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1. Triangulations and special spines

1.1. Triangulations

M compact 3-manifold with ∂ (possibly ∅)

An (ideal) triangulation of M is a realization of
the interior of M minus some points as

(1) Take some copies of the standard 3-simplex

(2) Glue together the faces in pairs via simplicial maps

(3) Remove the vertices



OR a realization of M minus some disjoint open balls as

(1) Take some copies of the standard 3-simplex

(2) Glue together the faces in pairs via simplicial maps

(3′) Remove open regular neighbourhoods of the vertices



For oriented M :
face-pairings should be orientation-reversing

Often sphere components of ∂M are forbidden
⇒ every triangulation defines a unique M

and perhaps

• No balls removed if ∂M ̸= ∅
• One ball removed if M is closed



1.2. Spines

P ⊂ M is a spine of M if for N = (M minus some balls)

• N ↘ P

• N \ P ∼= (∂N)× (0, 1]

• N ∼= UN(P )

(equivalently)

And perhaps

• N = M if ∂M ̸= ∅
• N = (M minus one ball) if M is closed



1.2. Special polyhedra

P is special if

1. Locally it appears as

regions edges vertices

2. Edges are segments

3. Regions are discs



1.4 Duality

Fact

{triangulations of 3-manifolds}

↕ duality

{thickenable special polyhedra}

[BP1995] (combinatorial) orientation of a special polyhedron

Fact {triangulations of oriented 3-manifolds}
↕ duality (orientable⇒ thickenable)

{oriented special polyhedra}



2. Branched spines, normal flow, maw

2.1. Branching

P oriented special polyhedron, T dual triangulation
A branching is

• An orientation for the regions of P such that no edge of P is
induced 3 times the same orientation by the 3 incident regions

• An orientation for the edges of T such that the boundary of a
triangle of T is never a cycle

(equivalently)

YES
NO



Fact Some P ’s do not admit any branching

Smoothing along edges induced by a branching

(and orientation of edges)



Fact The smoothing extends at vertices

Target

Target

Source

Source

Spine Triangulation Graph

-1

+1



A branched triangulation



2.2. The normal flow ν

P branched (Ishii) positive normal flow ν(P ) on U(P )

concave

tangency to ∂

At vertices: a flow-line is doubly tangent to ∂



2.2. The maw ν

P branched
(Christy) descending field µ(P ) on 1-skeleton S(P ) of P

ν and µ near a vertex



3. Closed combed 3-manifolds [BP1997]

Combinatorial realization of the set of pairs (M, [v]) with

• M closed oriented

• v non-zero vector field on M

• [v] homotopy class (through non-zero vector fields)

Objects P oriented branched special polyhedron with

∂U(P ) ∼= S2 and
ν(P ) near ∂U(P ) given by



Reconstruction

cap ∂U(P ) with

Moves branched versions of the Matveev-Piergallini 2-3 move



Easy extension with same techniques

• allow ∂M ̸= ∅
• allow v to have concave tangency to ∂M

• consider homotopy fixed on ∂M



4. Spin 3-manifolds [BP1997]

Combinatorial realization of the set of pairs (M, s) with

• M oriented

• s spin structure on M

Objects (P, β) with

• P oriented branched special polyhedron

• weight β ∈ C1 (P ;Z/2Z) such that δβ is the obstruction to
extending (ν(P ), µ(P )) from S(P ) to P

Reconstruction Use β to extend (ν(P ), µ(P )) from S(P ) to P

Moves

• Add 1-coboundaries to β

• Weighted and branched versions of the MP move



5. Generic flows [P2012]

5.1. Morin singularities

M compact, oriented, ∂M ̸= ∅
v nowhere-zero on M

generically: v tangent to ∂M along curve Γ

and tangent to Γ at essential isolated points

G G

G G

concave convex



Transition points

GG

Transition orbits

G
G

concave-to-convex convex-to-concave



5.1. Combinatorial realization – objects

Set of pairs (M, [v]) with

• M oriented compact with ∂

• v non-zero vector field on M generic along ∂M

• [v] homotopy class through generic fields
(⇒ configuration on ∂M evolves isotopically)



Objects P compact polyhedron

• locally

region edge ∂-edge vertex spike

• oriented along edges

• oriented branching along edges

• boundary condition (discussed below – no cellularity!)



5.2. Reconstruction
Theorem Each P as above thickens to unique (U(P ), ν(P )) with

• P a spine of U := U(P )

• ν := ν(P ) positively normal to P

• ν generic on ∂U

• Transition orbits of ν not elsewhere tangent to ∂U

• Each orbit of ν tangent to ∂U in at most two points,
and transversely if so

G

G

• All orbits of ν go from ∂U to ∂U



• Topological thickening

Unique because trivial I-bundle on each region



• Smooth thickening at edges and ∂-edges



• Smooth thickening at vertices



• Smooth thickening at spikes



Extra condition on objects

(U, ν) must include at least one

Reconstruction
cap (U, ν) with



Proposition Reconstruction well-defined

If there are two capping any of them
gives the same



Proposition Reconstruction surjective

I We want to obtain a given (M, v) by capping (U, ν) with

• ν generic on ∂U

• Transition orbits of ν not elsewhere tangent to ∂U

• Each orbit of ν tangent to ∂U in at most two points,
and transversely if so

• All orbits of ν go from ∂U to ∂U

∗ Choose U as M minus a “very big”

(trivially combed ball)
achieving first and last condition

Other two conditions true up to homotopy



II Given (U, ν) find P with U = U(P ) and ν = ν(P )

∗ in-backward P : in-region of ∂U union orbits to concave or
transition points

∗ out-forward P : out-region of ∂M union orbits from concave
or transition points

in-back out-for

They are the same and they work



Birth of vertices

G

G

in-back

out-for



Birth of spikes

in-back

out-for



5.3. Moves

• 0 ↔ 2 sliding moves



• 2 ↔ 3 sliding moves



• spike-sliding moves



Idea of proof

I Express homotopy of ∂-to-∂ fields
on U = (M minus trivially combed ball)
as composition of elementary catastrophes
reading effect on in-backward or out-forward spines

II Express isotopy of trivially combed ball
as composition of elementary catastrophes
reading effect on in-backward or out-forward spines

Fact Moves from II same as those from I



Catastrophe I.1
Orbit twice concavely tangent to ∂U but not transversely

Effect 0 ↔ 2 sliding moves

Catastrophe I.2
Orbit thrice transversely and concavely tangent to ∂U

Effect 2 ↔ 3 sliding moves

Catastrophe I.2
Transition orbit also concavely tangent to ∂U
Effect Spike-sliding moves



6. Spin structures via arbitrary spines

[BP1997] Combinatorial presentation of

{(M, s) : s spin structure on M}

via branched spines — not all spines admit branching

Idea [BP2013] A weaker version of branching
that exists on every P
still allows to define ν(P ), µ(P ) on
S(P ) = 4-valent gluing graph of triangulation dual to P

Pre-branching ω on P is an orientation of S(P ) with
2 edges in and 2 out at each vertex

Existence Express S(P ) as union of cycles



Weak branching b compatible with pre-branching ω is
a branching at each vertex inducing ω

1

1

0
0

2

2

c

Graphic encoding

c ∈ Z/3Z



Proposition
ω pre-branching on P b compatible weak branching

• They allow to define φ(P ) := (ν(P ), µ(P )) on S(P )

• The obstruction α(P, ω, b) ∈ C1(P ;Z/2Z)
to extending φ(P ) on P
can be computed explicitly

• φ and α are additive with respect to edge summation

c

c

c

c

1

1

2

2+



Idea ν, µ defined at vertices

• obvious extension along branched edges (colour 0)

• extension along unbranched edges (colour ±1)

– extend ν vertical

– extend µ horizontal adding a full twist



Obstruction computation
α(P, ω, b) on R is a sum of contributions in 1

2Z/2Z
(with final sum in Z/2Z)

• from vertices — requires orientation of ∂R

• from edges

+1 -1

-1/2 +1/2 +1/2-1/2

1
1



Proposition

[α(P, ω, b)] = 0 ∈ H2(P ;Z/2Z) and there exists

{β ∈ C1(P ;Z/2Z) : δβ = α(P, ω, b)} s−→→ Spin(M)

with s(β0) = s(β1) ⇔ [β0 + β1] = 0 ∈ H1(P ;Z/2Z)

β ∈ C1(P ;Z/2Z) weight

Theorem

s(P0, ω0, b0, β0) = s(P1, ω1, b1, β1) ⇔ . . .moves



• P, ω, b fixed, β varies: H1(P ;Z/2Z)
• P, ω fixed, b changes: explicit local moves at vertices

+1

+1

-1

1

±1 ∈ Z/3Z edge colours 1 ∈ Z/2Z weight

• P fixed, ω varies: one global move (circuit)

c c1 1

c c4 4

c c3 3

c c2 2

b b  +1
1 1

b b
2 2

b b
3 3

b b  +1
4 4

• P varies: weighted versions of 2-3 and bubble moves



Issue Replace global move by (semi-)local moves

Idea Allow branching to be “temporarily” arbitrary

• Start with weak branching b compatible with pre-branching ω

• Change branching at each vertex getting
another b′ compatible with some other ω′

• On some edges this will give

c c

?

?

• To treat the change locally we need graphs encoding arbitrary
branchings (even if globally we only want weak→weak changes)



• New edges

t t

τ transposition

• New weighted vertex moves

• New summation rules for weighted edges

◦ These rules are not associative for arbitrary branchings

◦ When applied to weak→weak transitions
they give well-defined result

◦ The new weighted vertex moves
when applied to weak→weak transitions
generate the circuit move under the new summation rules

• Same weighted 2-3 and bubble moves


