Survey of the volume conjecture

Hitoshi Murakami

Tohoku University

4th June, 2013

colored Jones polynomial

$J_{N}(K ; q) \in \mathbb{Z}\left[q, q^{-1}\right]$: the colored Jones polynomial of a knot K associated with the N-dimensional irreducible representation of $s /(2 ; \mathbb{C})$.

- $J_{N}(\bigcirc ; q)=1$,
- J_{2} is the original Jones polynomial.
- $q J_{2}(\Gamma ; q)-q^{-1} J_{2}(\nearrow ; q)=\left(q^{1 / 2}-q^{-1 / 2}\right) J_{2}(\nearrow$ ($; q)$ (skein relation)

Volume Conjecture

Conjecture (Volume Conjecture, R. Kashaev (1997), J. Murakami+H.M. (2000))

$$
\lim _{N \rightarrow \infty} \frac{\log \left|J_{N}(K ; \exp (2 \pi \sqrt{-1} / N))\right|}{N}=\frac{\operatorname{Vol}\left(S^{3} \backslash K\right)}{2 \pi}
$$

Definition (Simplicial volume (Gromov norm))

$$
\operatorname{Vol}\left(S^{3} \backslash K\right):=\sum_{H_{i}: \text { hyperbolic piece }}\left(\text { Hyperbolic Volume of } H_{i}\right)
$$

Definition (Jaco-Shalen-Johannson decomposition)
$S^{3} \backslash K$ can be uniquely decomposed as

$$
S^{3} \backslash K=\left(\bigsqcup H_{i}\right) \sqcup\left(\bigsqcup E_{j}\right)
$$

with H_{i} hyperbolic and E_{j} Seifert-fibered.

JSJ decmposition and the simplicial volume of the

$(2,1)$-cable of the figure-eight knot

hyperbolic

Seifert fibered
(looks like surface $\times S^{1}$)

Colored Jones polynomial of (B)

Proof of the VC for 8 is given by T. Ekholm (1999).
Theorem (K. Habiro, T. Lê)

$$
J_{N}(\text { (6) } ; q)=\sum_{j=0}^{N-1} \prod_{k=1}^{j}\left(q^{(N-k) / 2}-q^{-(N-k) / 2}\right)\left(q^{(N+k) / 2}-q^{-(N+k) / 2}\right)
$$

$q \mapsto \exp (2 \pi \sqrt{-1} / N)$

$$
\left.J_{N}(\S) ; \exp (2 \pi \sqrt{-1} / N)\right)=\sum_{j=0}^{N-1} \prod_{k=1}^{j} f(N ; k)
$$

with $f(N ; k):=4 \sin ^{2}(k \pi / N)$.

Find the maximum of the summands
$J_{N}\left(\S ; e^{2 \pi \sqrt{ }-1 / N}\right)=\sum_{j=0}^{N-1} \prod_{k=1}^{j} f(N ; k)$ with $f(N ; k):=4 \sin ^{2}(k \pi / N)$.

Put $g(N ; j):=\prod_{k=1}^{j} f(N ; k)$.

j	0	\cdots	$N / 6$	\cdots	$5 N / 6$	\cdots	1
$f(N ; k)$		<1	1	>1	1	<1	
$g(N ; j)$	1	\searrow		\nearrow	maximum	\searrow	

Limit of the sum is the limit of the maximum

- Maximum of $\{g(N ; j)\}_{0 \leq j \leq N-1}$ is $g(N ; 5 N / 6)$, and $g(N ; j)>0$.
- $\left.J_{N}(\S) ; \exp (2 \pi \sqrt{-1} / N)\right)=\sum_{j=0}^{N-1} g(N ; j)$.

$$
\begin{gathered}
\left.g(N ; 5 N / 6) \leq J_{N}(8) ; \exp (2 \pi \sqrt{-1} / N)\right) \leq N \times g(N ; 5 N / 6) \\
\frac{\log g(N ; 5 N / 6)}{N} \leq \frac{\log J_{N}}{N} \leq \frac{\log N}{N}+\frac{\log g(N ; 5 N / 6)}{N} \\
\Downarrow
\end{gathered}
$$

$$
\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \leq \lim _{N \rightarrow \infty} \frac{\log J_{N}}{N} \leq \lim _{N \rightarrow \infty} \frac{\log N}{N}+\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N}
$$

$$
\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \leq \lim _{N \rightarrow \infty} \frac{\log J_{N}}{N} \leq \lim _{N \rightarrow \infty} \frac{\log N}{N}+\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N}
$$

$$
\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \leq \lim _{N \rightarrow \infty} \frac{\log J_{N}}{N} \leq \quad \lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N}
$$

$$
\lim \frac{\log J_{N}}{N^{\prime}}=\lim _{\text {Volume Conjecture }} \frac{\log g(N ; 5 N / 6)}{N^{\prime}}
$$

Calculation of the limit of the maximum

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\left.\log \mid J_{N}(8) ; \exp (2 \pi \sqrt{-1} / N)\right) \mid}{N}=\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \\
= & \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log f(N ; k)=2 \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log (2 \sin (k \pi / N)) \\
= & \frac{2}{\pi} \int_{0}^{5 \pi / 6} \log (2 \sin x) d x=-\frac{2}{\pi} \Lambda(5 \pi / 6)=\frac{6 \Lambda(\pi / 3)}{2 \pi}=0.323066 \ldots,
\end{aligned}
$$

where $\Lambda(\theta):=-\int_{0}^{\theta} \log |2 \sin x| d x$ is the Lobachevsky function.

Decomposition of $S^{3} \backslash($ into two tetrahedra

What is $6 \Lambda(\pi / 3)$?

Theorem (W. Thurston)

We can regard both pieces in the right hand side as regular ideal hyperbolic tetrahedra.
$\Rightarrow S^{3} \backslash($ possesses a complete hyperbolic structure with finite volume.

Ideal hyperbolic tetrahedron

- $\mathbb{H}^{3}:=\{(x, y, z) \mid z>0\}:$ with hyperbolic metric $d s:=\frac{\sqrt{d x^{2}+d y^{2}+d z^{2}}}{z}$.
- Ideal hyperbolic tetrahedron : tetrahedron with geodesic faces with four vertices in the boundary at infinity.
- We may assume
- One vertex is at (∞, ∞, ∞).
- The other three are on $x y$-plane.

Ideal hyperbolic
tetrahedron
$\Delta(\alpha, \beta, \gamma)$

Ideal hyperbolic tetrahedron is defined (up to isometry) by the similarity class of this triangle.

$$
\operatorname{Vol}(\Delta(\alpha, \beta, \gamma))=\Lambda(\alpha)+\Lambda(\beta)+\Lambda(\gamma)
$$

Proof of VC - conclusion

$$
\begin{aligned}
& 2 \pi \lim _{N \rightarrow \infty} \frac{\left.\log \mid J_{N}(\S) ; \exp (2 \pi \sqrt{-1} / N)\right) \mid}{N} \\
= & 6 \Lambda(\pi / 3) \\
= & 2 \operatorname{Vol}(\text { regular ideal hyperbolic tetrahedron }) \\
= & \operatorname{Vol}\left(S^{3} \backslash()\right)
\end{aligned}
$$

\Rightarrow Volume Conjecture for 8 .

R-matrix

The colored Jones polynomial can be calculated by using the following R-matrix $R: V \otimes V \rightarrow V \otimes V\left(V:=\mathbb{C}^{N}\right)$.

$$
R_{k l}^{i j}=\sum_{m} \delta_{l, i+m} \delta_{k, j-m} \frac{ \pm\left(\text { a power of } \zeta_{N}\right) \times N^{2}}{\left(\zeta_{N}\right)_{m^{+}}\left(\zeta_{N}\right)_{i^{+}}\left(\zeta_{N}\right)_{k^{+}}\left(\zeta_{N}\right)_{j^{-}}\left(\zeta_{N}\right)_{I^{-}}},
$$

where

- $\zeta_{N}:=\exp (2 \pi \sqrt{-1} / N)$,
- $\left(\zeta_{N}\right)_{k^{+}}:=\left(1-\zeta_{N}\right) \cdots\left(1-\zeta_{N}^{k}\right),\left(\zeta_{N}\right)_{k^{-}}:=\left(1-\zeta_{N}\right) \cdots\left(1-\zeta_{N}^{N-1-k}\right)$.
$\Rightarrow J_{N}\left(K ; \zeta_{N}\right) \underset{\text { looks like }}{\simeq} \sum_{\text {labellings }}^{\sim}\left(\prod_{ \pm- \text {crossings }} \frac{ \pm\left(\text { a power of } \zeta_{N}\right) \times N^{ \pm 2}}{\left(\zeta_{N}\right)_{m^{+}}\left(\zeta_{N}\right)_{i^{ \pm}}\left(\zeta_{N}\right)_{k^{ \pm}}\left(\zeta_{N}\right)_{j^{\mp}}\left(\zeta_{N}\right)_{\neq \mp}}\right)$ i, j, k, l

Approximation of the colored Jones polynomial by dilog

- (dilog function) $\mathrm{Li}_{2}(z):=-\int_{0}^{z} \frac{\log (1-y)}{y} d y=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{n}}$.
- $\left(\zeta_{N}\right)_{k^{ \pm}} \underset{N \rightarrow \infty}{ } \exp \left[-\frac{N}{2 \pi \sqrt{-1}} \mathrm{Li}_{2}\left(\zeta_{N}^{ \pm k}\right)\right] \cdot(\approx$ means a very rough approximation.)

$$
J_{N}\left(K ; \zeta_{N}\right) \underset{N \rightarrow \infty}{\approx}
$$

$\sum($ polynomial of $N) \times\left(\right.$ power of $\left.\zeta_{N}\right)$
labellings
$\exp \left[\frac{N}{2 \pi \sqrt{-1}}\right.$
$\left.\sum_{\text {crossings }}\left\{\mathrm{Li}_{2}\left(\zeta_{N}^{m}\right)+\mathrm{Li}_{2}\left(\zeta_{N}^{ \pm i}\right)+\mathrm{Li}_{2}\left(\zeta_{N}^{\mp j}\right)+\mathrm{Li}_{2}\left(\zeta_{N}^{ \pm \kappa}\right)+\mathrm{Li}_{2}\left(\zeta_{N}^{\mp \prime}\right)\right\}\right]$.

Approximation of the colored Jones polynomial by integral

$$
\begin{aligned}
J_{N}\left(K ; \zeta_{N}\right) & \underset{N \rightarrow \infty}{\approx} \sum_{i_{1}, \ldots, i_{c}} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(\zeta_{N}^{i_{1}}, \ldots, \zeta_{N}^{i_{c}}\right)\right] \\
& \approx=\int_{J_{1}}^{\approx} \cdots \int_{J_{c}} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(z_{1}, \ldots, z_{c}\right) d z_{1} \cdots d z_{c}\right],
\end{aligned}
$$

where

- i_{1}, \ldots, i_{c} : labellings on arcs.
- $V\left(\zeta_{N}^{i_{1}}, \ldots, \zeta_{N}^{i_{c}}\right):=$
$\sum\left\{\operatorname{Li}_{2}\left(\zeta_{N}^{m}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{ \pm i}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{\mp j}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{ \pm k}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{\mp \prime}\right)\right\}$. crossings
- J_{1}, \ldots, J_{C} : contours.

Saddle point method

Find the maximum of $\left|\exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(z_{1}, \ldots, z_{c}\right)\right]\right|$.
$V\left(x_{1}, \ldots, x_{c}\right)$: the maximum of $\left\{\operatorname{lm} V\left(z_{1}, \ldots, z_{c}\right)\right\}_{\left(z_{1}, \ldots, z_{c}\right) \in J_{1} \times \cdots \times J_{c}}$. \Rightarrow

$$
J_{N}\left(K ; \zeta_{N}\right) \underset{N \rightarrow \infty}{\approx} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(x_{1}, \ldots, x_{c}\right)\right]
$$

modulo multiplication by a polynomial term in N.
\Rightarrow

$$
2 \pi \lim _{N \rightarrow \infty} \frac{\log \left|J_{N}\left(K ; \zeta_{N}\right)\right|}{N}=\operatorname{Im} V\left(x_{1}, \ldots, x_{c}\right)
$$

Here $\left(x_{1}, \ldots, x_{c}\right)$ satisfies the following.

$$
\frac{\partial V}{\partial z_{k}}\left(x_{1}, \ldots, x_{c}\right)=0 \quad(k=1, \ldots, c)
$$

Difficulties

Difficulties so far:

- Replacing the summation into an integral

$$
\begin{aligned}
\sum_{i_{1}, \ldots, i_{c}} \exp & {\left[\frac{N}{2 \pi \sqrt{-1}} V\left(\zeta_{N}^{i_{1}}, \ldots, \zeta_{N}^{i_{c}}\right)\right] } \\
& \approx \int_{N \rightarrow \infty} \cdots \int_{J_{c}} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(z_{1}, \ldots, z_{c}\right) d z_{1} \cdots d z_{c}\right]
\end{aligned}
$$

- How to apply the saddle point method.

$$
\begin{aligned}
& \int_{J_{1}} \cdots \int_{J_{c}} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(z_{1}, \ldots, z_{c}\right) d z_{1} \cdots d z_{c}\right] \\
& \approx \underset{N \rightarrow \infty}{\approx} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(x_{1}, \ldots, x_{c}\right)\right] .
\end{aligned}
$$

In particular, which saddle point to choose. In general, we have many solutions to the system of equations:

$$
\frac{\partial V}{\partial z_{k}}\left(x_{1}, \ldots, x_{c}\right)=0 \quad(k=1, \ldots, c) .
$$

Decomposition into octahedra (by D. Thurston)

Decompose the knot complement into (topological, truncated) tetrahedra.

- Around each crossing, put an octahedron:

- Decompose the octahedron into five tetrahedra:

Decomposition into topological tetrahedra

- Pull the vertices to the points at infinity:

- $S^{3} \backslash K$ is now decomposed into topological, truncated tetrahedra, decorated with complex numbers $\zeta_{N}^{i_{k}}$.

Decomposition into hyperbolic tetrahedra

- Each topological, truncated tetrahedron is decorated with a complex number $\zeta_{N}^{i_{k}}$.
- We want to regard it as a hyperbolic, ideal tetrahedron.
- Recall that we have replaced a summation over i_{k} into an integral over z_{k}.
- Replace $\zeta_{N}^{i_{k}}$ with a complex variable z_{k}.
- Regard the tetrahedron decorated with z_{k} as an hyperbolic, ideal tetrahedron parametrized by z_{k}.

Hyperbolic structure on the knot complement

- Now the knot complement is decomposed into ideal, hyperbolic tetrahedra parametrized by z_{1}, \ldots, z_{c}.
- Choose z_{1}, \ldots, z_{c} so that we can glue these tetrahedra well, that is,
- around each edge, the sum of angles is 2π,
- the triangles that appear in the boundary torus make the torus Euclidean.
- These conditions are the same as the system of equations that we used in the saddle point method (Y. Yokota)!

$$
\frac{\partial V}{\partial z_{k}}\left(x_{1}, \ldots, x_{c}\right)=0 \quad(k=1, \ldots, c) .
$$

- $\Rightarrow\left(x_{1}, \ldots, x_{c}\right)$ gives a unique complete hyperbolic structure in $S^{3} \backslash K$.

Geometric meaning of the limit

So far we have "proved"

$$
J_{N}\left(K ; \zeta_{N}\right) \underset{N \rightarrow \infty}{\approx} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(x_{1}, \ldots, x_{c}\right)\right] .
$$

- $V\left(x_{1}, \ldots, x_{c}\right)$ is the sum of $\operatorname{Li}_{2}\left(x_{k}\right)$ (and log), where the x_{k} define complete hyperbolic structure in $S^{3} \backslash K$.
- Vol(tetrahedron parametrized by $z)=\operatorname{lm} \operatorname{Li}_{2}(z)-\log |z| \arg (1-z)$.

$$
2 \pi \lim _{N \rightarrow \infty} \frac{\log \left|J_{N}\left(K, \zeta_{N}\right)\right|}{N}=\operatorname{Vol}\left(S^{3} \backslash K\right)
$$

which is the Volume Conjecture.

First Generalization of Volume Conjecture

Volume Conjecture \Rightarrow

$$
\begin{aligned}
& J_{N}\left(K ; \exp \left(\frac{2 \pi \sqrt{-1}}{N}\right)\right) \\
\underset{N \rightarrow \infty}{\sim} & \exp \left[\left(\sqrt{-1} \operatorname{Vol}\left(S^{3} \backslash K\right)+\text { something }\right)\left(\frac{N}{2 \pi \sqrt{-1}}\right)\right] \\
& \times(\text { polynomial of } N) .
\end{aligned}
$$

Conjecture (Gukov + HM (2008))

K: hyperbolic knot. u: small complex parameter. Define $S(u)$ so that

$$
\begin{aligned}
J_{N}\left(K ; \exp \left(\frac{2 \pi \sqrt{-1}+u}{N}\right)\right) \underset{N \rightarrow \infty}{\sim} & \exp \left[S(u)\left(\frac{N}{2 \pi \sqrt{-1}+u}\right)\right] \\
& \times(\text { polynomial of } N) .
\end{aligned}
$$

$\Rightarrow S(u)$ would determine the volume and the (SO(3)) Chern-Simons invariant of the three-manifold K_{u} associated with a representation $\rho_{u}: \pi_{1}\left(S^{3} \backslash K\right) \rightarrow S L(2 ; \mathbb{C})$.

Parameter u in the generalized VC

$$
\begin{aligned}
\rho_{u} & : \pi_{1}\left(S^{3} \backslash K\right) \rightarrow S L(2 ; \mathbb{C}) \\
\rho_{u}(\text { meridian }) & \mapsto\left(\begin{array}{cc}
\exp (u / 2) & * \\
0 & \exp (-u / 2)
\end{array}\right) \\
\rho_{u}(\text { longitude }) & \mapsto\left(\begin{array}{cc}
\exp (v(u) / 2) & * \\
0 & \exp (-v(u) / 2)
\end{array}\right)
\end{aligned}
$$

with

$$
v(u):=2 \frac{d S(u)}{d u}-2 \pi \sqrt{-1}
$$

- $u=0 \Rightarrow \rho_{0}$: the complete hyperbolic structure.
- $u \neq 0 \Rightarrow$ incomplete hyperbolic structure. completion \Rightarrow closed 3 -manifold K_{u} $((p, q)$-Dehn surgery if $p u+q v(u)=2 \pi \sqrt{-1})$.

Topological Interpretation of $S(u)$

Put

$$
\operatorname{CS}(u):=S(u)-\pi \sqrt{-1} u-\frac{u v(u)}{4}
$$

$\Rightarrow \operatorname{CS}(u)$ is the $S L(2 ; \mathbb{C})$-Chern-Simons invariant of $S^{3} \backslash K$ associated with ρ_{u}, u and $v(u)$.

- Note that we need lifts of $\exp (u / 2)$ and $\exp (v(u) / 2)$ to define $\mathrm{CS}(u)$.
$\Rightarrow S(u)$ determines
$(S O(3)$ Chern-Simons invariant) $+\sqrt{-1} \mathrm{Vol}$
of the closed hyperbolic three-manifold K_{u}, where $S O(3)$ Chern-Simons invariant is defined by using the Levi-Civita connection.

Further Generalization

Conjecture (Dimofte + Gukov (2010), HM (2011))

K : hyperbolic knot. $u \neq 0$: small complex parameter. Define $T(u)$ so that

$$
J_{N}(K ; \exp ((2 \pi \sqrt{-1}+u) / N))
$$

$$
\underset{N \rightarrow \infty}{\sim} \frac{\sqrt{-\pi}}{2 \sinh (u / 2)} T(u)^{1 / 2}\left(\frac{N}{2 \pi \sqrt{-1}+u}\right)^{1 / 2} \exp \left[S(u)\left(\frac{N}{2 \pi \sqrt{-1}+u}\right)\right],
$$

$\Rightarrow T(u)$ would be the $S L(2 ; \mathbb{C})$-Reidemeister torsion associated with ρ_{u}.

Figure-eight knot - colored Jones for $u=0$

E : the figure-eight knot.
Theorem (Andersen + Hansen (2006))
$J_{N}(E ; \exp (2 \pi \sqrt{-1} / N))$
$\underset{N \rightarrow \infty}{\sim} 2 \pi^{3 / 2}\left(\frac{2}{\sqrt{-3}}\right)^{1 / 2}\left(\frac{N}{2 \pi \sqrt{-1}}\right)^{3 / 2} \exp \left(\frac{N}{2 \pi \sqrt{-1}} \times \sqrt{-1} \operatorname{Vol}(E)\right)$.

- $\frac{2}{\sqrt{-3}}$: Reidemeister torsion.
- $\sqrt{-1} \mathrm{Vol}(E)$: Chern-Simons invariant.
- both associated with the holonomy representation (that defines the complete hyperbolic structure for $S^{3} \backslash E$).

Figure-eight knot - colored Jones for $u \neq 0$

E : the figure-eight knot.
Theorem (Yokota + HM (2007), HM (2011))

$$
0<u<\log \left(\frac{3+\sqrt{5}}{2}\right)
$$

$J_{N}(E ; \exp ((u+2 \pi \sqrt{-1}) / N))$

$$
\underset{N \rightarrow \infty}{\sim} \frac{\sqrt{-\pi}}{2 \sinh (u / 2)} T(u)^{1 / 2} \sqrt{\frac{N}{2 \pi \sqrt{-1}+u}} \exp \left(\frac{N}{2 \pi \sqrt{-1}+u} S(u)\right) .
$$

- $S(u):=\operatorname{Li}_{2}\left(e^{u-\varphi(u)}\right)-\operatorname{Li}_{2}\left(e^{u+\varphi(u)}\right)-u \varphi(u)$.
- $T(u):=\frac{2}{\sqrt{\left(e^{u}+e^{-u}+1\right)\left(e^{u}+e^{-u}-3\right)}}$.
- $\varphi(u):=\operatorname{arccosh}(\cosh (u)-1 / 2)$.

Figure-eight knot - representation ρ_{u}

$$
\left.\begin{array}{rl}
\pi_{1}\left(S^{3} \backslash\right. & \left.()^{n}\right)
\end{array}\right)=\left\langle x, y \mid\left(x y^{-1} x^{-1} y\right) x=y\left(x y^{-1} x^{-1} y\right)\right\rangle, \begin{array}{ll}
x & \mapsto\left(\begin{array}{cc}
e^{u / 2} & 1 \\
0 & e^{-u / 2}
\end{array}\right) \\
y & \mapsto\left(\begin{array}{cc}
e^{u / 2} & 0 \\
-d(u) & e^{-u / 2}
\end{array}\right),
\end{array}
$$

where $d(u):=\cosh u-3 / 2+\sqrt{(2 \cosh u+1)(2 \cosh u-3)} / 2$ (Riley).

$$
\rho_{u}(\text { longitude })=\left(\begin{array}{cc}
\ell(u) & * \\
0 & \ell(u)^{-1}
\end{array}\right)
$$

with $\ell(u):=\cosh (2 u)-\cosh u-1+\sinh u \sqrt{(2 \cosh u+1)(2 \cosh u-3)})$.

- ρ_{u} is a deformation of the holonomy representation ρ_{0}.

Figure-eight knot - colored Jones, $S(u), T(u)$, and ρ_{u}

Put

$$
\begin{aligned}
v(u) & :=2 \frac{d S(u)}{d u}-2 \pi \sqrt{-1}, \\
C S(u) & :=S(u)-\pi \sqrt{-1} u-u v(u) / 4
\end{aligned}
$$

Then $e^{v(u) / 2}=-\ell(u)$ and so

$$
\rho_{u}(\text { longitude })=\left(\begin{array}{cc}
-e^{v(u) / 2} & * \\
0 & -e^{-v(u) / 2}
\end{array}\right) .
$$

- $C S(u)$ is the $S L(2 ; \mathbb{C})$ Chern-Simons invariant associated with ρ_{u}, u and $v(u)$
- $T(u)$ is the Reidemeister torsion associated with ρ_{u}.

Torus knot - colored Jones for $u=0$ $T(a, b)$: torus knot of type $(a, b)(a, b>0)$.

Theorem (Kashaev + Tirkkonen, Dubois + Kashaev)

$$
\begin{aligned}
& J_{N}(T(a, b) ; \exp (2 \pi \sqrt{-1} / N)) \\
& \underset{N \rightarrow \infty}{\sim} \frac{\pi^{3 / 2}}{2 a b}\left(\frac{N}{2 \pi \sqrt{-1}}\right)^{3 / 2} \\
& \times\left(\sum_{k=1}^{a b-1} T_{k}^{1 / 2}(-1)^{k+1} k^{2} \exp \left[S_{k}(0)\left(\frac{N}{2 \pi \sqrt{-1}}\right)\right]\right),
\end{aligned}
$$

where

$$
\begin{aligned}
S_{k}(u) & :=\frac{-(2 k \pi \sqrt{-1}-a b(2 \pi \sqrt{-1}+u))^{2}}{4 a b} \\
T_{k} & :=\frac{16 \sin ^{2}(k \pi / a) \sin ^{2}(k \pi / b)}{a b}
\end{aligned}
$$

Torus knot - colored Jones for $u \neq 0$

Theorem (Hikami + HM)

$u \neq 0$: small

$$
\begin{aligned}
& J_{N}(T(a, b) ; \exp ((u+2 \pi \sqrt{-1}) / N)) \\
& \sim
\end{aligned} \begin{array}{ll}
\frac{1}{\Delta\left(T(a, b) ; e^{u / 2}\right)} & (\operatorname{Re} u>0), \\
\frac{1}{\Delta\left(T(a, b) ; e^{u / 2}\right)} \\
+\frac{1}{2 \sinh (u / 2)} \sum_{k}(-1)^{k+1} \sqrt{-1} T_{k}^{1 / 2}\left(\frac{N}{2 \pi \sqrt{-1}}\right)^{1 / 2} \\
\quad \times \exp \left[S_{k}(u)\left(\frac{N}{2 \pi \sqrt{-1}+u}\right)\right] & (\operatorname{Re} u \leq 0),
\end{array}
$$

where $\Delta(K ; t)$ is the Alexander polynomial of a knot K.

Torus knot $T(2,2 s+1)$ - representation ρ_{u}^{k}

$$
\rho_{u}^{k}: \begin{cases}x & \mapsto\left(\begin{array}{cc}
e^{u / 2} & 1 \\
0 & e^{-u / 2}
\end{array}\right) \\
y & \mapsto\left(\begin{array}{cc}
e^{u / 2} & 0 \\
-d_{k}(u) & e^{-u / 2}
\end{array}\right),\end{cases}
$$

where $d_{k}(u):=2 \cosh u-2 \cos \left(\frac{(2 k+1) \pi}{2 s+1}\right)$ (Riley).

$$
\rho_{u}^{k}(\text { longitude })=\left(\begin{array}{cc}
-e^{-(2 s+1) u} & * \\
0 & -e^{(2 s+1) u}
\end{array}\right) .
$$

Torus knot - colored Jones, $S_{k}(u), T_{k}(u)$, and ρ_{u}^{k}

$$
\begin{aligned}
v_{k}(u) & :=2 \frac{d S_{k}(u)}{d u}-2 \pi \sqrt{-1} . \\
C S_{k}(u) & :=S_{k}(u)-\pi \sqrt{-1} u-u v_{k}(u) / 4 .
\end{aligned}
$$

$\Rightarrow e^{v_{k}(u) / 2}=(-1)^{k} e^{-(2 s+1) u}$ and so

$$
\rho_{u}^{k}(\text { longitude })=\left(\begin{array}{cc}
\pm e^{v_{k}(u) / 2} & * \\
0 & \pm e^{-v_{k}(u) / 2}
\end{array}\right) .
$$

- $C S_{k}(u)$: Chern-Simons invariant associated with ρ_{u}^{k}, u and $v_{k}(u)$
- $T_{k}(u)$: Reidemeister torsion associated with ρ_{u}^{k}.
$\Rightarrow J_{N}$ splits into terms corresponding to representations.

Theorem (Garoufalidis + Lê (2011))

For any knot K, if $|\theta|$ is small, then

$$
\lim _{N \rightarrow \infty} J_{N}(K ; \exp (\theta / N))=1 / \Delta(K ; \exp \theta) .
$$

\Rightarrow the term $1 / \Delta\left(T(a, b) ; e^{u / 2}\right)$ corresponds to an Abelian representation.

Cable of Torus knot - colored Jones for $u=0$

Theorem (van der Veen)

$$
\lim _{N \rightarrow \infty} \frac{\log \mid J_{N}(\text { iterated torus knot; } \exp (2 \pi \sqrt{-1} / N)) \mid}{N}=0 .
$$

$$
\operatorname{Vol}(K)=0 \Leftrightarrow K \text { is an iterated torus knot }
$$

Cable of Torus knot - colored Jones for $u \neq 0$
$T(a, b)^{(2,2 m+1)}:(2,2 m+1)$-cable of $T(a, b)$ with $2 m+1>2 a b$. $u:$ small, $\operatorname{Re} u>0 . \theta:=u+2 \pi \sqrt{-1}$.

Theorem (HM)

$$
\begin{aligned}
& J_{N}\left(T(a, b)^{(2,2 m+1)} ; \exp (\theta / N)\right) \\
& \sim \frac{1}{\sim} \\
&-\sum_{0<j<\frac{a b l m(\theta)}{\pi}} \frac{\sqrt{-\pi}}{\theta\left(T(a, b)^{(2,2 m+1)} ; \exp (\theta)\right)} \\
&+\sum_{0 \leq k<\frac{(2 m+1) l m(\theta)}{2 \pi}}(-1)^{k} \frac{\frac{1}{2}}{\sqrt{(2 m+1)}} \sinh \left(\frac{\theta}{2}\right) \\
& \sqrt{\left(\frac{\theta}{2}\right)} \sqrt{\frac{N}{\theta}} \tau_{1}(j) \exp \left[\frac{N}{\theta} S_{1}(\theta ; j)\right] \\
&+\sum_{(j, k)}(-1)^{k+l+1} \frac{\exp \left[\frac{N}{\theta} S_{2}(\theta ; k)\right]}{\sqrt{2 a b(2 m+1-2 a b)} \sinh \left(\frac{\theta}{2}\right)} \frac{N \pi \sqrt{-1}}{\theta} \tau_{3}(j, k) \exp \left[\frac{N}{\theta} S_{3}(\theta ; j, k)\right]
\end{aligned}
$$

Cable of Torus knot - colored Jones for $u \neq 0$, continued

$$
\begin{aligned}
S_{1}(\theta ; j) & :=-a b \theta^{2}+2 j \theta \pi \sqrt{-1}+\frac{j^{2} \pi^{2}}{a b}, \\
\tau_{1}(j) & :=\frac{\sin (j \pi / a) \sin (j \pi / b)}{\cosh (\theta(2 m+1-2 a b) / 2)}, \\
S_{2}(\theta ; k) & :=-\frac{(2 m+1)}{2} \theta^{2}+(2 k+1) \theta \pi \sqrt{-1}+\frac{(2 k+1)^{2} \pi^{2}}{2(2 m+1)}, \\
\tau_{2}(k) & :=\frac{\sin (b(2 k+1) \pi /(2 m+1)) \sin (a(2 k+1) \pi /(2 m+1))}{\sin (a b(2 k+1) \pi /(2 m+1))}, \\
S_{3}(\theta ; j, k) & :=-\frac{(2 m+1)}{2} \theta^{2}+(2 k+1) \pi \theta \sqrt{-1} \\
& +\frac{\left(a b(2 k+1)^{2}+2 j^{2}(2 m+1)-4 a b j(2 k+1)\right) \pi^{2}}{2 a b(2 m+1-2 a b)}, \\
\tau_{3}(j) & :=\sin (j \pi / a) \sin (j \pi / b) .
\end{aligned}
$$

Observation and speculation

- $S_{1}(\theta ; j)$ and $S_{2}(\theta ; k)$ define the Chern-Simons invariant as in the case of torus knots.
- We expect that for large $N, J_{N}(K ; \exp ((2 \pi \sqrt{-1}+u) / N))$ splits into terms corresponding to representations. Moreover each term determines the Chern-Simons invariant and the Reidemeister torsion associated with the representation.
- We hope a similar formula holds for any knot.

