Armond) (the abs. values of) m-th to last coefficients of JK ,n(t) is
independent on n, for n ≥ m.
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State surface

Given a state σ, using graph Hσ and link diagram, form the state surface Sσ.

Each state circle bounds a disk in Sσ (nested disks drawn on top).

At each edge (for each crossing) attach twisted band.

A–resolution

B–resolution
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Example state surfaces

Fig-8 knot SA SB Seifert surface

For alternating knots: SA and SB are checkerboard surfaces.
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The surface SA and CJP: Boundary slopes

Theorem (Ozawa, FKP)

The surface SA = SA(D) is essential in S3 r K ⇔ D(K ) is A–adequate.
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The Jones Slopes Conjecture

(Curtis-Taylor) Related ∂-slopes of checkerboard surfaces of alternating
knots to degree of Jones polynomial.
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The Jones Slopes Conjecture

(Curtis-Taylor) Related ∂-slopes of checkerboard surfaces of alternating
knots to degree of Jones polynomial.

Slopes Conjecture. (Garoufalidis ) For every knot K the sequence

{
−4
n2 kn}n,

has finitely many cluster points, each of which is a ∂-slope of K .

Similarly, for mn :=max deg JK ,n(t), the sequence

{
−4
n2 mn}n,

has finitely many cluster points, each of which is a ∂-slope of K .

Remarks:

q-holonomicity implies that the sets of cluster points above are finite.

(Hatcher) Every knot has finitely many ∂-slopes.
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What’s known

For knots that are A and B-adequate slopes conjecture is know for “both
sides”.

(Garoufalidis) torus knots, certain 3-string pretzel knots P(−2, p, q) (
A-adequate not B-adequate)
For pretzel knots the boundary slopes are all known./ For torus knots CJP
has been calculated.

(Dunfield–Garoufalidis) Verified conjecture for the class of 2-fusion
knots.— (normal surface theory+character variety techniques to get the
incompressible surface).

(van der Veen) Formulated a Slopes conjecture for the multi-colored CP
of links. Showed that SA verifies it A-adequate links.

David Futer, Effie Kalfagianni, and Jessica S. Purcell () June 2013 15 / 37



The surface SA and CJP: Coefficients

For an A-adequate link, β′

K is the stabilized penultimate coefficient of CJP.

Theorem (Futer–K–Purcell)
For an A–adequate diagram D(K ), the following are equivalent:

1 The penultimate coefficient is β′

K = 0.
2 The reduced graph G′

A is a tree.
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The surface SA and CJP: Coefficients

For an A-adequate link, β′

K is the stabilized penultimate coefficient of CJP.

Theorem (Futer–K–Purcell)
For an A–adequate diagram D(K ), the following are equivalent:

1 The penultimate coefficient is β′

K = 0.
2 The reduced graph G′

A is a tree.
3 SA is a fiber in S3 r K : S3\\SA is SA × I.

Exercise. Derive Stalling’s result: Positive closed braids are fibered with fiber
obtained from Seifert’s algorithm to the braid diagram.

Stronger statements:

(For a hyperbolic link K ) SA is quasifuchsian iff β′

K 6= 0

when β′

K is large, SA should be “far from being a fiber” (next).
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Is there more in β ′
K ? How about in the whole tail?

In general, β′

K measures the “size” (in the sense of Guts) of the
hyperbolic part in Jaco-Shalen-Johannson decomposition SA. This,
combined with work of Agol- W. Thurston- Storm gives: large β′

K implies
large volume for S3

r K .

What about the tail?

Recall TK (t) = 1 + β′

K t + O(t2).

Theorem (Armond-Dasbach)
Suppose K A-adequate. Then, TK (t) = 1 if and only if β′

K = 0.

Note: if β′

K = 0 then G′

A is a tree

Thus, TK (t) = 1 if and only if SA is a fiber in S3
r K .

Question. If TK (t) 6= 1 does it contain more information about the
complement of SA and the geometry of K than β′

K ?
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Topology of the state surface complement

MA = S3\\SA is obtained by removing a neighborhood of SA from S3.

On ∂MA we have the parabolic locus P = remains from ∂(S3 r K ) after
cutting along SA.
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Topology of the state surface complement

MA = S3\\SA is obtained by removing a neighborhood of SA from S3.

On ∂MA we have the parabolic locus P = remains from ∂(S3 r K ) after
cutting along SA.

The annulus version of the JSJ decomposition for the pair (MA, P)
assures that MA can be cut along along essential annuli, to obtain three
kinds of pieces:

1 I–bundles ( e.g. Σ × I for Σ ⊂ SA,
although Σ×̃I can also occur),

2 Seifert fibered solid tori,

3 Guts (S3
r K , SA). Thurston showed

that the guts admit a hyperbolic metric.

Σ × 1

Σ × 0
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Topology of Guts and Volume

Guts serve as an indication that a surface SA is far from being a fiber.
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Guts serve as an indication that a surface SA is far from being a fiber.

1 If SA is a fiber of MA =∼= SA × I: no guts. (β′

K =0)

2 Guts (S3 r K , SA) = ∅ iff MA union of I-bundles and solid tori (book of
I-bundles)

3 If K is a hyperbolic A-adequate link, the guts of a surface SA also have
implications for hyperbolic volume via the following theorem:

Theorem (Agol–Storm–Thurston)
Let M be a compact 3–manifold with hyperbolic interior of finite volume, and
S ⊂ M an embedded essential surface. Then

Vol (M) ≥ −v8 χ(Guts (M, S)),

where v8 ≈ 3.6638 is the volume of a regular ideal octahedron.
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The meaning of β ′
K : Special case

D(K ) =an A-adequate diagram with SA the corresponding all-A state surface.

Theorem (F–Kalfagianni–Purcell)
Let D(K ) be an A–adequate diagram such that
every 2–edge loop in GA comes from a twist region.
Then the surface SA satisfies

χ(Guts (S3
r K , SA)) = χ(G′

A) = 1 − β′

K

twist region
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Corollary
Under the same hypotheses, if K is hyperbolic,

Vol (S3
r K ) ≥ v8 (β′

K − 1).

David Futer, Effie Kalfagianni, and Jessica S. Purcell () June 2013 20 / 37



The meaning of β ′
K : Special case

D(K ) =an A-adequate diagram with SA the corresponding all-A state surface.

Theorem (F–Kalfagianni–Purcell)
Let D(K ) be an A–adequate diagram such that
every 2–edge loop in GA comes from a twist region.
Then the surface SA satisfies

χ(Guts (S3
r K , SA)) = χ(G′

A) = 1 − β′

K

twist region

Corollary
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For alternating knots and links, this follows from work of Lackenby and
Dasbach–Lin.
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The meaning of β ′
K : Special case

D(K ) =an A-adequate diagram with SA the corresponding all-A state surface.

Theorem (F–Kalfagianni–Purcell)
Let D(K ) be an A–adequate diagram such that
every 2–edge loop in GA comes from a twist region.
Then the surface SA satisfies

χ(Guts (S3
r K , SA)) = χ(G′

A) = 1 − β′

K

twist region

Corollary
Under the same hypotheses, if K is hyperbolic,

Vol (S3
r K ) ≥ v8 (β′

K − 1).

For alternating knots and links, this follows from work of Lackenby and
Dasbach–Lin.
There are large families non-alternating knots satisfying the hypothesis (A.
Giambrone)

David Futer, Effie Kalfagianni, and Jessica S. Purcell () June 2013 20 / 37



A worked example

D(K ) all–A state
GA = G′

A
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A
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A worked example

D(K ) all–A state
GA = G′

A

1 − |β′| = χ(GA) = χ(SA) = χ(S3\\SA) = χ(Guts ) = −3

v8 (|β′| − 1) = −v8 χ(G′

A) = 10.99...

Vol (S3
r K ) = 13.64...

David Futer, Effie Kalfagianni, and Jessica S. Purcell () June 2013 21 / 37



Sample family: positive braids

σ4
2 σ3

1 σ3
3 σ3

2 σ4
3
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Theorem (F–Kalfagianni–Purcell)

Suppose that K is the closure of a positive braid b = σr1
i1
σr2

i2
· · ·σrk

ik
, where

rj ≥ 3 for all j. In other words, there are k twist regions, each with at least 3
crossings.

David Futer, Effie Kalfagianni, and Jessica S. Purcell () June 2013 22 / 37



Sample family: positive braids

σ4
2 σ3

1 σ3
3 σ3

2 σ4
3

Theorem (F–Kalfagianni–Purcell)

Suppose that K is the closure of a positive braid b = σr1
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, where

rj ≥ 3 for all j. In other words, there are k twist regions, each with at least 3
crossings. Then K is hyperbolic, and

2v8

3
k ≤ Vol (S3

r K ) < 10v3(k − 1) .

Similarly,
v8 (β′

K − 1) ≤ Vol (S3
r K ) < 15v3 β′
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Sample family: positive braids

σ4
2 σ3

1 σ3
3 σ3

2 σ4
3

Theorem (F–Kalfagianni–Purcell)

Suppose that K is the closure of a positive braid b = σr1
i1
σr2

i2
· · ·σrk

ik
, where

rj ≥ 3 for all j. In other words, there are k twist regions, each with at least 3
crossings. Then K is hyperbolic, and

2v8

3
k ≤ Vol (S3

r K ) < 10v3(k − 1) .

Similarly,
v8 (β′

K − 1) ≤ Vol (S3
r K ) < 15v3 β′

K − 25v3 .

Here, v3 = 1.0149... is the volume of a regular ideal tetrahedron and
v8 = 3.6638... is the volume of a regular ideal octahedron.
The gap between the upper and lower bounds is a factor of 4.155...
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Sample family: Montesinos links

A Montesinos knot or
link is constructed by
connecting n rational
tangles in a cyclic
fashion.
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Sample family: Montesinos links

A Montesinos knot or
link is constructed by
connecting n rational
tangles in a cyclic
fashion.

Every Montesinos link is either A– or B–adequate.

Theorem (F–Kalfagianni–Purcell + Finlinson)
Let K be an A–adequate Montesinos link. Then

v8 (β′

K − 2) ≤ Vol (S3
r K ).
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Sample family: Montesinos links

A Montesinos knot or
link is constructed by
connecting n rational
tangles in a cyclic
fashion.

Every Montesinos link is either A– or B–adequate.

Theorem (F–Kalfagianni–Purcell + Finlinson)
Let K be an A–adequate Montesinos link. Then

v8 (β′

K − 2) ≤ Vol (S3
r K ).

If K has length at least four we get two-sided volume estimates:

v8 (max{βK , β′

K} − 2) ≤ Vol (S3
r K ) < 4v8 (β′

K + βK − 2) + 2v8 (#K ),

where #K is the number of link components of K .
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A coarse Volume Conjecture?

Results and experimental evidence prompt:

Question. Does there exist function B(K ) of the coefficients of the colored
Jones polynomials of a knot K , such that for hyperbolic knots, B(K ) is
coarsely related to hyperbolic volume Vol (S3

r K ) ?
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A coarse Volume Conjecture?

Results and experimental evidence prompt:

Question. Does there exist function B(K ) of the coefficients of the colored
Jones polynomials of a knot K , such that for hyperbolic knots, B(K ) is
coarsely related to hyperbolic volume Vol (S3

r K ) ?
Are there constants C1 ≥ 1 and C2 ≥ 0 such that

C−1
1 B(K ) − C2 ≤ Vol (S3

r K ) ≤ C1B(K ) + C2,

for all hyperbolic K ?

Volume Conjecture (Kashaev, H. Murakami-J. Murakami) predicts
relations between volume and coefficients of CJP

Proven results and stabilization properties of CJP prompt more guided
speculations as to where one might look for B(K ).
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2–edge loops and I–bundles of S3\\SA

Every 2–edge loop in GA gives rise to a disk D that intersects K twice — a
essential product disk (EPD) in the complement of the state surface SA.

SA

SA
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To find Guts (S3\\SA), start with S3\\SA and remove I–bundle pieces.

When we remove and EPD from S3\\SA, Euler number χ(S3\\SA) goes
up by 1. Removing a redundant edge from GA also increases χ(GA) by 1.

David Futer, Effie Kalfagianni, and Jessica S. Purcell () June 2013 25 / 37



2–edge loops and I–bundles of S3\\SA

Every 2–edge loop in GA gives rise to a disk D that intersects K twice — a
essential product disk (EPD) in the complement of the state surface SA.

SA

SA

To find Guts (S3\\SA), start with S3\\SA and remove I–bundle pieces.

When we remove and EPD from S3\\SA, Euler number χ(S3\\SA) goes
up by 1. Removing a redundant edge from GA also increases χ(GA) by 1.

Initially, before the cutting, χ(GA) = χ(SA) = χ(S3\\SA).

David Futer, Effie Kalfagianni, and Jessica S. Purcell () June 2013 25 / 37



2–edge loops and I–bundles of S3\\SA

Every 2–edge loop in GA gives rise to a disk D that intersects K twice — a
essential product disk (EPD) in the complement of the state surface SA.

SA

SA

To find Guts (S3\\SA), start with S3\\SA and remove I–bundle pieces.

When we remove and EPD from S3\\SA, Euler number χ(S3\\SA) goes
up by 1. Removing a redundant edge from GA also increases χ(GA) by 1.

Initially, before the cutting, χ(GA) = χ(SA) = χ(S3\\SA).

We prove that the maximal I–bundle of S3\\SA is spanned by EPD’s that
correspond to 2–edge loops in GA.

David Futer, Effie Kalfagianni, and Jessica S. Purcell () June 2013 25 / 37



2–edge loops and I–bundles of S3\\SA

Every 2–edge loop in GA gives rise to a disk D that intersects K twice — a
essential product disk (EPD) in the complement of the state surface SA.

SA

SA

To find Guts (S3\\SA), start with S3\\SA and remove I–bundle pieces.

When we remove and EPD from S3\\SA, Euler number χ(S3\\SA) goes
up by 1. Removing a redundant edge from GA also increases χ(GA) by 1.

Initially, before the cutting, χ(GA) = χ(SA) = χ(S3\\SA).

We prove that the maximal I–bundle of S3\\SA is spanned by EPD’s that
correspond to 2–edge loops in GA. If this correspondence is bijective,

χ(Guts ) = χ(SA) + #EPDs = χ(GA r extra edges) = χ(G′

A).

David Futer, Effie Kalfagianni, and Jessica S. Purcell () June 2013 25 / 37



Topology of β ′
K : most general form

A 2–edge loop in GA may correspond to multiple product disks, some of which
are complex. The number of complex disks is ||Ec || ≥ 0.
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A 2–edge loop in GA may correspond to multiple product disks, some of which
are complex. The number of complex disks is ||Ec || ≥ 0.

Theorem (F–Kalfagianni–Purcell)
Let D(K ) be an A–adequate diagram. Then the state surface SA satisfies

χ(Guts (S3
rK , SA)) − ||Ec || = χ(G′

A) = 1 − β′

K ,
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Let D(K ) be an A–adequate diagram. Then the state surface SA satisfies

χ(Guts (S3
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A) = 1 − β′
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Under favorable conditions (positive braids, “long” Montesinos links, 3-braids),
we get a diagram for which ||Ec || = 0, hence χ(Guts ) = 1 − |β′|.
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Topology of β ′
K : most general form

A 2–edge loop in GA may correspond to multiple product disks, some of which
are complex. The number of complex disks is ||Ec || ≥ 0.

Theorem (F–Kalfagianni–Purcell)
Let D(K ) be an A–adequate diagram. Then the state surface SA satisfies

χ(Guts (S3
rK , SA)) − ||Ec || = χ(G′

A) = 1 − β′

K ,

Under favorable conditions (positive braids, “long” Montesinos links, 3-braids),
we get a diagram for which ||Ec || = 0, hence χ(Guts ) = 1 − |β′|.

Open problem: for each A–adequate link, is there a diagram with ||Ec || = 0?
David Futer, Effie Kalfagianni, and Jessica S. Purcell () June 2013 26 / 37



Tool for the proof: a nice polyhedral decomposition

Our results are proved using normal surface theory in a suitable polyhedral
decomposition of the surface complement S3\\SA.
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Tool for the proof: a nice polyhedral decomposition

Our results are proved using normal surface theory in a suitable polyhedral
decomposition of the surface complement S3\\SA.

For alternating links, this is Menasco’s polyhedral decomposition:

The two polyhedra are “balloons”
above and below projection plane.

Faces are regions of the diagram.

Edges are at crossings, 4–valent.

Vertices are ideal (at infinity, on K ).

Faces are checkerboard colored.

The union of all the shaded faces is a
checkerboard surface SA.

Hence, gluing along white faces only
produces a decomposition of S3\\SA.

David Futer, Effie Kalfagianni, and Jessica S. Purcell () June 2013 27 / 37



Polyhedral decomposition of the surface complement

Our surface SA is layered below the plane of projection. We need more
balloons to subdivide S3\\SA.
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Polyhedral decomposition of S3\\SA: 3–cells

3–cells:

One “upper” 3–cell, above the plane of projection.

One “lower” 3–cell for each non-trivial component of complement of state
circles in A–resolution. (Innermost disks are trivial.)

Two nontrivial components
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Polyhedral decomposition of S3\\SA: faces

Faces are checkerboard colored, and come in two distinct flavors:

Portions of a 3–cell meeting SA. These faces are shaded.
Disks lying slightly below the plane of projection, with boundary on SA.

One disk for each region of the graph HA (state circles and red edges).
These faces are white.
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Portions of a 3–cell meeting SA. These faces are shaded.
Disks lying slightly below the plane of projection, with boundary on SA.

One disk for each region of the graph HA (state circles and red edges).
These faces are white.

All polyhedra are glued to the upper polyhedron, along white faces only.
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Polyhedral decomposition of S3\\SA: edges, vertices

Ideal edges:

Run from undercrossing to undercrossing, adjacent to region of HA.

Ideal vertices:

On the link. Portions of the link visible from inside the 3–cell.
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Combinatorial descriptions of Polyhedra

Lower polyhedra are identical to checkerboard polyhedra of alternating
sublinks.
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Combinatorial descriptions of Polyhedra

Lower polyhedra are identical to checkerboard polyhedra of alternating
sublinks.

Upper polyhedron: Ideal edges and shaded faces are sketched by tentacles
on projection of HA
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Properties of the polyhedra, summarized
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The polyhedra have a number of nice properties:

Combinatorics entirely dictated by the graph HA.

Checkerboard colored faces: shaded on SA, white (A − G) away from SA.

No normal bigons.
This gives a quick proof that SA is essential, and a way to control annuli.

The maximal I–bundle of S3\\SA is spanned by product disks that live in
individual polyhedra.

These product disks correspond to 2–edge loops of GA, allowing us to
detect fibering and compute χ(Guts (S3\\SA)).
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