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There is probably no simple way of doing so.



Reidemeister moves

Any two diagrams of a link differ by a sequence of Reidemeister
moves:

If we knew in advance how many moves are required, we would
have an algorithm to detect the unknot.



Computable upper bounds

Easy Theorem: The following are equivalent:

I There is an algorithm to decide whether a knot diagram
represents the unknot.

I There is a computable function f : N→ N such that, given an
unknot diagram with n crossings, there is a sequence of at
most f (n) Reidemeister moves taking it to the trivial diagram.



Upper and lower bounds

Theorem: [Hass-Lagarias, 2001] Given a diagram of the unknot
with n crossings, there is a sequence of at most 2kn Reidemeister
moves taking it to the trivial diagram, where k = 1011.

Theorem: [Hass-Nowik, 2010] There exist unknot diagrams with n
crossings which require at least n2/25 Reidemeister moves to
trivialise.

Problem: Is there a polynomial upper bound?
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A polynomial upper bound

Theorem: [L, 2012] Let D be a diagram of the unknot with n
crossings. Then there is a sequence of at most (231n)11

Reidemeister moves that transforms D into the trivial diagram.



Non-trivial knots

Question: Given two diagrams of a knot with n and n′ crossings,
can one determine an upper bound f (n, n′) on the number of
Reidemeister moves required to pass from one diagram to the
other?

The existence of a computable function f (n, n′) is equivalent to
the existence of an algorithm to decide whether two knots
diagrams represent the same knot.

Such an algorithm was given by Haken and Hemion.
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Upper and lower bounds

Theorem: [Hass-Nowik, 2010] For each knot K , there is a
sequence of diagrams Dn and D ′n for K such that
(1) the crossing numbers of Dn and D ′n are linear functions of n
and,
(2) the number of Reidemeister moves relating Dn and D ′n is at
least a quadratic function of n.

Theorem: [Coward-L, 2011] Two diagrams of a knot with n and n′

crossings differ by a sequence of at most

22
··
·2
(n+n′) }

height c(n+n′)

Reidemeister moves, where c = 101000000.
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A bound for each knot type

Theorem: [L, 2013] For each knot type K , there is a polynomial
pK with the following property. Any two diagrams for K with n
and n′ crossings differ by a sequence of at most pK (n) + pK (n′)
Reidemeister moves.

Corollary: [L, 2013] The problem detecting whether a knot has
type K lies in NP.
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Haken’s algorithm for unknot recognition

Theorem: [Haken, 1961] There is an algorithm to determine
whether a knot diagram represents the unknot.

This uses normal surfaces.

A surface properly embedded in a triangulated 3-manifold is
normal if it intersects each tetrahedron in a collection of triangles
and squares.
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The normal surface equations

Associated to a normal surface S , there is a list of integers which
count the number of triangles and squares of each type. This is
the vector [S ].

These vectors satisfy a system of equations, called the matching
equations.

x1

x2

x3

x4

x1 + x2 = x3 + x4
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The normal surface equations

Each vector also satisfies the compatibility conditions which assert
that there cannot be two different square types in the same
tetrahedron.

Theorem: [Haken] There is a one-one correspondence between
properly embedded normal surfaces and non-negative integer
solutions to the matching equations that satisfy the compatibility
conditions.

So, one can use tools from linear algebra.

We say that a normal surface S is a sum of two normal surfaces S1
and S2 if

[S ] = [S1] + [S2].

A normal surface is fundamental if it is not a sum of other normal
surfaces.
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Fundamental normal surfaces

Theorem: [Haken] Suppose M is triangulated solid torus. Then M
contains a meridian disc in normal form.

Theorem: [Haken] There is an algorithm to construct all
fundamental normal surfaces.

Haken’s algorithm:
1. Construct a triangulation of the knot exterior.
2. Find all fundamental normal surfaces.
3. Check whether one is a spanning disc.
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An exponential upper bound on Reidemeister moves

Theorem: [Hass-Lagarias, 2001] Given a diagram of the unknot
with n crossings, there is a sequence of at most 2kn Reidemeister
moves taking it to the trivial diagram, where k = 1011.

This relies on:

Theorem: [Hass-Lagarias, 2001] Let M be a compact triangulated
3-manifold with t tetrahedra. Then each fundamental normal
surface has at most t27t+2 squares and triangles.

Outline of their argument:
1. Construct a triangulation of the knot exterior from the diagram.
2. Find a spanning disc which is fundamental.
3. Slide the unknot over this disc.
4. Each slide across a triangle or square leads to a bounded
number of Reidemeister moves.



An exponential upper bound on Reidemeister moves

Theorem: [Hass-Lagarias, 2001] Given a diagram of the unknot
with n crossings, there is a sequence of at most 2kn Reidemeister
moves taking it to the trivial diagram, where k = 1011.

This relies on:

Theorem: [Hass-Lagarias, 2001] Let M be a compact triangulated
3-manifold with t tetrahedra. Then each fundamental normal
surface has at most t27t+2 squares and triangles.

Outline of their argument:
1. Construct a triangulation of the knot exterior from the diagram.
2. Find a spanning disc which is fundamental.
3. Slide the unknot over this disc.
4. Each slide across a triangle or square leads to a bounded
number of Reidemeister moves.



An exponential upper bound on Reidemeister moves

Theorem: [Hass-Lagarias, 2001] Given a diagram of the unknot
with n crossings, there is a sequence of at most 2kn Reidemeister
moves taking it to the trivial diagram, where k = 1011.

This relies on:

Theorem: [Hass-Lagarias, 2001] Let M be a compact triangulated
3-manifold with t tetrahedra. Then each fundamental normal
surface has at most t27t+2 squares and triangles.

Outline of their argument:
1. Construct a triangulation of the knot exterior from the diagram.
2. Find a spanning disc which is fundamental.
3. Slide the unknot over this disc.
4. Each slide across a triangle or square leads to a bounded
number of Reidemeister moves.



From exponential to polynomial?

There is no way to improve the estimate on the number of
triangles and squares.

In fact:

Theorem: [Hass-Snoeyink-Thurston, 2001] There exist unknots
consisting of 10n + 9 straight arcs, for which any piecewise linear
spanning disc must have at least 2n−1 triangular faces.
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Rectangular diagrams

A rectangular diagram is a diagram which is a union of horizontal
and vertical arcs, such that at each crossing, the over-arc is the
vertical one.

The number of horizontal (or vertical) arcs is the arc index of the
diagram.
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Moves on rectangular diagrams

Cyclic permutation of the edges



Moves on rectangular diagrams

stabilisation

destabilisation

stabilisation

destabilisation

stabilisation

destabilisation

stabilisation

destabilisation

Stabilisations and destabilisations



Exchange move:

interchanging parallel edges of the rectangular diagram, as long as
they have no edges between them, and their pairs of endpoints do
not interleave.



Dynnikov’s theorem

Theorem: [Dynnikov, 2004] Any rectangular diagram of the unknot
can be reduced to the trivial diagram using cyclic permutations,
exchange moves and destabilisations.

ie no stabilisations are required!

Corollary: [Dynnikov, 2004] Given any diagram of the unknot with
n crossings, there is a sequence of Reidemeister moves taking it to
the trivial diagram, so that each diagram in this sequence has at
most 2(n + 1)2 crossings.
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Arc presentations

Let S1 be the unknot in S3, called the binding circle.

Foliate the complement of the binding circle by open discs called
pages.

A link L is in an arc presentation if

I it intersects the binding circle in finitely many points called
vertices;

I it intersects each page in the empty set or a single arc joining
distinct vertices.

binding circle



Arc presentations and rectangular diagrams

There is a one-one correspondence

arc presentations ←→ rectangular diagrams
up to cyclic permutation



Dynnikov’s argument

Let S be the spanning disc for the unknot.

Then S inherits a singular foliation from its intersections with the
pages. We say that S is in admissible form.

Local pictures of the singular set:

(a) (b) (c) (d) (e)

(a): vertex of S (where it intersects the binding circle)
(b): local max/min of S (a ‘pole’)
(c): interior saddle of S
(d): boundary vertex of S
(e): boundary saddle of S

A separatrix is a component of a leaf with an endpoint in a saddle.



Dynnikov’s argument

The valence of a vertex of S is the number of separatrices coming
out of it.

An Euler characteristic argument implies that there is always one
of:

I A pole

I A 2-valent interior vertex

I A 3-valent interior vertex

I A 1-valent boundary vertex

In each case, there is a modification to the arc presentation and S
which reduces the number of singularities of S .

Each modification is achieved using exchange moves, cyclic
permutations and possibly a destabilisation.



Dynnikov’s argument

The valence of a vertex of S is the number of separatrices coming
out of it.

An Euler characteristic argument implies that there is always one
of:

I A pole

I A 2-valent interior vertex

I A 3-valent interior vertex

I A 1-valent boundary vertex

In each case, there is a modification to the arc presentation and S
which reduces the number of singularities of S .

Each modification is achieved using exchange moves, cyclic
permutations and possibly a destabilisation.



Dynnikov’s argument

The valence of a vertex of S is the number of separatrices coming
out of it.

An Euler characteristic argument implies that there is always one
of:

I A pole

I A 2-valent interior vertex

I A 3-valent interior vertex

I A 1-valent boundary vertex

In each case, there is a modification to the arc presentation and S
which reduces the number of singularities of S .

Each modification is achieved using exchange moves, cyclic
permutations and possibly a destabilisation.



A 1-valent boundary vertex
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A 2-valent interior vertex
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A 2-valent interior vertex
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Main idea of proof for the unknot

I Blend Dynnikov’s methods with the use of normal surfaces.



A triangulation from an arc presentation

Fix an arc presentation of a link L with arc index n.

Then there is a triangulation of S3 with n2 tetrahedra in which L is
simplicial.

binding circle

The binding circle is also simplicial.
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Outline of proof

I Start with a diagram of the unknot K with n crossings.

I Isotope it to a rectangular diagram with arc index 7n.

I From this, create a triangulation of S3 with (7n)2 tetrahedra
in which K and the binding circle are simplicial.

I Find a normal spanning disc with at most (roughly) 2343n
2

vertices.

I We know that there is a 3-valent or 2-valent interior vertex or
a 1-valent boundary vertex (we can ensure that it has no
poles).

I Find large collection of these which have ‘parallel’ stars.

I Perform a single exchange move and reduce the number of
singularities by a factor of roughly(

1− 1

n2

)
.
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Parallelism

Let T be a triangulation with N tetrahedra.

Let S be a normal surface. Then the normal triangles and squares
in S come in at most 5N types.
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Parallelism

So, the stars of vertices of S come in at most 5(7n)2 types.

We know that there is a 3-valent or 2-valent interior vertex or a
1-valent boundary vertex.

So, if there are V vertices of S , we would expect there to be a
collection of at least

1

5(7n)2
V

3-valent/2-valent/1-valent vertices, all of which have parallel stars.

But how do we prove this??
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Exploiting Euler characteristic

The argument implying that there is a 3-valent or 2-valent interior
vertex or a 1-valent boundary vertex actually implies that

I either the number of such vertices is a definite proportion of
the total number of vertices (and so the above reasoning
works),

I or there are lots of vertices which ‘contribute zero’ to the
Euler characteristic of S . An example of such a vertex:
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Exploiting Euler characteristic

In the latter case, we show that these regions patch together to
form a normal torus which forms a summand for the disc,
contradicting an assumption that it is fundamental.

(In fact, we show that it cannot be a ‘vertex’ surface.)

This requires a subtle argument involving branched surfaces.
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Non-trivial knots

Much the same proof works,

but we don’t have a spanning disc!

Instead use a hierarchy H.

Theorem: There is a polynomial p (depending on K and H) such
that, if K is in an arc presentation with arc index n, then there is a
sequence of at most p(n) exchange moves, cyclic permutations,
destabilisations, stabilisations and an isotopy, taking each surface
in H into admissible form with at most p(n) singularities.
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Non-trivial knots

A regular neighbourhood N(H) therefore has bounded ‘size’.

Note that N(K ∪ H) has an obvious handle structure.

Also N(K ∪ H) is a 3-ball.

Therefore, there is some isotopy of N(K ∪ H) taking K into a
0-handle.

This slides K across handles, where the number of slides depends
only on K and H (not n).

Because H has polynomially-bounded size, each slide requires
polynomially many Reidemeister moves.
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Questions

I Is there a polynomial time algorithm to recognize the unknot?

I Can one find a polynomial upper bound on Reidemeister
moves that works for all knot types?
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