Extra structures on 3-manifolds via extra structures on spines

Carlo Petronio

Plan

- **1**. Triangulations and special spines of (oriented) 3-manifolds
- ${\bf 2}.$ Branched special spines, the normal flow, and the maw
- **3**. Closed combed 3-manifolds [BP1997]
- 4. Spin 3-manifolds [BP1997]
- 5. Generic flows on 3-manifolds [P2012]
- 6. Spin structures via arbitrary spines [BP2013]

1. Triangulations and special spines

1.1. Triangulations

M compact 3-manifold with ∂ (possibly \emptyset)

An (ideal) triangulation of M is a realization of the interior of M minus some points as

- (1) Take some copies of the standard 3-simplex (1)
- (2) Glue together the faces in pairs via simplicial maps
- (3) Remove the vertices

OR a realization of M minus some disjoint open balls as

- (1) Take some copies of the standard 3-simplex
- (2) Glue together the faces in pairs via simplicial maps
- (3') Remove open regular neighbourhoods of the vertices

For **oriented** M:

face-pairings should be **orientation-reversing**

Often sphere components of ∂M are forbidden \Rightarrow every triangulation defines a unique Mand perhaps

- No balls removed if $\partial M \neq \emptyset$
- One ball removed if M is closed

1.2. Spines

 $P \subset M$ is a **spine** of M if for N = (M minus some balls)

- $N \searrow P$
- $N \setminus P \cong (\partial N) \times (0, 1]$
- $N \cong U_N(P)$

(equivalently)

And perhaps

- N = M if $\partial M \neq \emptyset$
- N = (M minus one ball) if M is closed

1.2. Special polyhedra

P is **special** if

1. Locally it appears as

- 2. Edges are segments
- 3. Regions are discs

1.4 Duality

Fact

{thickenable special polyhedra}

[BP1995] (combinatorial) orientation of a special polyhedron $Fact \text{ {triangulations of oriented 3-manifolds}} \\ \text{ (orientable <math>\Rightarrow \text{ thickenable})} \\ \text{ {oriented special polyhedra}}$

2. Branched spines, normal flow, maw

2.1. Branching

P oriented special polyhedron, ${\mathcal T}$ dual triangulation A **branching** is

- An orientation for the regions of P such that no edge of P is induced 3 times the same orientation by the 3 incident regions
- An orientation for the edges of \mathcal{T} such that the boundary of a triangle of \mathcal{T} is never a cycle

(equivalently)

Fact Some *P*'s do not admit any branching

Smoothing along edges induced by a branching

(and orientation of edges)

Fact The smoothing extends at vertices

A branched triangulation

2.2. The normal flow ν

P branched (Ishii) positive normal flow $\nu(P)$ on U(P)

At vertices: a flow-line is **doubly tangent** to ∂

2.2. The maw ν

 ${\cal P}$ branched

(Christy) descending field $\mu(P)$ on 1-skeleton S(P) of P

 $\pmb{\nu}$ and μ near a vertex

3. Closed combed 3-manifolds [BP1997]

Combinatorial realization of the set of pairs (M, [v]) with

- $\bullet~M$ closed oriented
- $\bullet~v$ non-zero vector field on M
- [v] homotopy class (through non-zero vector fields)

Objects P oriented branched special polyhedron with

 $\partial U(P) \cong S^2 \quad \text{and} \\ \nu(P) \text{ near } \partial U(P) \text{ given by}$

Reconstruction

Moves branched versions of the Matveev-Piergallini 2-3 move

Easy extension with same techniques

- allow $\partial M \neq \emptyset$
- \bullet allow v to have **concave** tangency to ∂M
- consider homotopy fixed on ∂M

4. Spin 3-manifolds [BP1997]

Combinatorial realization of the set of pairs (M, s) with

- M oriented
- s spin structure on M

Objects (P,β) with

- $\bullet~P$ oriented branched special polyhedron
- weight $\beta \in C^1(P; \mathbb{Z}/_{2\mathbb{Z}})$ such that $\delta\beta$ is the obstruction to extending $(\nu(P), \mu(P))$ from S(P) to P

Reconstruction Use β to extend $(\nu(P), \mu(P))$ from S(P) to P

Moves

- \bullet Add 1-coboundaries to β
- Weighted and branched versions of the MP move

5. Generic flows [P2012]5.1. Morin singularities

M compact, oriented, $\partial M \neq \emptyset$ v now here-zero on M

generically:v tangent to ∂M along curve Γ and tangent to Γ at essential isolated points

Transition points

Transition orbits

concave-to-convex

convex-to-concave

5.1. Combinatorial realization – objects

Set of pairs (M, [v]) with

- M oriented compact with ∂
- $\bullet~v$ non-zero vector field on M generic along ∂M
- [v] homotopy class through generic fields (\Rightarrow configuration on ∂M evolves isotopically)

Objects *P* compact polyhedron

• locally

- oriented along edges
- oriented branching along edges

• boundary condition (discussed below – no cellularity!)

5.2. Reconstruction

Theorem Each P as above thickens to unique $(U(P), \nu(P))$ with

- P a spine of U := U(P)
- $\nu := \nu(P)$ positively normal to P
- ν generic on ∂U
- \bullet Transition orbits of ν not elsewhere tangent to ∂U
- Each orbit of ν tangent to ∂U in at most two points, and transversely if so

• All orbits of ν go from ∂U to ∂U

• Topological thickening

Unique because trivial *I*-bundle on each region

 \bullet Smooth thickening at edges and $\partial\text{-edges}$

• Smooth thickening at vertices

• Smooth thickening at spikes

Extra condition on objects (U, ν) must include at least one

 $\begin{array}{c} \textbf{Reconstruction}\\ \textbf{cap} \quad (U,\nu) \text{ with} \end{array}$

Proposition Reconstruction well-defined

Proposition Reconstruction surjective

- **I** We want to obtain a given (M, v) by capping (U, ν) with
 - ν generic on ∂U
 - \bullet Transition orbits of ν not elsewhere tangent to ∂U
 - Each orbit of ν tangent to ∂U in at most two points, and transversely if so
 - All orbits of ν go from ∂U to ∂U
- ${\boldsymbol *}$ Choose U as M minus a "very big"

(trivially combed ball) achieving first and last condition

Other two conditions true up to homotopy

- **II** Given (U, ν) find P with U = U(P) and $\nu = \nu(P)$
 - * in-backward P: in-region of ∂U union orbits to concave or transition points
 - * **out-forward** P: out-region of ∂M union orbits from concave or transition points

They are the same and they work

Birth of vertices

Birth of spikes

5.3. Moves

• $0 \leftrightarrow 2$ sliding moves

• $2 \leftrightarrow 3$ sliding moves

• spike-sliding moves

Idea of proof

I Express homotopy of ∂ -to- ∂ fields on U = (M minus trivially combed ball) as composition of **elementary catastrophes** reading effect on in-backward or out-forward spines

II Express isotopy of trivially combed ball as composition of **elementary catastrophes** reading effect on in-backward or out-forward spines

Fact Moves from **II** same as those from **I**

Catastrophe I.1

Orbit twice concavely tangent to ∂U but not transversely **Effect** $0 \leftrightarrow 2$ sliding moves

Catastrophe I.2

Orbit thrice transversely and concavely tangent to ∂U Effect $2 \leftrightarrow 3$ sliding moves

Catastrophe I.2

Transition orbit also concavely tangent to ∂U **Effect** Spike-sliding moves

6. Spin structures via arbitrary spines

[BP1997] Combinatorial presentation of

 $\{(M, s) : s \text{ spin structure on } M\}$

via branched spines — not all spines admit branching

Idea [BP2013] A weaker version of branching that **exists on every** Pstill allows to define $\nu(P), \mu(P)$ on S(P) = 4-valent gluing graph of triangulation dual to P

Pre-branching ω on P is an orientation of S(P) with **2 edges in and 2 out** at each vertex

Existence Express S(P) as union of cycles

Weak branching b compatible with pre-branching ω is a branching at each vertex inducing ω

Graphic encoding

Proposition

 ω pre-branching on P-b compatible weak branching

- They allow to define $\varphi(P) := (\nu(P), \mu(P))$ on S(P)
- The obstruction $\alpha(P, \omega, b) \in C^1(P; \mathbb{Z}/_{2\mathbb{Z}})$ to extending $\varphi(P)$ on Pcan be computed explicitly
- φ and α are additive with respect to edge summation

Idea ν, μ defined at vertices

- obvious extension along branched edges (colour 0)
- extension along unbranched edges (colour ± 1)

- $-\operatorname{extend}\,\nu$ vertical
- extend μ horizontal adding a full twist

Obstruction computation

 $\alpha(P, \omega, b)$ on R is a sum of contributions in $\frac{1}{2}\mathbb{Z}/_{2\mathbb{Z}}$ (with final sum in $\mathbb{Z}/_{2\mathbb{Z}}$)

• from vertices — requires orientation of ∂R

• from edges

Proposition

 $[\alpha(P,\omega,b)] = 0 \in H^2(P; \mathbb{Z}/_{2\mathbb{Z}}) \text{ and there exists}$ $\{\beta \in C^1(P; \mathbb{Z}/_{2\mathbb{Z}}) : \ \delta\beta = \alpha(P,\omega,b)\} \xrightarrow{s} \operatorname{Spin}(M)$ with $s(\beta_0) = s(\beta_1) \Leftrightarrow [\beta_0 + \beta_1] = 0 \in H^1(P; \mathbb{Z}/_{2\mathbb{Z}})$

 $\beta \in C^1(P; \mathbb{Z}/_{2\mathbb{Z}})$ weight

Theorem

 $s(P_0, \omega_0, b_0, \beta_0) = s(P_1, \omega_1, b_1, \beta_1) \Leftrightarrow \dots$ moves

- P, ω, b fixed, β varies: $H^1(P; \mathbb{Z}/_{2\mathbb{Z}})$
- P, ω fixed, b changes: explicit local moves at vertices

 $\pm 1 \in \mathbb{Z}/_{3\mathbb{Z}}$ edge colours $1 \in \mathbb{Z}/_{2\mathbb{Z}}$ weight

• P fixed, ω varies: one global move (circuit)

• P varies: weighted versions of 2-3 and bubble moves

Issue Replace global move by (semi-)local moves

Idea Allow branching to be "temporarily" arbitrary

- \bullet Start with weak branching b compatible with pre-branching ω
- Change branching at each vertex getting another b' compatible with some other ω'
- On some edges this will give

• To treat the change **locally** we need graphs encoding arbitrary branchings (even if globally we only want weak \rightarrow weak changes)

• New edges

 τ transposition

- New weighted vertex moves
- **New summation rules** for weighted edges
 - These rules are **not** associative for arbitrary branchings
 - \circ When applied to weak \rightarrow weak transitions they give well-defined result
 - The new weighted vertex moves when applied to weak → weak transitions generate the circuit move under the new summation rules
- Same weighted 2-3 and bubble moves