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Outline:

• Hyperbolic gluing equations
• Interval arithmetic
• Two ways to verify Newton’s method
• Applications to 3-manifolds



Main Question

How can we use a computer to rigorously verify a hyperbolic
structure on a 3-manifold?



Hyperbolic ideal tetrahedra
Up to similarity, each ideal tetrahedron in H3 can be
parametrized by a complex number.

Here, z ′ = z−1
z and z ′′ = 1

1−z .



Gluing equations
We want to show that there is a solution the hyperbolic gluing
equations.

Figure: Benedetti and Petronio: Lectures on Hyperbolic Geometry
page 227



Three types of gluing equations
These equations are implemented and solved using software
like Snappy (based on the Snappea Kernel). For a manifold M
with n tetrahedra, m unfilled cusps and c filled cusps, we have:
Edge equations (n of these):

n∑
j=1

(aj,k log(zj) + bj,k log(
1

1− zj
) + cj,k log(

zj − 1
zj

)) = 0 + 2πi

Cusp equations (2 m of these):
n∑

j=1

(aj,k log(zj) + bj,k log(
1

1− zj
) + cj,k log(

zj − 1
zj

)) = 0 + 0πi

Dehn surgery equations (c of these):
n∑

j=1

(aj,k log(zj) + bj,k log(
1

1− zj
) + cj,k log(

zj − 1
zj

)) = 0 + 2πi

Note: here arg(z) ∈ (−π, π] and valid solutions must have
arg(zj) > 0 for all i .



Dehn Surgery Equations

If a manifold M is obtained from a p/q filling the cusp of M ′,
then we need to solve:

p
n∑

j=1

(aj,k log(zk ) + bj,k log(
1

1− zj
) + cj,k log(

zj − 1
zj

))+

q
n∑

j=1

(aj,k+1 log(zk )+bj,k+1 log(
1

1− zj
)+cj,k+1 log(

zj+1 − 1
zj+1

)) = 0+2πi

Here: equation k corresponds to the meridian equation for this
cusp and k + 1 the longitude equation.



Restated goal

Goal: 1) Show that an approximated solution to the gluing
equations is in a small neighborhood of an actual solution.

2) Precisely define small.



Interval Arithmetic

Basic Idea: A computer can not easily deal with log 3 as an
exact number, but it can compute

1.098612 ≈ log 3 ∈ [1.09765625,1.1015625].

Note: in binary that interval is [1.00011001,1.00011010].
We say x ∈ [x ] and [x ] = [x , x̄ ].



Operations in interval arithmetic

• + : [a] + [b] = [a + b − ε, ā + b̄ + ε′].
• − : [a]− [b] = [a− b̄ − ε, ā− b + ε′].
• · : [a] · [b] = [min(ai · bj)− ε,max(ai · bj) + ε′].
• ÷ : [a]÷ [b] = [min(ai

bj
)− ε,max(ai

bj
) + ε′] if 0 /∈ [b, b̄]

Here ai ∈ {a, ā} and bj ∈ {b, b̄} and ε, ε′ account for a
processor’s rounding error.



Rounding for basic arithmetic

Let O : R→ F be a rounding function set be the computer
language one uses.
There are four types of rounding O(x) = xapprox

• +∞ : overestimates the number O(x) = dxe
• −∞ : underestimates the number O(x) = bxc
• nearest : |x − xapprox | is smallest
• chopping: O(x) = dxe for x < 0 and bxc for x > 0

Note: chopping gives best allocation of memory and yields
memory overflow errors least often.



Inequalities

>,< can return TRUE , FALSE , and UNDETERMINED.
Examples:

[a] < [b] and [b] > [a]

[a] 6< [b] and [a] 6> [b]



Interval inclusion

[a] ⊂ [b]



Approximating functions

To get values of functions we need to give the computer a
Taylor (or Maclaurin) series and error bound. For example our
program uses log, √, e and arctan (D is the domain of
convergence).

f ([z]) =
n∑

k=1

f k ([z])

k !
for [z] ⊂ D

and error

|Ek ([z])| < M · |[z]|k+1

(k + 1)!
, |f k+1([z])| < M



Exact arithmetic

Given a number field k such that [k : Q] = d , we can represent
k as a d-dimensional vector space over Q. Here,
Q[x ]/(xd = ad−1xd−1 + ...+ a0) ai ∈ Q.

Recording ζ ∈ Q as (ζ1, ζ2, ..., ζd ), ζi ∈ Z× Z. Given enough
precision for ζ, it is possible to verify an exact solution to the
gluing equations with enough memory (and luck).

Used by snap.



Advantages of interval arithmetic

• Fast (especially compared to exact arithmetic)
• Uses less memory than exact arithmetic
• Relatively easy to program
• Overwrites the +.−, ·,÷ functions
• Extends to functions naturally.
• Keeps track of accumulated error by itself
• There are rigorous verification test of Newton’s method for

interval arithmetic



Krawczyk Test (statement due to Rump(1983))

Theorem
Given a continuously differentiable f : D → R2n, x̃ ∈ R2n,
X = [x1]× [x2]× ...[x2n] with ~0 ∈ X and x̃ + X ⊆ D, and
R ∈ R2n × R2n. Suppose

S(X , x̃) = −Rf (x̃) + {I − RJf (x̃ + X )}X ⊂ Int(X ).

Then R and all matrices M ∈ Jf (x̃ + X ) are non-singular and
there is a unique root x̂ of f in x̃ + S(X , x̃).
Note: here R ≈ J−1

f .



Krawczyk Test vs. Kantorovich test

The Krawczyk test requires fewer computations. Consequently,
it is faster and requires less memory than the Kantorovich test.



Implementation

These methods have been used to verify:
the ≤ 5,6,7,8 tetrahedral censuses (5,6,7 due to Callahan,
Hildebrand, and Weeks, 8 due to Thistlethwaite)
and
all but 439 of the manifolds in the closed census (Hodgson and
Weeks).



Implemented in

• MATLAB - big function library, requires a license
• c++ - fast, accurate and free, but hard to use
• python - not fast, not as accurate, but free and easy



Parabolic length

For M = H3/Γ with one cusp, we
measure the length of a parabolic p ∈ Γ that fixes∞, by
measuring it’s displacement in the boundary of a maximal
horoball.
In general, the length of a parabolic will be the length of its
conjugate that fixes∞.



6 - Theorem

Theorem (Agol,Lackenby + Perelman)
Let M be a 1-cusped hyperbolic manifold. If γ is a parabolic
element of length ≥ 6, then M(γ) is hyperbolic.
Given a solution to the gluing equations, length is a function of
the zi .



Martelli, Petronio, Roukema + ε

Martelli, Petronio and Roukema (2012) created an algorithm
that used approximate tetrahedral shapes to measure
peripheral length.
With ε more work, this can be promoted to a rigorous
computation.
This was used to verify 429 of the outstanding 439 closed
manifolds have hyperbolic structures.
And is currently being used to identify,



Currently rigorously Snappy

• Fundamental group presentation, homology, etc.
• M.is_isometric_to(N) returns TRUE only if a simplicial

map is found.



Further work

• Incorporate into Snappy
• Use these methods to verify topological invariants like:

volume, tilt parameter, length spectrum.



Thank you!


