Extra structures on 3-manifolds
via extra structures on spines

Carlo Petronio

Plan

1. Triangulations and special spines of (oriented) 3-manifolds
2. Branched special spines, the normal flow, and the maw
3. Closed combed 3-manifolds [BP1997]
4. Spin 3-manifolds [BP1997]
5. Generic flows on 3-manifolds [P2012]
6. Spin structures via arbitrary spines [BP2013]

1. Triangulations and special spines

1.1. Triangulations

M compact 3-manifold with ∂ (possibly $\emptyset)$

An (ideal) triangulation of M is a realization of the interior of M minus some points as
(1) Take some copies of the standard 3 -simplex
(2) Glue together the faces in pairs via simplicial maps
(3) Remove the vertices

OR a realization of M minus some disjoint open balls as
(1) Take some copies of the standard 3 -simplex
(2) Glue together the faces in pairs via simplicial maps
(3') Remove open regular neighbourhoods of the vertices

For oriented M :
face-pairings should be orientation-reversing

Often sphere components of ∂M are forbidden \Rightarrow every triangulation defines a unique M
and perhaps

- No balls removed if $\partial M \neq \emptyset$
- One ball removed if M is closed

1.2. Spines

$P \subset M$ is a spine of M if for $N=(M$ minus some balls $)$

- $N \searrow P$
- $N \backslash P \cong(\partial N) \times(0,1]$
- $N \cong U_{N}(P)$
(equivalently)

And perhaps

- $N=M \quad$ if $\partial M \neq \emptyset$
- $N=(M$ minus one ball) \quad if M is closed

1.2. Special polyhedra

P is special if

1. Locally it appears as

regions
edges

vertices
2. Edges are segments
3. Regions are discs

1.4 Duality

Fact

\{triangulations of 3-manifolds $\}$

$$
\downarrow \text { duality }
$$

\{thickenable special polyhedra\}

[BP1995] (combinatorial) orientation of a special polyhedron
Fact \{triangulations of oriented 3-manifolds\}

$$
\begin{array}{cl}
\uparrow \text { duality } & \text { (orientable } \Rightarrow \text { thickenable) } \\
\{\text { oriented special polyhedra }\} &
\end{array}
$$

2. Branched spines, normal flow, maw

2.1. Branching

P oriented special polyhedron, \mathcal{T} dual triangulation A branching is

- An orientation for the regions of P such that no edge of P is induced 3 times the same orientation by the 3 incident regions
- An orientation for the edges of \mathcal{T} such that the boundary of a triangle of \mathcal{T} is never a cycle
(equivalently)

YES

Fact Some P 's do not admit any branching

Smoothing along edges induced by a branching

(and orientation of edges)

Fact The smoothing extends at vertices

Spine

Triangulation

A branched triangulation

2.2. The normal flow ν

P branched (Ishii) positive normal flow $\nu(P)$ on $U(P)$

concave
tangency to ∂

At vertices: a flow-line is doubly tangent to ∂

2.2. The maw ν

P branched
(Christy) descending field $\mu(P)$ on 1-skeleton $S(P)$ of P

ν and μ near a vertex

3. Closed combed 3-manifolds [BP1997]

Combinatorial realization of the set of pairs $(M,[v])$ with

- M closed oriented
- v non-zero vector field on M
- $[v]$ homotopy class (through non-zero vector fields)

Objects P oriented branched special polyhedron with

$$
\begin{aligned}
& \partial U(P) \cong S^{2} \text { and } \\
& \nu(P) \text { near } \partial U(P) \text { given by }
\end{aligned}
$$

Reconstruction

cap $\partial U(P)$ with

Moves branched versions of the Matveev-Piergallini 2-3 move

Easy extension with same techniques

- allow $\partial M \neq \emptyset$
- allow v to have concave tangency to ∂M
- consider homotopy fixed on ∂M

4. Spin 3-manifolds [BP1997]

Combinatorial realization of the set of pairs (M, s) with

- M oriented
- s spin structure on M

Objects (P, β) with

- P oriented branched special polyhedron
- weight $\beta \in C^{1}(P ; \mathbb{Z} / 2 \mathbb{Z})$ such that $\delta \beta$ is the obstruction to extending $(\nu(P), \mu(P)$) from $S(P)$ to P

Reconstruction Use β to extend $(\nu(P), \mu(P))$ from $S(P)$ to P

Moves

- Add 1-coboundaries to β
- Weighted and branched versions of the MP move

Transition points

Transition orbits

concave-to-convex

convex-to-concave

5.1. Combinatorial realization - objects

Set of pairs $(M,[v])$ with

- M oriented compact with ∂
- v non-zero vector field on M generic along ∂M
- $[v]$ homotopy class through generic fields
(\Rightarrow configuration on ∂M evolves isotopically)

Objects P compact polyhedron

- locally

- oriented along edges
- oriented branching along edges

- boundary condition (discussed below - no cellularity!)

5.2. Reconstruction

Theorem Each P as above thickens to unique $(U(P), \nu(P))$ with

- P a spine of $U:=U(P)$
- $\nu:=\nu(P)$ positively normal to P
- ν generic on ∂U
- Transition orbits of ν not elsewhere tangent to ∂U
- Each orbit of ν tangent to ∂U in at most two points, and transversely if so

- All orbits of ν go from ∂U to ∂U
- Topological thickening

Unique because trivial I-bundle on each region

- Smooth thickening at edges and ∂-edges

- Smooth thickening at vertices

- Smooth thickening at spikes

Extra condition on objects (U, ν) must include at least one

Reconstruction cap (U, ν) with

Proposition Reconstruction well-defined

Proposition Reconstruction surjective
I We want to obtain a given (M, v) by capping (U, ν) with

- ν generic on ∂U
- Transition orbits of ν not elsewhere tangent to ∂U
- Each orbit of ν tangent to ∂U in at most two points, and transversely if so
- All orbits of ν go from ∂U to ∂U
* Choose U as M minus a "very big" (trivially combed ball)
 achieving first and last condition

Other two conditions true up to homotopy

II Given (U, ν) find P with $U=U(P)$ and $\nu=\nu(P)$

* in-backward P : in-region of ∂U union orbits to concave or transition points
* out-forward P : out-region of ∂M union orbits from concave or transition points

They are the same and they work

Birth of vertices

Birth of spikes

out-for

5.3. Moves

- $0 \leftrightarrow 2$ sliding moves

- $2 \leftrightarrow 3$ sliding moves

- spike-sliding moves

Idea of proof

I Express homotopy of ∂-to- ∂ fields on $U=(M$ minus trivially combed ball) as composition of elementary catastrophes reading effect on in-backward or out-forward spines

II Express isotopy of trivially combed ball as composition of elementary catastrophes reading effect on in-backward or out-forward spines

Fact Moves from II same as those from I

Catastrophe I. 1
Orbit twice concavely tangent to ∂U but not transversely Effect $0 \leftrightarrow 2$ sliding moves

Catastrophe I. 2
Orbit thrice transversely and concavely tangent to ∂U
Effect $2 \leftrightarrow 3$ sliding moves

Catastrophe I. 2
Transition orbit also concavely tangent to ∂U
Effect Spike-sliding moves

6. Spin structures via arbitrary spines

[BP1997] Combinatorial presentation of

$$
\{(M, s): s \text { spin structure on } M\}
$$

via branched spines - not all spines admit branching
Idea [BP2013] A weaker version of branching that exists on every P
still allows to define $\nu(P), \mu(P)$ on $S(P)=4$-valent gluing graph of triangulation dual to P

Pre-branching ω on P is an orientation of $S(P)$ with 2 edges in and 2 out at each vertex

Existence Express $S(P)$ as union of cycles

Weak branching b compatible with pre-branching ω is a branching at each vertex inducing ω

Graphic encoding

Proposition

ω pre-branching on $P \quad b$ compatible weak branching

- They allow to define $\varphi(P):=(\nu(P), \mu(P))$ on $S(P)$
- The obstruction $\alpha(P, \omega, b) \in C^{1}(P ; \mathbb{Z} / 2 \mathbb{Z})$
to extending $\varphi(P)$ on P
can be computed explicitly
- φ and α are additive with respect to edge summation

Idea $\quad \nu, \mu$ defined at vertices

- obvious extension along branched edges (colour 0)
- extension along unbranched edges (colour ± 1)

- extend ν vertical
- extend μ horizontal adding a full twist

Obstruction computation

 $\alpha(P, \omega, b)$ on R is a sum of contributions in $\frac{1}{2} \mathbb{Z} / 2 \mathbb{Z}$ (with final sum in $\mathbb{Z} / 2 \mathbb{Z}$)- from vertices - requires orientation of ∂R

- from edges

Proposition

$[\alpha(P, \omega, b)]=0 \in H^{2}(P ; \mathbb{Z} / 2 \mathbb{Z})$ and there exists

$$
\left\{\beta \in C^{1}(P ; \mathbb{Z} / 2 \mathbb{Z}): \delta \beta=\alpha(P, \omega, b)\right\} \xrightarrow{s} \operatorname{Spin}(M)
$$

with $s\left(\beta_{0}\right)=s\left(\beta_{1}\right) \Leftrightarrow\left[\beta_{0}+\beta_{1}\right]=0 \in H^{1}(P ; \mathbb{Z} / 2 \mathbb{Z})$
$\beta \in C^{1}(P ; \mathbb{Z} / 2 \mathbb{Z}) \quad$ weight

Theorem

$s\left(P_{0}, \omega_{0}, b_{0}, \beta_{0}\right)=s\left(P_{1}, \omega_{1}, b_{1}, \beta_{1}\right) \Leftrightarrow \ldots$ moves

- P, ω, b fixed, β varies: $H^{1}(P ; \mathbb{Z} / 2 \mathbb{Z})$
- P, ω fixed, b changes: explicit local moves at vertices

$\pm 1 \in \mathbb{Z} /$ 3Z $e d g e ~ c o l o u r s ~ \quad ~ 1 \in \mathbb{Z} / 2 \mathbb{Z}$ weight
- P fixed, ω varies: one global move (circuit)

- P varies: weighted versions of 2-3 and bubble moves

Issue Replace global move by (semi-)local moves
Idea Allow branching to be "temporarily" arbitrary

- Start with weak branching b compatible with pre-branching ω
- Change branching at each vertex getting another b^{\prime} compatible with some other ω^{\prime}
- On some edges this will give

- To treat the change locally we need graphs encoding arbitrary branchings (even if globally we only want weak \rightarrow weak changes)
- New edges

τ transposition
- New weighted vertex moves
- New summation rules for weighted edges
- These rules are not associative for arbitrary branchings
- When applied to weak \rightarrow weak transitions they give well-defined result
- The new weighted vertex moves when applied to weak \rightarrow weak transitions generate the circuit move under the new summation rules
- Same weighted 2-3 and bubble moves

