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Abstract Cyclic reduction is an algorithm invented by G. H. Golub and R. W. Hock-

ney in the mid 1960s for solving linear systems related to the finite differences dis-

cretization of the Poisson equation over a rectangle. Among the algorithms of Gene

Golub, it is one of the most versatile and powerful ever created. Recently, it has been

applied to solve different problems from different applicative areas. In this paper we

survey the main features of cyclic reduction, relate it to properties of analytic func-

tions, recall its extension to solving more general finite and infinite linear systems, and

different kinds of nonlinear matrix equations, including algebraic Riccati equations,

with applications to Markov chains, queueing models and transport theory. Some new

results concerning the convergence properties of cyclic reduction and its applicability

are proved under very weak assumptions. New formulae for overcoming breakdown are

provided.

Keywords Cyclic reduction · Toeplitz systems · Hessenberg systems · Markov chains ·
Matrix equations

1 Introduction

In the mid 1960s, G. H. Golub and R. W. Hockney designed an efficient algorithm

for solving a block tridiagonal linear system of the kind Tu = b originated from the

discretization of the Poisson equation over a rectangle. In this system, T is an n × n

block tridiagonal matrix withm×m blocks, the blocks are constant along the diagonals,

i.e., the matrix is block Toeplitz, the diagonal blocks are tridiagonal Toeplitz matrices

having diagonal entries (−1, 4,−1) and the remaining nonzero blocks coincide with the

identity matrix.
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The algorithm appeared the first time in 1965 in the paper by Hockney [58] where

the author writes “These equations form a tridiagonal system with periodic boundary

conditions and a particularly efficient method of solution has been devised in collabora-

tion with Dr. G. Golub. This involves the recursive application of the process of cyclic

reduction which follows.” The algorithm, called Cyclic Reduction (CR), was described

and analyzed with more details some years later in the papers by Buzbee, Golub and

Nielson [35], and by Buneman [34], who provided a more stable version. Since then

it received much attention for its very nice computational features and had a great

development.

In particular, the algorithm is nicely described in terms of Schur complements in the

paper by Gander and Golub [43] where a historical survey is also given. The underlying

idea on which CR is based is to re-order the block rows and columns of the matrix T

by means of an odd-even permutation and to eliminate the odd indexed unknowns by

means of a Schur complementation. The nice feature is that the new system of half

the size obtained in this way has the same block tridiagonal block Toeplitz structure

as the original system so that the same procedure can be cyclically repeated until one

arrives at a single m×m system.

A surprising feature which makes CR very versatile is that it can be viewed both as a

direct method for solving a linear system and as an iterative technique which makes it a

reliable approximate solver. In fact, under suitable conditions, some matrices computed

by CR have the property to converge quadratically to zero.

The wide literature generated in the 1970’s and 1980’s provides a lot of variations,

improvements and extensions. Here we recall some of the most important contributions

without pretending to provide a complete list of references. Many contributions have

been given by Swarztrauber [87], [88], [89], [90], and by Sweet [93], [94], with imple-

mentation [91] and analysis in the parallel model of computation [92], [95]. It is worth

citing also the work of Diamond and Ferreira [37], Heller [54], and Reichel [78], the

analysis of CR implemented with an interval arithmetic by Schwandt [84], [85], the

comparisons of Temperton [96], [97], the use of CR as preconditioner by Rodrigue and

Wolitzer [79], and the analysis of Rosmond and Faulkner [81].

The interest for the implementation of CR on parallel architectures, present in the

works of Hockney and Jesshope [59], and Gallopoulos and Saad [41], [42], has had a

great expansion in the 1990’s with the contributions of many authors among whom

Amodio, Briggs, Brugnano, Ho, Johnsson, Mastronardi, Politi, Rossi, Toivanen and

Turnbull [1], [2], [3], [33], [57], [83].

Convergence properties initially investigated by Hockney [58] and proved by Heller

[54], have been further analyzed by Bondeli and Gander [32], and by Yalamov and

Pavlov [100]. Numerical stability of CR has been analyzed by Amodio and Mazzia [4]

and by Yalamov and Pavlov [75], [100], [101]. Extensions and applications to other

problems can be found in the papers [5], [7], [31], [38], [82], [83], and [86], by Amodio,

Bialecki, Boisvert, Dodson, Levin, Paprzycki, Rossi, Sun, and Toivanen.

It is not surprising that CR has been rediscovered several times. In the framework

of stochastic processes, Ye and Li in [102], [103] have provided a version of CR called

folding algorithm for the solution of certain block tridiagonal finite systems whose

solution is the probability invariant vector of a Markov chain. In the same framework

Latouche and Ramaswami [65] have designed the Logarithmic Reduction algorithm for

solving certain quadratic matrix equations related to Quasi–Birth-Death processes [66]

which relies on the same idea of CR.
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A substantial advance in the understanding of CR has been given in the 1990s

in a series of papers by Bini and Meini [8], [19], [20], [64] with the contributions of

Gemignani [10], [11], [12], [13], Latouche [17], [18], Ramaswami [26], [27] and Spitkovsky

[28]. The fundamental idea in these papers is that CR can be described in functional

form by means of a sequence of analytic functions, and its convergence properties can

be easily deduced from standard results concerning the theory of analytic functions

of complex variable. In fact, it is proved that CR is the matrix counterpart of the

Graeffe-Lobachevski-Dandelin iteration [73], [74] extended to matrix polynomials and

to suitable matrix power series. For a polynomial p(x), this iteration generates the

sequence {pk(x)}k where pk+1(x
2) = pk(x)pk(−x) and p0(x) = p(x), so that the roots

of pk+1(x) are the square of the roots of pk(x).

The analysis of CR performed in terms of analytic functions was originated by

the study of Markov chains of M/G/1 and G/M/1-type which model a large part of

queueing problems from engineering and telecommunications [66], [71], [72].

This advance enabled the authors to extend and generalize CR to wider classes of

problems like finite and infinite linear systems with the block Hessenberg structure [8],

[19], [20], and banded Toeplitz linear systems [21].

By relying on this new functional formulation, some nonlinear problems of appar-

ently different nature were solved through the application of CR starting from the mid

90’s. Here, the main idea was to linearize the problems by transforming them into spe-

cial infinite linear systems to be solved by means of CR [70]. To this regard it is worth

citing the results of Bini, Böttcher, Fiorentino, Gemignani, Meini and Spitkovsky [9],

[10], [11], [12], [28] on the factorization of (matrix) polynomials and (matrix) power

series, and the application of CR to the solution of quadratic matrix equations and

nonlinear matrix equations defined by a matrix power series developed by Bini, La-

touche, Meini, Ramaswami in [8], [18], [20], [26]. The role of CR in solving infinite

systems and matrix equations encountered in queueing models is pointed out in the

book [18].

More recently, CR has been applied by Guo, Higham, Lancaster and Tisseur in

[49], [51], for solving the quadratic hyperbolic eigenvalue problem, and by Bini, Guo,

Higham, Iannazzo, Latouche, Meini, Ramaswami [15], [16], [24], [47], [48], [50], [77] for

solving algebraic Riccati equations.

Concerning applications, CR has become the method of choice in the solution

of queuing problems from engineering and telecommunications where some effective

implementations in Matlab and Fortran 95 have been designed by Bini, Meini, Steffé

and Van Houdt [29],[30] and are publically available.

Acceleration techniques, introduced by He, Meini and Rhee [53] and generalized

and used in [13], [18], [46], [50], allow one to speed-up the convergence of CR and to keep

the quadratic convergence even in the critical cases, like in the null recurrent stochastic

processes, where the customary methods have linear or even sublinear convergence as

shown by Guo in [45].

Nowadays, CR has become a powerful and versatile algorithm currently used for

the efficient solution of diverse linear and nonlinear problems from different areas and

applications. From the theoretical point of view, CR is a rich and variegated concept

where tools from linear algebra, like the Schur complement, tools from complex analysis

like the Cauchy integral theorem and the properties of analytic functions, tools from

operator theory like the Wiener-Hopf factorization, and tools from polynomial compu-

tations like the Graeffe iteration, play important roles. The combination of these tools



4

generate a synergetic action which enables one to prove rich and unexpected properties

of CR.

In this paper we wish to illustrate this important idea of Gene Golub in all its

theoretical and algorithmic facets by pointing out its richness and its relationships

with the different areas of Mathematics. Indeed, since the subjects involved are so

many, we cannot provide the detailed description of all the topics related to cyclic

reduction, but we give pointers to the current literature where the reader can find

more insights, details, and technical information.

Besides an overview on classical and modern cyclic reduction we present some

new advances which concern convergence properties and breakdown conditions. More

specifically, in Sections 3.2 and 4.2 we prove new convergence theorems for CR where

the assumptions needed to prove convergence are much weakened with respect to the

existing literature.

Concerning the cases of breakdown, we provide in Section 3.3 new different formulae

for performing the CR step which avoid the matrix inversion in the case of singularity

and ill conditioning. These formulae express the iteration in terms of the block entries

in the four corners of the inverse of a suitable block tridiagonal (nonsingular) matrix.

These new equations enable one to numerically optimize the implementation of CR by

constructing a subsequence of the matrix sequence generated by CR which avoid the

inversion of ill-conditioned matrices. An example is also given where it is shown that

singularity and therefore breakdown, can be encountered at any step of CR and if the

singularity is moved “to the infinity” then the conditions of convergence of CR do not

hold anymore.

The paper is organized as follows. In Section 2 we recall the original formulation

presented in [35] by Buzbee, Golub, Nielson and in [58] by Hockney for solving the

Poisson equation over a rectangle, and the formulation given in [43] by Gander and

Golub in terms of Schur complements. In Section 2.3 we discuss some computational

issues of CR together with the roles of the even-odd and the odd-even permutations.

The classical convergence properties are recalled in Section 2.4.

Section 3 is devoted to the description of more recent properties of CR including

its functional formulation and its relationship with Graeffe iteration (Section 3.1). In

particular, in Sections 3.2, 4.2 we revisit convergence properties and give new results

which hold under very weak assumptions. In Section 3.3 we prove the new formulae

for performing the CR step by avoiding breakdown.

Extention of CR to block Hessenberg block Toeplitz matrices is reported in Section

4 both for finite and for infinite systems, together with the evaluation/interpolation

technique for implementing CR. Convergence properties for this case are proved in

Section 4.2.

Section 5 concerns applications of CR. Block banded Toeplitz systems, quadratic

matrix equations, polynomial and power series matrix equations, matrix square root

and algebraic Riccati equations are the main subjects of this section. Section 5.7 de-

scribes an effective technique which provides a substantial acceleration of CR which is

fundamental in critical cases encountered in the applications.

The paper is closed by Section 6 with conclusions.
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1.1 Notation

Throughout the paper we denote by Tridn(B,A,C), the block tridiagonal block Toeplitz

matrix with block size n having A on the main diagonal, B on the subdiagonal and C

on the superdiagonal, where A,B,C are m×m matrices, that is,

Tridn(B,A,C) =

2666664
A C 0

B A
. . .

. . .
. . . C

0 B A

3777775 .

If the size is not specified, we denote the latter matrix by Trid(B,A,C). We denote by

A(r,R) = {z ∈ C : r < |z| < R} the open annulus made up by the complex numbers

having modulus between r and R where 0 ≤ r < R. The cost of an algorithm is defined

as the number of arithmetic operations sufficient to carry out the algorithm.

2 Original formulation of CR

In this section we present the original formulation of CR in the context of solving the

discrete Poisson equation over a rectangle, together with its formulation in terms of

Schur complements and its main computational features.

2.1 CR and the Poisson equation

We report the algorithm of cyclic reduction as described by Buzbee, Golub and Nielson

in [35] and by Hockney in [58] for solving the Poisson equation over a rectangle Ω ⊂ R2

∂2u(x, y)

∂x2
+
∂2u(x, y)

∂x2
= f(x, y), (x, y) ∈ Ω

u(x, y) = g(x, y), (x, y) ∈ ∂Ω
(1)

where u(x, y) is the unknown real valued function defined on Ω, f(x, y) is a given func-

tion defined on Ω and g(x, y) is a given real valued function defined on the boundary

∂Ω of Ω.

The finite-differences discretization of (1) where Ω is discretized by means of a grid

of m × n interior equispaced points, leads to an n × n block tridiagonal system with

m×m blocks

Tridn(−I, A,−I)

26664
u1

u2

...

un

37775 =

26664
b1

b2

...

bn

37775 , A = Tridm(−1, 4,−1), (2)

where ui, bi ∈ Rm, I is the m×m identity matrix.
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Assume n = 2q − 1, for q positive integer, and consider three consecutive block

equations for 1 < j < n, where we assume u0 = u2q = 0, and j even:

−uj−2 +Auj−1 − uj = bj−1

− uj−1 +Auj − uj+1 = bj

− uj +Auj+1 − uj+2 = bj+1

(3)

for j = 2, 4, 6 . . . , 2q − 2. Multiplying the second equation by A and summing up the

three equations yields the system involving the even numbered unknowns:

−uj−2 +A(1)uj − uj+2 = b
(1)
j/2

b
(1)
j/2

= bj−1 +Abj + bj+1

(4)

where j = 2, 4, 6, . . . , 2q − 2 and A(1) = A2 − 2I. Once the even numbered unknowns

have been computed, the remaining unknowns can be obtained from the original system

(2) by solving 2q−1 systems with the same matrix A, i.e.,

Au2j−1 = b2j−1 + u2j−2 + u2j , j = 1, 2, . . . , 2q−1. (5)

Since the system (4) has the same structure as (2), the same process can be cycli-

cally repeated until a single m×m system is obtained. The solution of the latter system

and back substitution, by means of (5), complete the procedure.

More specifically, CR generates a matrix sequence and a vector sequence defined

by

A(k) = (A(k−1))2 − 2I, A(0) = A,

b
(k)
j = b

(k−1)
2j−1 +A(k−1)b

(k−1)
2j + b

(k−1)
2j+1 , j = 1, . . . , 2q−k − 1

(6)

for k = 1, . . . , q − 1, with A(0) = A, b
(0)
i = bi, i = 1, . . . , n.

In the back substitution stage, 2q−k−1 systems with matrices A(k) must be solved

for k = 0, 1, . . . , q − 1, i.e.,

A(k)u(2i−1)2k = b
(k)
2i−1 + u(i−1)2k+1 + ui2k+1 , i = 1, 2, . . . , 2q−k−1. (7)

Due to the recurrence relation (6), the block A(k) can be expressed in terms of

a Chebyshev polynomial P2k (x), of the first kind, of degree 2k as A(k) = P2k (A).

This property holds since Chebyshev polynomials of the first kind [44] satisfy the same

formal equation P2k (x) = P2k−1(x)2 − 2, P1(x) = x, as the matrices A(k) in (6).

In this way, denoting by θ
(2k)
i , i = 1, . . . , 2k, the zeros of the Chebyshev polynomial

P2k (x) so that P2k (x) =
Q2k

i=1(x−θ
(2k)
i ), one can write A(k) as the product of 2k tridi-

agonal matrices A(k) =
Q2k

i=1(A− θ
(2k)
i I). Therefore, each one of the 2q−k−1 systems

in (7) is reduced to solving 2k tridiagonal systems of size m, for the cost of O(m2q−1).

Thus, the cost of back substitution is just O(nm log2 n) which asymptotically coincides

with the overall computational cost of CR.

In this formulation, CR suffers of numerical instability encountered in the compu-

tation of the right-hand side b
(k)
j . This drawback was overcome by Buneman [34] who

provided a stable version for updating the right-hand side at each recursive step of CR.
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2.2 Formulation in terms of Schur complements

Gander and Golub [43] have provided a nice formulation of CR given in terms of Schur

complements. This formulation slightly differs from the original one given in [58] in the

way the elimination of the odd numbered components is performed, moreover it can

be applied to the more general block tridiagonal block Toeplitz matrix Trid(B,A,C).

Assume n = 2q − 1 and consider the more general system2666664
A C 0

B A
. . .

. . .
. . . C

0 B A

3777775
26664

u1

u2

...

un

37775 =

26664
b1

b2

...

bn

37775 (8)

for A,B,C ∈ Rm×m. Apply an odd-even permutation to both block-columns and

block-rows in (8) and get

26666666666664

A 0

. . .

. . .

0 A

C 0

B
. . .

. . . C

0 B

B C 0

. . .
. . .

0 B C

A 0

. . .

0 A

37777777777775

266666666666664

u1

u3

...

u2·2q−1−1

u2

u4

...

u2·2q−1−2

377777777777775
=

266666666666664

b1

b3

...

b2·2q−1−1

b2

b4

...

b2·2q−1−2

377777777777775
.

Now, rewrite the above system as»
H11 H12

H21 H22

– »
uodd

ueven

–
=

»
bodd

beven

–
,

assume A nonsingular, eliminate the odd block components by means of block Gaussian

elimination, i.e., compute the Schur complement of H1,1 and obtain the smaller system

of block size 2q−1 − 1:

(H22 −H21H
−1
11 H12)ueven = b(1), b(1) = beven −H21H

−1
11 bodd.

Magically, the Schur complement has the same structure as the original matrix and

the above system takes the form2666664
A(1) C(1) 0

B(1) A(1) . . .

. . .
. . . C(1)

0 B(1) A(1)

3777775
26664

u2

u4

...

u2q−2

37775 =

2666664
b
(1)
1

b
(1)
2
...

b
(1)
2q−1−1

3777775 ,

where

b
(1)
i = b2i −BA−1b2i−1 − CA−1b2i+1, i = 1, . . . , 2q−1 − 1
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and
A(1) = A−BA−1C − CA−1B

B(1) = −BA−1B

C(1) = −CA−1C

(9)

while for the odd indexed block components one has

Au2i−1 = b2i−1 −Bu2i−2 − Cu2i+2, i = 1, 2, . . . , 2q−1,

where we set u0 = un+1 = 0.

This process, can be cyclically repeated and generates the sequence of systems of

block size 2q−k − 1:2666664
A(k) C(k) 0

B(k) A(k) . . .

. . .
. . . C(k)

0 B(k) A(k)

3777775
26664

u1·2k

u2·2k

...

u(2q−k−1)·2k

37775 =

2666664
b
(k)
1

b
(k)
2
...

b
(k)
2q−k−1

3777775 , (10)

for k = 0, 1, . . . , q − 1. The matrices A(k), B(k), C(k), and the vectors b
(k)
i are defined

by means of the following recursions

b
(k+1)
i = b

(k)
2i −B(k)(A(k))−1b

(k)
2i−1 − C(k)(A(k))−1b

(k)
2i+1, i = 1, . . . , 2q−k − 1

A(k+1) = A(k) −B(k)(A(k))−1C(k) − C(k)(A(k))−1B(k)

B(k+1) = −B(k)(A(k))−1B(k)

C(k+1) = −C(k)(A(k))−1C(k)

(11)

for k = 0, 1, . . . , q − 2, and A(0) = A, B(0) = B, C(0) = C, provided that detA(k) 6= 0

for any k.

At the end of the process one gets the m×m system A(q−1)u2q−1 = b
(q−1)
1 , from

which one recovers u2q−1 . Back substitution, performed by solving the systems

A(k)u(2i−1)2k = b
(k)
2i−1 −B(k)u(2i−2)2k − C(k)u(2i)2k ,

for i = 1, 2, . . . , 2q−k−1, k = q − 2, . . . , 0, starting with u2q−1 allows one to compute

the remaining unknowns.

Observe that, this version of CR is slightly different from that of Section 2.1. In fact,

here the elimination stage is performed by means of Schur complementation, while in

Section 2.1, since B = C = −I, the elimination is performed by computing the matrix

H2
22 −H21H12 in place of the Schur complement.

The applicability of CR depends on the nonsingularity of the blocks A(k), that is

on the nonsingularity of suitable leading principal submatrices of Trid(B,A,C). If k0
is the first integer for which detA(k0) = 0, then the matrix sequences A(k), B(k), C(k)

generated by CR are not computable for k > k0 by means of (11). We refer to this

situation as a breakdown of CR.

Breakdown of CR will be discussed in more detail in Section 3.3. Here we point

out that breakdown is not encountered if, say, Trid(B,A,C) is strongly diagonally

dominant or irreducibly diagonal dominant, like the matrix of (2), or Hermitian and

positive definite, or a nonsingular M-matrix or an irreducible singular M-matrix.
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2.3 Some computational issues

In [93], [94] Sweet extended CR to systems of any size n. The same author in [95]

provided a version of CR for the Poisson equation where the intrinsic sequential nature

of the back substitution stage based on the successive solution of the systems with

matrices (A− θ
(2k)
i I) is completely removed. The idea is nice and elegant: the system

A(k)u = b is rewritten as u = (P2k (A))−1b, and the rational function P2k (x)−1 is

expressed by means of its partial fraction expansion as
P2k

i=1 ci/(x − di) for suitable

constants ci and di. In this way one has u =
P2k

i=2 ci(A − diI)
−1b. This amounts to

solving 2k systems in parallel and to summing up their solutions with weights ci. A

different approach is followed by Swarztrauber in [90] where the function P2k (x)−1 is

approximated as a short sum of terms of the kind ci/(x− di).

Observe also that, by applying (3) with j odd and performing a similar linear

combinations of the three equations yields

(A2 − I)u1 − u3 = Ab1 + b2

−uj−2 +A(1)uj − uj+2 = c
(1)
(j+1)/2

c
(1)
(j+1)/2

= bj−1 +Abj + bj+1

(12)

with j = 3, 5, . . . , 2q−1. This enables one to arrive at the two disjoint block tridiagonal

systems (4) and (12) involving separately the odd and the even numbered unknowns.

These two systems are independent of each other and can be solved in parallel. This

observation provides an effective parallel version of CR in the divide-and-conquer style

[43]. This property holds also for the version based on Schur complements. Analysis

of CR in parallel models of computation have been carried out by several authors

including Amodio, Briggs, Brugnano, Gallopoulos, Ho, Hockney, Jesshope, Johnsson,

Mastronardi, Politi, Rossi, Saad, Swarztrauber, Sweet, Toivanen and Turnbull [1], [2],

[3], [33], [41], [42], [57], [59], [83], [92], [95].

In the case of the system (2) discretizing the Poisson equation, the costO(mn log2 n)

can be reduced to O(mn log2 log2 n) if the recursion is halted at step k when the size

of the system is O(n/ log2 n) and the smaller system is solved by means of the fast sine

transform. This variant of CR, known as FACR (Fourier Analysis and Cyclic Reduc-

tion), has been designed by Heller in [54]. Effective implementations of CR for elliptic

equations are given in [91] by Swarztrauber and Sweet.

For general (dense) matrices A,B,C, the computation of A(k), B(k), C(k) costs

O(m3 log2 n), while back substitution costs O(nm2). If the blocks A,B,C belong to

some matrix algebra (say, circulant, Hartley, triangular) then the blocks generated by

CR belong to the same algebra as well. This property can be exploited for reducing

the computational cost of the method. Other structures like that of band or Toeplitz

matrices are not generally preserved by CR. Therefore the cost of the algorithm is the

same as that of general dense blocks. Displacement [64] or quasi-separable structures

[98], even though not preserved in general, are numerically maintained under certain

assumptions on the numerical values of the blocks [22].
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It is interesting to point out that for n even, one step of CR applied to Tridn(B,A,C)

provides the (n/2)× (n/2) block matrix26666664
A(1) C(1) 0

B(1) A(1) C(1)

. . .
. . .

. . .

B(1) A(1) C(1)

0 B(1) eA(1)

37777775
where the blocks A(1), B(1) and C(1) are defined by (9) while eA(1) = A−BA−1C.

If one replaces the odd-even permutation by the even-odd permutation, then also

the first diagonal block of the block tridiagonal matrix obtained after one step of CR

is different from A(1) and is given by bA(1) = A− CA−1B.

More generally, applying one step of CR to the nk × nk block matrix

T (k) =

26666664

bA(k) C(k) 0

B(k) A(k) C(k)

. . .
. . .

. . .

B(k) A(k) C(k)

0 B(k) eA(k)

37777775
yields the matrix T (k+1) where the blocks A(k+1), B(k+1) and C(k+1) are defined as

in (11), whereas the blocks bA(k+1) and eA(k+1) are defined differently according to the

parity of nk and according to the use of the even-odd or odd-even permutation. More

precisely, one has

bA(k+1) =

(
A(k) − C(k)(A(k))−1B(k) −B(k)( bA(k))−1C(k) odd-even permutationbA(k) − C(k)(A(k))−1B(k) even-odd permutation

eA(k+1) =

(
A(k) − C(k)( eA(k))−1B(k) −B(k)(A(k))−1C(k) case a)eA(k) −B(k)(A(k))−1C(k) case b)

where in the case a) nk is odd and the permutation is odd-even, or nk is even and the

permutation is even-odd; in the case b) nk is odd and the permutation is even-odd, or

nk is even and the permutation is odd-even.

CR can be used in the more general case of block tridiagonal systems with noncon-

stant blocks along the diagonals, i.e.,2666664
A1 C1 0

B1 A2
. . .

. . .
. . . Cn−1

0 Bn−1 An

3777775
26664

u1

u2

...

un

37775 =

26664
b1

b2

...

bn

37775 .

In this case, the cost of the kth CR step is O(m3n/2k) so that the overall cost is

O(m3n). For banded non constant blocks, the banded structure is not preserved. It is

an open issue to analyze under which conditions (say diagonal dominance) the quasi-

separable structure of the blocks is numerically preserved. In this case the cost of CR

could be strongly reduced.

Numerical stability results are given by Amodio and Mazzia in [4] and by Yalamov

and Pavlov in [75], [100], [101].
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2.4 Convergence properties

It was observed by Hockney [58] that often the infinite sequences {B(k)}k and {C(k)}k

generated by (11) converge to zero quadratically. It was proved by Heller [54] that

under diagonal dominance of Trid(B,A,C) the matrices B(k) and C(k) converge to zero

quadratically. Yalamov and Pavlov [100] have proved a similar convergence property

under certain conditions on the blocks. These properties hold also for block tridiagonal

matrices with nonconstant blocks.

Convergence to zero of the off-diagonal blocks B(k) and C(k) of (10) enables one

to design an incomplete version of CR [43] where the iteration step is halted when a

numerical block diagonal matrix is encountered. The same technique is fundamental

in solving infinite systems [19] as we will see in Section 3.4.

3 A modern analysis of CR

This section is devoted to the description of some properties of CR which were found

at the end of the 1990’s in a series of papers by Bini and Meini motivated by the

solution of structured Markov chains encountered in queueing models [66], [71], [72].

For a detailed analysis of these properties in the context of Markov chains and for the

related references we refer the reader to the book by Bini, Latouche and Meini [18].

For the relations of CR with structured matrices and the Graeffe iteration we refer to

the papers [12] and [13] by Bini, Gemignani and Meini. Here we formulate and prove

such properties in a more general context not necessarily related to Markov processes.

In this section we also report some new results concerning the convergence and the

applicability of CR, and some new formulae for its implementation which allow one

to better manage breakdown due to singularity or ill-conditioning of some matrices

encountered in the computation.

3.1 Functional interpretation

We consider the CR algorithm as defined in Section 2.2, applied to the block tridiagonal

matrix Trid(B,A,C). The algorithm generates three matrix sequences A(k), B(k) and

C(k), according to (11). Here, for simplicity, we assume that these sequences are defined

for any k ≥ 0.

Associate with the triple (B,A,C) the quadratic matrix polynomial

ϕ(z) = B + zA+ z2C.

Observe that detϕ(z) is a polynomial of degree at most 2m. If C is nonsingular, the

degree of detϕ(z) is exactly 2m, if C has rank ` then the degree is m+ `. We denote

by ξi, i = 1, . . . , 2m the roots of detϕ(z) ordered so that

|ξ1| ≤ |ξ2| ≤ . . . ≤ |ξ2m|,

where, for notational simplicity, we assume that m− ` roots are at the infinity if C has

rank ` < m.
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Similarly, at the generic kth step of CR we associate with the triple (B(k), A(k), C(k))

the quadratic matrix polynomial

ϕ(k)(z) = B(k) + zA(k) + z2C(k), k ≥ 0. (13)

Then it is immediate to see by direct inspection that equation (11) can be equiva-

lently written in functional form as

ϕ(k+1)(z2) = −ϕ(k)(z)(A(k))−1ϕ(k)(−z), k ≥ 0. (14)

This enable us to describe CR in terms of a sequence of matrix polynomials defined by

means of a functional iteration.

It is a nice surprise to discover that the latter equation is nothing else but the

natural extension to matrix polynomials of the Graeffe-Dandelin-Lobachevsky root-

squaring iteration [73], [74] which, for a general scalar polynomial p(z) of degree h, is

simply defined by

pk+1(z
2) = pk(z)pk(−z), k ≥ 0, p0(z) = p(z).

This iteration generates the sequence {pk(z)}k of polynomials of degree h such that

the roots of pk+1(z) are the square of the roots of pk(z).

Taking determinants on both sides of (14), one finds that this property holds for

the polynomials detϕ(k)(z) as well. That is, the roots of detϕ(k+1)(z) are the square of

the roots of detϕ(k)(z). Therefore, detϕ(k)(z) has roots ξ2
k

i , i = 1, . . . , 2m. Moreover,

if detϕ(0)(z) has a balanced splitting of the roots with respect to the unit circle

|ξ1| ≤ . . . ≤ |ξm| < 1 < |ξm+1| ≤ . . . ≤ |ξ2m|, (15)

i.e., m roots have modulus less than 1 and m roots have modulus greater than 1, then

detϕ(k)(z) has m roots which converge to zero and m roots which converge to infinity

for k → ∞. Intuitively, the matrix polynomial ϕ(k)(z) should converge to a matrix

polynomial of the kind zA∗ with detA∗ 6= 0, which has m roots at zero and m roots

at infinity. Consequently, the blocks B(k) and C(k) should converge to zero. This can

be formally proved and we provide this proof in the next section.

A simpler functional formulation of CR can be given in terms of the inverses of

the matrix functions ϕ(k)(z). To this end, we introduce the matrix Laurent polynomial

z−1ϕ(z) = z−1B +A+ zC and

ψ(0)(z) = (z−1ϕ(z))−1 = (z−1B +A+ zC)−1, (16)

where the latter matrix function is defined and invertible for all z 6= ξi, i = 1, . . . , 2m,

z 6= 0. In particular, if |ξi| 6= 1, for i = 1, . . . , 2m, then there exist r,R such that

r < 1 < R and ψ(0)(z) is analytic and invertible in the annulus A = A(r,R). A

possible choice for r and R is the largest modulus root |ξi| inside the unit disk and the

smallest modulus root |ξi| outside the unit disk, respectively.

Since the matrix function ψ(0)(z) is analytic in A, it can be represented by means

of the Laurent matrix power series

ψ(0)(z) =

+∞X
i=−∞

ziHi (17)
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where Hi are suitable m×m matrices such that
P+∞

i=−∞ ||Hi|| is finite for some norm

|| · ||. In fact, for the Cauchy integral theorem [55, Theorem 4.4c] any analytic function

over the annulus A has coefficients which decay to zero exponentially, so that, for any

matrix norm and for any ε > 0 one has

||Hi|| ≤ θ(r + ε)i for i > 0,

||Hi|| ≤ θ(R− ε)i for i < 0,
(18)

where θ is a suitable constant.

Consider the sequence {ψ(k)(z)} recursively formed by the even part of ψ(0)(z) as

ψ(k+1)(z2) =
1

2
(ψ(k)(z) + ψ(k)(−z)). (19)

Observe that

ψ(k)(z) =

+∞X
i=−∞

ziHi·2k . (20)

Indeed, the function ψ(k)(z) is defined onA, but we can easily prove that the analyticity

domain is much wider. We have the following

Theorem 1 The matrix function ψ(k)(z) is analytic in the annulus

Ak = A(r2
k

, R2k

). (21)

Moreover, if detH0 6= 0, there exists k0 > 0 such that for any k ≥ k0 the matrix

function ψ(k)(z) is nonsingular in A and the sequence z−1ϕ(k)(z) converges to H−1
0

uniformly over all the compact sets K ⊂ A.

Proof Since ψ(z) is analytic in A(r,R), its block coefficients Hi satisfy (18). Therefore,

||Hi·2k || ≤ θ(r+ ε)2
k·i for i > 0, and ||Hi·2k || ≤ θ(R− ε)i·2

k

for i < 0. Whence, since ε

is arbitrary, one deduces that ψ(k)(z) is analytic in Ak. Let K be a compact set in A.

Then

sup
z∈K

|ψ(k)(z)−H0| = sup
z∈K

|
X
i 6=0

zi·2k

Hi·2k |.

Since z ∈ K ⊂ A, then there exists δ > 0 such that r + δ < |z| < R− δ so that

sup
z∈K

|ψ(k)(z)−H0| ≤
X
i>0

(R− δ)i·2
k

· |Hi·2k |+
X
i<0

(r + δ)i·2
k

· |Hi·2k |.

By choosing ε < δ in (18) one obtains that supz∈K |ψ(k)(z) − H0| converges to zero,

i.e., the sequence ψ(k)(z) uniformly converges to H0 over K. In particular, for the

continuity of the function determinant there exists k0 > 0 such that detψ(k)(z) 6= 0

for any z ∈ A and k ≥ k0. ut

Notice that we can rewrite (14) as

ϕ(k+1)(z2) =− ϕ(k)(z)

 
ϕ(k)(z)− ϕ(k)(−z)

2z

!−1

ϕ(k)(−z)

=

 
ϕ(k)(z)−1 − ϕ(k)(−z)−1

2z

!−1

.

(22)

This equation is the basis to prove the following
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Theorem 2 Let the matrix polynomial ϕ(z) be nonsingular for z ∈ A(r,R) for r <

1 < R. If detA(i) 6= 0, i = 0, 1, . . . , k−1, then ϕ(i)(z) is well defined by (13) and (14),

for i = 0, 1, . . . , k, detϕ(i)(z) 6= 0 for z ∈ Ai, i = 1, . . . , k, and it holds

ϕ(i)(z)−1 = z−1(ψ(i)(z)), i = 0, . . . , k, (23)

and detψ(i)(z) 6= 0 for z ∈ Ai, i = 0, . . . , k. Moreover, if ψ(i)(z), defined by (19), and

(14), is nonsingular for z ∈ Ai, for i = 1, . . . , k, then ϕ(i)(z), defined by (13), (14),

exists for i = 1, . . . , k and it holds ϕ(i)(z) = z(ψ(i)(z))−1, for i = 1, . . . , k.

Proof Since detA(i) 6= 0, i = 0, . . . , k−1, then ϕ(i)(z) is well defined, for i = 1, . . . , k, in

view of (14). Moreover, from (14) the roots of detϕ(i)(z) are the 2i powers of the roots

of detϕ(z), so that ϕ(i)(z) is nonsingular in Ai, and (23) follows from (22) by using

an induction argument on k. Concerning the second part, we proceed by induction on

k. Assume k = 1. Under the hypothesis of the theorem, since ϕ(z) is nonsingular in A,

then ψ(0)(z) = zϕ(z)−1 is nonsingular in A, and therefore from (19) one has

ψ(1)(z2) =
1

2
ψ(0)(z)

“
ψ(0)(z)−1 + ψ(0)(−z)−1

”
ψ(0)(−z). (24)

Since detψ(1)(z) 6= 0 for z ∈ A1, in view of (16), the above equation implies that A(0)

is nonsingular so that ϕ(1)(z) is well defined. Inverting both sides of (24) one finds that

ψ(1)(z2)−1 = −(1/z2)ϕ(0)(z)(A(0))−1ϕ(0)(−z).

Therefore, ϕ(1)(z) = z(ψ(1)(z))−1. By using the same arguments, the proof can com-

pleted by induction on k, relying on the equation

ψ(i+1)(z2) = (1/2)ψ(i)(z)
“
ψ(i)(z)−1 + ψ(i)(−z)−1

”
ψ(i)(−z),

which is derived from (19). ut

Observe that, in principle, ϕ(k)(z) might not be defined because of the singularity

of some A(h), for h < k whereas the matrix functions ψ(h)(z) are well defined and

analytic over A, for any h. This property enables us to define the matrix polynomials

ϕ(k)(z) independently of ϕ(h)(z), h < k, by means of the matrix functions ψ(k)(z)

which always exist, provided that detψ(k)(z) 6= 0 for z ∈ A.

More details on the issues concerning the applicability of CR will be discussed in

Section 3.3.

3.2 Convergence properties

In the light of the Cauchy integral theorem [55, Theorem 4.4c], the analyticity prop-

erties of the functions ϕ(k)(z) and ψ(k)(z), imply interesting convergence properties of

CR. In particular, from (18) it follows that the Laurent series ψ(k)(z), except for its

constant block, has block coefficients which tend to zero double exponentially with k.

The nonsingularity of H0 is needed to export this convergence property to the func-

tions ϕ(k)(z) = z(ψ(k)(z))−1 = z−1B(k) + A(k) + zC(k). This property is formalized

in the following
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Theorem 3 Let the matrix polynomial ϕ(z) be nonsingular in A = A(r,R) where

r < 1 < R. Assume that H0 of (16), (17) is nonsingular. If CR can be carried out with

no breakdown, then for any ε > 0 and for any matrix norm || · ||, there exists θ > 0

such that

||B(k)|| ≤ θ(r + ε)2
k

, ||C(k)|| ≤ θ/(R− ε)2
k

||A(k) −H−1
0 || ≤ θ

“
r+ε
R−ε

”2k

.

Moreover, the roots of detϕ(z) satisfy the splitting property (15).

Proof Equating the constant terms and the coefficients of z and z−1 in the identity0@ +∞X
i=−∞

ziHi·2k

1A“z−1B(k) +A(k) + zC(k)
”

= I

yields 8>>><>>>:
H0B

(k) +H−2kA(k) +H−2k+1C(k) = 0

H2kB(k) +H0A
(k) +H−2kC(k) = I

H2k+1B(k) +H2kA(k) +H0C
(k) = 0

whence24 I H−1
0 H−2k H−1

0 H−2k+1

H−1
0 H2k I H−1

0 H−2k

H−1
0 H2k+1 H−1

0 H2k I

35
264 B(k)

A(k) −H−1
0

C(k)

375 =

24−H−1
0 H−2kH−1

0
0

−H−1
0 H2kH−1

0

35 .
Since the inverse of the matrix in the above system can be written as24 I 0 0

0 I 0

0 0 I

35+

+∞X
i=1

(−1)i

24 0 H−1
0 H−2k H−1

0 H−2k+1

H−1
0 H2k 0 H−1

0 H−2k

H−1
0 H2k+1 H−1

0 H2k 0

35i

one obtains264 B(k)

A(k) −H−1
0

C(k)

375 .
=

24 −H−1
0 H−2kH−1

0

H−1
0 H−2kH−1

0 H2kH−1
0 +H−1

0 H2kH−1
0 H−2kH−1

0

−H−1
0 H2kH−1

0

35
where

.
= denotes equality up to lower order terms. The above equation together with

(18) implies the convergence properties. Concerning the splitting of the roots of detϕ(z),

since B(k) and C(k) converge to zero and A(k) converges to a nonsingular matrix, and

for the continuity of the roots of polynomials, the polynomial detϕ(k) has m roots

which converge to zero and m roots which converge to the infinity. Since these roots

are the 2k powers of the roots of detϕ(z), then the latter polynomial has m roots of

modulus less than 1 and m roots of modulus greater than 1. ut

The above theorem gives general conditions under which the convergence of CR is

quadratic and the convergence speed is related to the location of the roots of detϕ(z).

The condition detH0 6= 0 and the splitting property (15) are related to the existence

of the solution of two matrix equations with spectral radius less than 1 [18].



16

Theorem 4 If the two matrix equations

B +AX + CX2 = 0

BY 2 +AY + C = 0

have solutions X and Y such that ρ(X) < 1 and ρ(Y ) < 1 then detH0 6= 0, the roots

ξi, i = 1, . . . , 2m of detϕ(z) satisfy (15), moreover ρ(X) = |ξm|, ρ(Y ) = 1/|ξm+1|.

It is interesting to point out that there exist examples where only one of the above

matrix equations has a solution with spectral radius less than 1, and H0 is singular,

see for instance Example 1 in the next Section 3.3.

In [13] it has been proved that under the condition (15) if the solutionX toB+AX+

CX2 = 0 with spectral radius |ξm| exists, then the solution W to W 2B+WA+C = 0

exists with spectral radius 1/|ξm+1|. Similarly, if the solution Y to BY 2 +AY +C = 0

with spectral radius 1/|ξm+1| exists, then the solution Z to B +ZA+Z2C = 0 exists

with spectral radius |ξm|.
The assumptions of the results in this section can be weakened by allowing that

either r = 1 or R = 1. In this case we still have convergence to zero of at least one

of the two sequences B(k) or C(k). If r = R = 1, then the annulus A(r,R) is empty

and convergence is not guaranteed in general. For problems encountered in Markov

chains, where A+B+C is a singular M -matrix, one may encounter the different cases

r = 1 < R, r < R = 1, or r = R = 1. In the latter, known as null recurrent case,

convergence still holds under additional conditions even though it turns to linear [45].

3.3 Applicability

In principle, CR can have a breakdown if some matrix A(k) is singular. If k0 is the first

integer for which detA(k0) = 0, then the matrix sequences A(k), B(k), C(k) generated

by CR are not computable for k > k0 by means of (11).

On the other hand, the sequence ψ(k)(z) of (19) is defined also in the case of

breakdown, moreover, if detψ(k)(z) 6= 0 for some k > k0 and z ∈ A, we may still

define ϕ(k)(z) = zψ(k)(z)−1.

In the case where breakdown is not encountered, the functions ϕ(k)(z) defined in

this way coincide with the functions (13) in view of Theorem 2.

Therefore, with an abuse of notation, in the case of breakdown we keep denoting

by ϕ(k)(z) = zψ(k)(z)−1 even though ϕ(k)(z) cannot defined by means of (11).

Observe also that, if breakdown is not encountered, the matrix functions ϕ(k)(z) are

quadratic matrix polynomials. A continuity argument applied to the triple B, A+ εI,

C, for ε in a neighborhood of 0, enables us to prove that ϕ(k)(z) = zψ(k)(z)−1 are still

quadratic matrix polynomials even in case of breakdown.

The fact that the quadratic matrix polynomials ϕ(k)(z) can be defined for k > k0,

in the case of breakdown at k0, has mainly a theoretical relevance. In order to use

this property computationally it is more convenient to interpret CR in terms of Schur

complements.

Given an n × n matrix H with indices in the set N of cardinality n, partition

N into two disjoint subsets I1, I2 and denote by HIi,Ij
, the submatrix of H with

indices in Ii ×Ij . Assume that detHI1,I1 6= 0 and denote by S(H,N , I1) = HI2,I2 −
HI2,I1H

−1
I1,I1

HI1,I2 the Schur complement in H of HI1,I1 .
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Let us recall the following property of Schur complements known as the quotient

property [36]

Lemma 1 Let H be an n × n matrix with indices in the set N and partition N into

three disjoint sets I1, I2, I3. If detHI1,I1 6= 0 and detHI1∪I2,I1∪I2 6= 0, then the

principal submatrix of S(H,N , I1) with indices in I2 is nonsingular and

S(H,N , I1 ∪ I2) = S(S(H,N , I1), I2 ∪ I3, I2).

By using this lemma we may prove the following

Theorem 5 Assume that the matrices A(k), B(k), and C(k) can be constructed with

no breakdown by means of (11) for k = 1, . . . , q and let Īk be the complement of the

set Ik = {i · 2k, i = 1, . . . , 2q−k − 1} in N = {1, 2, . . . , 2q − 1}. Then the matrix

Trid2q−k−1(B
(k), A(k), C(k)) is the Schur complement in T2q−1 =Trid2q−1(B,A,C)

of the principal submatrix having block indices in Īk.

Proof We proceed by induction on k. For k = 1 the property clearly holds since

Trid2q−1−1(B
(1), A(1), C(1)) is the Schur complement in Trid2q−1(B,A,C) of the prin-

cipal submatrix having block indices in the set of odd integers. Let us consider the

inductive step. By assuming that the property holds for k − 1, one finds that

Trid2q−k+1−1(B
(k−1), A(k−1), C(k−1)) = S(T2q−1,N , Īk−1).

Applying the cyclic reduction step to Trid2q−k+1−1(B
(k−1), A(k−1), C(k−1)), one ob-

tains

Trid2q−k−1(B
(k), A(k), C(k)) = S(Trid2q−k+1−1(B

(k−1), A(k−1), C(k−1)), Ik−1, J̄ ),

where J is the subset of Ik−1 = {i2k−1, i = 1, 2, . . . , 2q−k+1 − 1} obtained with even

values for i. That is, J = Ik. The proof is completed in view of Lemma 1. ut

Observe that, in view of the above theorem, the existence of B(k), A(k), and C(k)

does not require the nonsingularity of the blocks A(h) for h = 1, . . . , k − 1. In fact

it is sufficient that the submatrix of Trid2q−1(B,A,C) with block indices in Īk−1 is

nonsingular. The following result provides a better understanding of this fact.

Theorem 6 The kth step of CR applied to the matrix Trid2q−1(B,A,C), q > k, can

be performed if and only if the matrix T2k−1 = Trid2k−1(B,A,C) is nonsingular.

Proof By Theorem 5, the matrix Trid2q−k−1(B
(k), A(k), C(k)) generated after k steps

of CR is the Schur complement in Trid2q−1(B,A,C) of the principal submatrix having

block indices in the complement of the set {i ·2k, i = 1, . . . , 2q−k−1}. Let us permute

block rows and block columns of Trid2q−1(B,A,C) so that the ones with indices i · 2k

are at the bottom. In this way the matrix that we obtain has the following structure266666666666664

T 0 C 0

T B
. . .

. . .
. . . C

0 T 0 BbB bC 0 A 0

. . .
. . .

. . .

0 bB bC 0 A

377777777777775
(25)
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where T = Trid2k−1(B,A,C), the number of diagonal blocks of the kind T is 2q−2q−k

and the number of diagonal blocks of the kind A is 2q−k − 1. Moreover,

B =

26664
B

0
...

0

37775 , C =

26664
0
...

0

C

37775 , bB =
ˆ
0 . . . 0 B

˜
, bC =

ˆ
C 0 . . . 0

˜
.

Therefore the Schur complement can be computed if and only if detT 6= 0. ut

Observe that, in view of the above theorem, the applicability of CR is guaranteed

if for instance Trid(B,A,C) is strongly diagonally dominant or irreducibly diagonally

dominant, or if it is a non-singular M-matrix or a singular irreducible M-matrix, or sym-

metric and positive definite. There are important applications where these hypotheses

are verified. For instance, in the analysis of Quasi–Birth-Death processes [66] one has

A = I − S, S ≥ 0 B,C ≤ 0 and S − B − C is an irreducible stochastic matrix. Under

the assumption of irreducibility of Trid(B,A,C), the Gerschgorin theorem guarantees

nonsingularity of all its principal submatrices.

The following example shows that breakdown can occur at any arbitrary step of

CR.

Example 1 Let

G =

»
1/2 0

1 1/2

–
, R =

»
1/2 α

0 1/2

–
,

where α is a real parameter, and set ϕ(z) = B + zA+ z2C where

B = −G, A = (I +RG), C = −R.

The polynomial detϕ(z) has zeros {1/2, 1/2, 2, 2}, moreover the matrix function ψ(z) =P+∞
i=−∞ ziHi is such that

H0 =

»
4/3 8α/9

8/9 4/3 + 80α/27

–
.

Applying CR to Trid(B,A,C) generates matrices A(k) such that detA(k) is a linear

polynomial pk(α) in α. Therefore for any k there exists αk such that pk(αk) = 0, i.e.,

A(k) is singular. In particular, α0 = −25/16 and α1 = −7225/11024. Moreover, it

holds limk αk = −9/16. For this value of α one has detH0 = 0.

Observe that, while the solutions with minimal spectral radius to the matrix equa-

tions

−RX2 + (I +RG)X −G = 0, −Y 2G+ Y (I +RG)−R = 0

exist and coincide withG and R, respectively, the solutions to the dual matrix equations

−GX2 + (I +RG)X −R = 0, −Y 2R+ Y (I +RG)−G = 0

exist only if detH0 6= 0 and they are given by

X =
1

18 + 32α

»
9 + 4α 18α

−8α 9 + 28α

–
, Y =

1

18 + 32α

»
9 + 4α −8α2

18 9 + 28α

–
.

In fact, for α = −9/16 even though CR has no breakdown, the conditions for the

convergence of CR given in Theorem 3 are not satisfied since detH0 = 0. It can be

easily verified that in fact CR does not converge in this case, even though the splitting

(15) holds. ut
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Breakdown situations are not a serious drawback of cyclic reduction. In fact, re-

lying on the Schur complement interpretation of Theorem 5 it is possible to compute

the matrix sequences A(k), B(k), C(k) at least for all the values of k for which the

matrix Trid2k−1(B,A,C) is nonsingular. The following two theorems provide explicit

expressions for the computation of the blocks A(k), B(k), C(k). Similar formulas for the

solution of the block tridiagonal system (8) in case of breakdown can be derived in

the same way by relying on the block LU factorization of the matrix (25). Concerning

the latter issue we leave the detail to the reader in order to make the presentation less

technical.

Theorem 7 Let Trid2k−1(B,A,C) be nonsingular and denote by S
(k)
i,j the blocks of

S(k) = Trid2k−1(B,A,C)−1. Then with n = 2k − 1 it holds

A(k) = A−BS
(k)
n,nC − CS

(k)
1,1B,

B(k) = −BS(k)
n,1B,

C(k) = −CS(k)
1,nC.

(26)

Proof In view of (25), computing the Schur complement of the matrix in the upper

leftmost corner provides the blocks A(k), B(k) and C(k). For the structure of (25) one

finds that A(k) = A − bCT−1B + bBT−1C, and B(k) = − bBT−1B, C(k) = −bCT−1C. In

view of the structure of the blocks B, C, bB, bC, the proof is completed. ut

It is interesting to observe that (26) generalizes equation (11), obtained for k = 1

where Trid1(B,A,C) = A. Observe also that this formula is useful to avoid situa-

tions where A(h) is numerically ill conditioned for some h < k. Equation (26) can

be also used to compute in a different way, suitable subsequences of the sequences

generated by the standard CR. In fact, since Trid2q−h−k−1(B
(k+h), A(k+h), C(k+h))

can be viewed as the matrix obtained by applying k steps of CR to the matrix

Trid2q−h−1(B
(h), A(h), C(h)), one has

A(h+k) = A(h) −B(h)S
(h,k)
1,1 C(h) − C(h)S

(h,k)
n,n B(h),

B(h+k) = −B(h)S
(h,k)
1,n B(h),

C(h+k) = −C(h)S
(h,k)
n,1 C(h)

(27)

where S(h,k) = Trid2k−1(B
(h), A(h), C(h))−1 and n = 2k − 1.

By relying on the Sherman-Woodbury-Morrison (SWM) formula, it is possible to

relate the blocks S
(n)
i,j with the blocks S

(2n−1)
i,j .

Theorem 8 Let n = 2k − 1 and assume that Tridn(B,A,C) is nonsingular, moreover

denote by S
(k)
i,j the blocks of S(k) = Tridn(B,A,C)−1. Then the matrix Trid2n+1(B,A,C)

is nonsingular if and only if A−CS(k)
n,nB−BS

(k)
1,1C is nonsingular. Moreover, denoting

by W (n) = (A− CS
(k)
n,nB −BS

(k)
1,1C)−1, it holds

S
(k+1)
1,1 = S

(k)
1,1 − S

(k)
1,nCW

(k)BS
(k)
n,1

S
(k+1)
p,p = S

(k)
n,n − S

(k)
n,1BW

(k)CS
(k)
1,n

S
(k+1)
1,p = −S(k)

1,nCW
(k)CS

(k)
1,n

S
(k+1)
p,1 = −S(k)

n,1BW
(k)BS

(k)
n,1

(28)
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where p = 2k+1 − 1.

Proof It follows by applying the SWM formula to the partitioning

Tridp(B,A,C) =

266666664
Tridn(B,A,C)

0

0

bB I bC
0

0
Tridn(B,A,C)

377777775
+

2666666664

0

C

A− I

B

0

3777777775
ˆ
0 . . . 0 I 0 . . . 0

˜
.

For the sake of brevity we omit the technical details. ut

It is interesting to observe that, by applying the SWM formula to a different par-

titioning where the two diagonal blocks Tridn(B,A,C) are replaced by Tridp(B,A,C)

and Tridq(B,A,C), respectively, one arrives at the more general formula where we set

r = p+ q + 1:

S
(r)
1,1 = S

(p)
1,1 − S

(p)
1,rCW

(p,q)BS
(p)
r,1

S
(r)
r,r = S

(q)
r,r − S

(q)
r,1BW

(p,q)CS
(q)
1,r

S
(r)
1,r = −S(p)

1,rCW
(p,q)CS

(q)
1,r

S
(r)
r,1 = −S(q)

r,1BW
(p,q)BS

(q)
r,1

(29)

forW (p,q) = (A−BS(p)
r,rC−CS

(q)
1,1B)−1, where we assumed Tridp(B,A,C), Tridq(B,A,C)

and Tridr(B,A,C) nonsingular.

Equations (28) and (29) provide a means for differently implementing CR where

for singularity or ill-conditioning of some principal minor it is convenient to skip some

inversion. For instance, assume that the blocks S
(ri)
i,j are available for some given

r1, r2, . . . , rk obtained in the previous steps. We may choose the largest values of ri

and rj , if any, such that the matrix A−BS
(ri)
ri,riC − CS

(rj)
1,1 B is well conditioned, and

then apply (29) with p = ri, q = rj and r = ri + rj + 1.

It is important to point out that in the solution of matrix equations encountered

in queuing models, where some acceleration techniques are applied, the applicability

of CR is not guaranteed and breakdown situations can be encountered. Here, the goal

is not solving the linear system (8) but is rather computing the limit of the sequence

A(k). In these applications, the matrix H0 is nonsingular so that the matrix ψ(k)(z) is

nonsingular for sufficiently large k for z ∈ A. This means that there exists k0 such that

CR has no breakdown for any k ≥ k0. Therefore, under the convergence condition of

Theorem 3, formulae (26), (27), (28) enable one to apply CR even though some block

A(k) is singular.

3.4 Infinite systems

The problem of solving infinite systems of the kind2664
bA C 0

B A C

0
. . .

. . .
. . .

3775
264x1

x2

...

375 =

264 b1

b2

...

375 ,
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where A,B,C and bA are m×m matrices and xi, bi, i ≥ 1, are m-dimensional vectors,

is encountered in several applications. For instance, in a wide variety of stochastic

processes (Quasi-Birth-Death) [66], where A = I − V , V ≥ 0, B ≤ 0, C ≤ 0 and

V − B − C is stochastic, the solution of the above systems provides the invariant

probability (steady-state) vector.

Under the hypotheses of convergence of Theorem 3, CR is a suitable tool for

computing an arbitrary number of components provided that the sequence {xi}i is

uniformly bounded in some norm. This in particular occurs when the solution is a

probability vector with nonnegative components which sum up to 1.

The idea is to apply CR relying on the even/odd permutation rather than on

the odd/even permutation so that at the general kth step the variables xi·2k+1, for

i = 0, 1, . . ., are involved in the system

2664
bA(k) C(k) 0

B(k) A(k) C(k)

0
. . .

. . .
. . .

3775
26664

x1

x2k+1

x2·2k+1
...

37775 =

2664
b
(k)
1

b
(k)
2
...

3775

where A(k), B(k) and C(k) are defined as in (11), while

bA(k+1) = bA(k) −B(k)(A(k))−1C(k), k ≥ 0,

and bA(0) = bA. The iteration is continued until C(k) is sufficiently small so that from

the first block equation bA(k)x1 + C(k)x2k+1 = b
(k)
1 one can numerically compute x1

by neglecting C(k)x2k+1, and then compute as many components xi·2k+1 as needed.

Back substitution completes the recovery of all the previous components. More details

of this technique are given in [19].

4 The Hessenberg case

As proved in [19] in the context of Markov chains, cyclic reduction can be easily ex-

tended to block Hessenberg block Toeplitz systems Hx = b where

H =

2666664
A0 A1 . . . An−1

A−1 A0
. . .

...

. . .
. . . A1

0 A−1 A0

3777775 ,

Ai, for i = −1, . . . , n− 1, are m×m matrices, and where x and b are partitioned into

n vectors xi, bi, i = 1, . . . , n of dimension m.

Here we show this extension in the general case. Assume n = 2q − 1, applying

an odd/even permutation to block columns and rows in the system above yields the
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equivalent system26666666666664

A0 A2 . . . An−1 A1 . . . An−2

A0
. . .

... A−1
. . .

...

. . . A2
. . . A1

0 A0 0 A−1

A−1 A1 . . . An−2 A0 . . . An−3

. . .
. . .

...
. . .

...

0 A−1 A1 0 A0

37777777777775

266666666666664

x1

x3

...

xn

x2

x4

...

xn−1

377777777777775
=

266666666666664

b1

b3

...

bn

b2

b4

...

bn−1

377777777777775
which we rewrite in compact form as»

H1,1 H1,2

H2,1 H2,2

– »
xodd

xeven

–
=

»
bodd

beven

–
.

Assume A0 nonsingular, eliminate the odd block components by means of block Gaus-

sian elimination, i.e., compute the Schur complement S of H1,1 and obtain the smaller

system of block size 2q−1 − 1:

(H2,2 −H2,1H
−1
1,1H1,2)xeven = b(1), b(1) = beven −H2,1H

−1
1,1bodd.

One can easily verify that the matrix S = H2,2 −H2,1H
−1
1,1H1,2 in the above system

is the matrix obtained by deleting the first block column and the last block row in the

following expression involving block upper triangular block Toeplitz matrices2666664
0 A0 . . . An−3

0
. . .

...

. . . A0

0 0

3777775− UH−1
1,1U, where U =

2666664
A−1 A1 . . . An−2

A−1
. . .

...

. . . A1

0 A−1

3777775 .

Due to the block Toeplitz structure, one finds that the Schur complement has the

same form of H, i.e.,

S =

26666664
A

(1)
0 A

(1)
1 . . . A

(1)
2q−1−1

A
(1)
−1 A

(1)
0

. . .
...

. . .
. . . A

(1)
1

0 A
(1)
−1 A

(1)
0

37777775
where 2666664

A
(1)
2q−1−1

...

A
(1)
0

A
(1)
−1

3777775 =

26664
An−3

...

A0

0

37775− UH−1
1,1

26664
An−2

...

A1

A−1

37775 . (30)

In fact, block triangular block Toeplitz matrices are closed under sum, product and

inversion. The above formula provides a means for performing one step of CR. It

requires the solution of a block triangular block Toeplitz system with matrix H1,1 and
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the computation of the product of a block Toeplitz matrix and a block vector. All these

operations can be performed in O(m3n+m2n logn) by means of FFT [18].

Once the even indexed components have been computed, one can compute the odd-

indexed ones just by solving the block triangular block Toeplitz system H1,1xodd =

bodd −H1,2xeven. The cost of the latter computation is O(m2n logn).

As in the block tridiagonal case, this technique can be cyclically repeated. Its overall

cost is still O(m3n+m2n logn).

It is interesting to observe that the equation (30) which relates the blocks at two

subsequent steps of CR can be written in terms of matrix polynomials. Let p(k)(z) =P2q−k−1
i=−1 zi+1A

(k)
i , then one has

p(k+1)(z) = zp
(k)
− (z)− p

(k)
+ (z)p

(k)
− (z)−1p

(k)
+ (z) mod z2

q−k−1+1 (31)

where p
(k)
+ (z) and p

(k)
− (z) are the even and the odd parts of p(k)(z), respectively defined

by p
(k)
+ (z2) = (p(k)(z) + p(k)(−z))/2, p

(k)
− (z2) = (p(k)(z)− p(k)(−z))/(2z).

4.1 Infinite systems

For infinite block Hessenberg systems of the kind26666664

bA0
bA1

bA2 . . .

A−1 A0 A1
. . .

A−1 A0
. . .

0
. . .

. . .

37777775
264x1

x2

...

375 =

264 b1

b2

...

375 ,

CR with the even/odd permutation leads to the sequence of infinite systems26666664

bA(k)
0

bA(k)
1

bA(k)
2 . . .

A
(k)
−1 A

(k)
0 A

(k)
1

. . .

A
(k)
−1 A

(k)
0

. . .

0
. . .

. . .

37777775
26664

x1

x2k+1

x2·2k+1
...

37775 =

2664
b
(k)
1

b
(k)
2
...

3775 , k = 1, 2, . . . .

Equation (31) still holds by replacing the matrix polynomials p(k)(z) with matrix power

series ϕ(k)(z) =
P∞

i=−1 z
i+1A

(k)
i and by removing the modulo operation. Indeed, one

can prove that CR is defined by the following equations

ϕ(k+1)(z) = zϕ
(k)
− (z)− ϕ

(k)
+ (z)ϕ

(k)
− (z)−1ϕ

(k)
+ (z), k ≥ 0 (32)

where ϕ
(k)
+ (z) and ϕ

(k)
− (z) are the even and the odd parts of ϕ(k)(z), respectively

defined by ϕ
(k)
+ (z2) = (ϕ(k)(z) + ϕ(k)(−z))/2, ϕ

(k)
− (z2) = (ϕ(k)(z) − ϕ(k)(−z))/(2z),

and with ϕ(0)(z) =
P+∞

i=−1 z
i+1Ai. The recursive formulae for the blocks bA(k)

i can be

expressed as

bϕ(k+1)(z) = bϕ(k)
+ (z)− bϕ(k)

− (z)ϕ
(k)
− (z)−1ϕ

(k)
+ (z), k ≥ 0, (33)
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where bϕ(k)(z) =
P∞

i=0 z
i bA(k)

i and bϕ(0)(z) =
P+∞

i=0 z
iAi, and bϕ(k)

+ (z), bϕ(k)
− (z) are the

even and odd part of bϕ(k)(z), respectively.

An equivalent functional formulation of CR can be given in the same form as in

the block tridiagonal case as follows:

ϕ(k+1)(z2) = −ϕ(k)(z)
“
ϕ

(k)
+ (z2)

”−1
ϕ(k)(−z), k ≥ 0.

This functional formulation enables us to provide convergence results and a sim-

ple implementation based on the technique of evaluation/interpolation at the Fourier

points. These topics are examined in the next Sections 4.2 and 4.3, respectively.

Also for Hessenberg systems one can define the matrix function ψ(z) = zϕ(z)−1

and prove that ψ(k)(z) = zϕ(k)(z)−1 for any z for which ϕ(z) is nonsingular, where

ψ(k+1)(z2) = (ψ(k)(z) + ψ(k)(−z))/2, k ≥ 0,

ψ(0)(z) = ψ(z) =
P+∞

i=−∞ ziHi.

4.2 Convergence properties

Convergence properties of ϕ(k)(z) can be given under suitable additional assumptions

[18], [28] for problems related to Markov chains. Here we provide more general results

which extend the convergence properties obtained in the block tridiagonal case.

Theorem 9 Assume that the matrix function ϕ(z) is analytic and nonsingular for

z ∈ A(r,R), where r < 1 < R, and that detH0 6= 0, where ψ(z) = zϕ(z)−1 =P+∞
i=−∞ ziHi. Then,

1. ϕ(k)(z) and ψ(k)(z) are analytic for z ∈ Ak = A(r2
k

, R2k

);

2. there exists k0 > 0 such that for any k ≥ k0 the matrix function ψ(k)(z) is nonsin-

gular in A and the sequence z−1ϕ(k)(z) converges to H−1
0 uniformly over all the

compact sets K ⊂ A;

3. for any matrix norm || · || and for any ε there exist k0 > 0 and positive constants

ci, i = −1, 1, 2 . . . such that

||A(k)
i || ≤

(
ci(R− ε)−i·2k

for i > 0

ci(r + ε)2
k

for i = −1

for any k ≥ k0.

Proof Since ϕ(z) is analytic and invertible in A = A(r,R) then ψ(z) = zϕ(z)−1 is

analytic and invertible in A. By following the same argument used in Theorem 1 we

deduce part 1 and part 2 of the theorem. Part 3 follows from the Cauchy integral

theorem [55, Theorem 4.4c] by following the same arguments used in the proof of

Theorem 8.2 of [18]. ut

Conditions for the nonsingularity of H0, needed in the assumptions of Theorem 9,

are given in the following result of [18]:
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Theorem 10 Let the matrix function ϕ(z) be analytic for |z| < R, R > 1, and non-

singular for |z| = 1. If there exist the factorizations

z−1ϕ(z) = (
P+∞

j=0 z
jUj)(I − z−1G)

zϕ(z−1) = (I − zV )(
P+∞

j=0 z
−jWj)

valid for |z| = 1, where ρ(G), ρ(V ) < 1, and the matrix functions
P+∞

j=0 z
jUj andP+∞

j=0 z
jWj are nonsingular for |z| < 1, then detH0 6= 0.

The two factorizations in the assumptions of the above theorem hold if there exist

solutions G and V to the matrix equations

∞X
i=−1

AiX
i+1 = 0,

∞X
i=−1

Y i+1Ai = 0, (34)

respectively, with ρ(G) < 1, ρ(V ) < 1, and the function detϕ(z) has exactly m roots

inside the open unit disk. This condition is generally satisfied in many applicative

problems which model stochastic processes described by infinite Markov chains [18].

4.3 Implementation

Relying on the functional formulation (32), (33), CR can be easily implemented even

though in principle an infinite amount of block coefficients are needed in order to deal

with matrix power series.

Observe that under the assumption of analyticity, all the matrix power series have

matrix coefficients which decay exponentially to zero. This way, from the numerical

point of view, a matrix power series can be viewed as a matrix polynomial by ignoring

the coefficients which have modulus less than a given tolerance ε. This fact makes it

easy to approximate the matrix coefficients by means of an evaluation/interpolation

scheme which allows one to apply (32) and (33) pointwise at a given set of interpolatory

nodes, say the roots of the unity, and to perform interpolation to these computed values

in order to recover the coefficients.

This general scheme provides very efficient algorithms which have been described

in details in [18] and [20].

5 Applications

Here we report on some applications of CR to problems from different fields and on

acceleration techniques. In some cases, in particular for problems concerning queuing

models, the applicability of CR is guaranteed. In other cases, like solving general banded

Toeplitz systems, breakdown can be encountered. In principle, breakdown is possible

also for problems involving queuing models where the acceleration technique of Section

5.7 is applied to improve the convergence. In these cases the formulae of Sections 3.3

can be successfully employed.
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5.1 Banded Toeplitz systems and polynomial factorization

Consider matrices Ei ∈ Rm×m, i = −p, . . . , p and define the n×n block banded block

Toeplitz matrix T having (2p+ 1) diagonals and blocks entries Ti,j = Ej−i ∈ Rm×m,

for |j − i| ≤ p and Ti,j = 0, otherwise, for i = 1, . . . , n.

Observe that if n is a multiple of p, the matrix T can be reblocked into mp ×
mp blocks so that it can be viewed as a block tridiagonal block Toeplitz matrix

Tridn/p(B,A,C) where the blocks A,B,C are p×p block Toeplitz matrices with m×m
blocks.

In this way, CR applied to Tridn/p(B,A,C) can be used for solving a block banded

block Toeplitz system. It is interesting to observe that for the Toeplitz structure of the

blocks A,B,C, the matrix polynomial ϕ(z) is a block z-circulant matrix [21]. Since

block z-circulant matrices form an algebra, then also ψ(z) is block z-circulant so that

the matrix functions ψ(k)(z) are block Toeplitz. This fact enables one to prove that

even though the matrices A(k), B(k), C(k) do not maintain the Toeplitz structure, their

displacement rank remains constant since ϕ(k)(z) are inverses of block Toeplitz matrices

and inverses of block Toeplitz matrices have the displacement structure [64]. We refer

the reader to the book [64] by Kailath and Sayed for the concept of displacement

rank. The property of maintaining the displacement structure is at the basis of a fast

algorithm for solving banded Toeplitz system developed in [21].

Solving banded Toeplitz systems is strictly related to computing polynomial factor-

ization and the Wiener-Hopf factorization of a given matrix Laurent series. Analysis,

algorithms and application of CR to these problems can be found in [9], [10], [11], [12],

[28].

Variations of cyclic reduction for the case of matrices with unbalanced band have

been analyzed in [67].

5.2 Quadratic Matrix Equations

Consider the quadratic matrix equation

B +AX + CX2 = 0

where the matrix coefficients A,B,C are such that the hypotheses of Theorem 4 are

satisfied so that there exists the solutionX with minimal spectral radius ρ(X) = |ξm| <
1. This solution X is such that264A C 0

B A C

0
. . .

. . .
. . .

375
26664
X

X2

X3

...

37775 =

26664
−B
0

0
...

37775
so that CR can be used to compute X. More precisely, applying CR to the above

system by using the even-odd permutation in place of the odd-even yields the sequence

of systems 2664
bA(k) C(k) 0

B(k) A(k) C(k)

0
. . .

. . .
. . .

3775
266664

X

X2k+1

X2·2k+1

...

377775 =

26664
−B
0

0
...

37775
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where bA(k+1) = bA(k) −B(k)(A(k))−1C(k), k ≥ 0bA(0) = A.

Observe that the first block equation of the latter system yields

bA(k)X = −B − C(k)X2k+1.

Therefore, for the convergence properties of Theorem 3, since the spectral radius of X

is ρ(X) = |ξm| < 1, then limk
bA(k)X = −B. Therefore, if the matrices ( bA(k))−1 are

uniformly bounded, since for any norm and for any ε > 0 there exists θ > 0 such that

||X2k+1|| ≤ θ(|ξm|+ ε)2
k

and ||C(k)|| ≤ θ/(|ξm+1| − ε)2
k

, one has

X = −( bA(k))−1B +O

 „
|ξm|+ ε

|ξm+1| − ε

«2k!
.

This algorithm is the method of choice in solving Markov chains associated with

Quasi-Birth-Death processes [18], [66]. Effective implementations can be found in [29],

[30].

Applications of CR to the hyperbolic quadratic eigenvalue problem are given by

Guo, Higham and Tisseur in [49] and by Guo and Lancaster in [51].

5.3 Polynomial and power series matrix equations

Given m×m matrices Ai, i = −1, 0, 1, . . ., consider the matrix equation

A−1 +A0X +A1X
2 +A2X

3 + · · · = 0 (35)

where we assume that ϕ(z) =
P+∞

i=−1 z
i+1Ai is analytic for |z| < R, R > 1, and

detϕ(z) 6= 0 for r < |z| < R. If there exist solutions G and V to the matrix equations

(34) such that ρ(G), ρ(V ) < 1, and the function detϕ(z) has exactlym roots of modulus

less than 1, then the assumptions of Theorem 9 are satisfied and CR converges with r

being the largest modulus root of detϕ(z) in the open unit disk. Therefore, if CR has

no breakdown, it can be applied for computing the solution G to the matrix equation

(35) by computing the first block component of the solution of the following infinite

linear system 26666664
A0 A1 A2 . . .

A−1 A0 A1
. . .

A−1 A0
. . .

0
. . .

. . .

37777775
26664
X

X2

X3

...

37775 =

264−A−1

0
...

375 . (36)

After k steps of CR with the even-odd permutation one obtains the system26666664

bA(k)
0

bA(k)
1

bA(k)
2 . . .

A
(k)
−1 A

(k)
0 A

(k)
1

. . .

A
(k)
−1 A

(k)
0

. . .

0
. . .

. . .

37777775

266664
X

X2k+1

X2·2k+1

...

377775 =

264−A−1

0
...

375 .
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For the convergence properties of Theorem 9, since ρ(G) = r, and assuming that

( bA(k)
0 )−1 is uniformly bounded, one has

X = −( bA(k)
0 )−1A−1 +O

 „
r + ε

R− ε

«2k!
.

It is important to point out that this kind of matrix equations is fundamental in

the solution of M/G/1-type and G/M/1-type Markov chains which model most part

of queueing problems [71], [72]. Algorithms based on CR are the methods of choice for

these problems [29], [30].

If the matrix equation is polynomial, i.e., if

A−1 +A0X +A1X
2 +A2X

3 + · · ·+ApX
p = 0

then the system (36) is banded and we may reblock it in order to find a block tridiagonal

system as we did in Section 5.1. In this way applying CR in the original form, designed

for block tridiagonal systems, provides a different solution algorithm. This approach is

analyzed in [23].

A different approach which works even for infinite power series is due to Ramaswami

[76]. It consists in transforming the system (36) into a block tridiagonal block Toeplitz

system where the blocks have infinite size. In this way CR can be still applied in

its original form by exploiting the specific structure of the infinite blocks. Details on

the analysis of this approach can be found in [13], [26]. The analysis of CR for block

tridiagonal systems with blocks of infinite size is performed in [13].

5.4 Matrix square root

The principal square root X of a matrix A can be effectively computed by means of

CR as shown in [69]. The principal square root A1/2 of a matrix A is the solution of

the equation X2−A = 0 having eigenvalues with nonnegative real parts. The principal

square root exists unique if A has no real negative eigenvalues [56]. This condition is

assumed throughout this section.

Define ϕ(z) = (I −A)+2z(I +A)+ z2(I −A), then it has been proved in [69] that

z−1ϕ(z) is invertible for any z ∈ C such that r < |z| < 1/r where

r = ρ
“
(A1/2 − I)(A1/2 + I)−1

”
< 1.

Moreover, H(z) = zϕ(z)−1 = H0 +
P∞

i=1Hi(z
i + z−i) is such that H0 = 1

4A
−1/2. In

this way, the desired solution A1/2 can be directly obtained by computing the matrix

H−1
0 by means of CR. More details in this regard can be found in [69].

A similar idea is used by Bini, Higham and Meini in [14] for computing the principal

pth root of a matrix A.

Scaling techniques which improve the numerical stability of CR applied to the

computation of the matrix square root have been designed and analyzed by Iannazzo

in [60].
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5.5 Algebraic Riccati equations

Consider the Nonsymmetric Algebraic Riccati Equation (NARE)

XCX −AX −XD +B = 0 (37)

where the unknown X is an m × n matrix, and the coefficients A, B, C and D have

sizes m×m, m× n, n×m and n× n, respectively.

The matrix coefficients of the NARE (37) define the (m+ n)× (m+ n) matrix

M =

»
D −C
−B A

–
, (38)

which, throughout this section, we assume to be an M-matrix. Equations of this kind

describe different models in the applications like fluid queues [77], [80], [99] and trans-

port equations [62], [63]. The solution of interest is the matrix S with nonnegative

entries which, among all the nonnegative solutions, is the one with component-wise

minimal entries. A survey on this specific equation can be found in [16].

Efficient techniques for solving (37) have been recently designed in [25]. They are

based on reducing the equation to a unilateral quadratic matrix equation of the kind

BY 2 +AY + C = 0 to which CR can be applied as described in Section 5.2.

Theorem 11 X solves the NARE (37) iff

Y =

»
D − CX 0

X 0

–
solves the matrix equation

BY 2 +AY + C = 0 (39)

where

A =

»
−I −C
0 −A

–
, B =

»
0 0

0 −I

–
, C =

»
D 0

B 0

–
.

The M-matrix property of (38) implies that the matrix coefficients A,B, C of (39)

are such that the hypotheses of Theorem 4 are satisfied. Therefore CR applied to the

matrix equation (39) converges.

The structure of the block coefficients of of (39) allows one to implement cyclic

reduction with just 68
3 m

3 operations per step, for m = n.

In [25] different reductions to a unilateral quadratic matrix equation are given.

In one of these reductions, a function ϕ(z) = B + zA + z2C is given, such that the

constant coefficient H0 of the matrix function ψ(z) = zϕ(z)−1 provides the sought

solution to the Riccati equation. Therefore, CR provides a powerful tool for solving

(37). Its cost is just 64
3 m

3 operations per step. Using this reduction it is possible to

prove that the structure preserving doubling algorithm (SDA) of [6], [52] is just cyclic

reduction applied to the unilateral quadratic matrix equation.

Variants of cyclic reduction have been applied to solve algebraic Riccati equations

by Bini, Guo, Higham, Iannazzo, Latouche, Meini and Ramaswami in the papers [15],

[47], [48], [50], [77].
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5.6 Other matrix equations

Equations of the kind X ± A∗X−1A − Q = 0, studied in [39], [40] by Engwerda,

Ferrante, Levy, Ran and Rijkeboer, can be efficiently solved by means of CR as shown

by Meini in [68]. In fact, equations in this class can be reduced to unilateral quadratic

matrix equations for which the convergence conditions of cyclic reduction are satisfied.

Other matrix functions like the geometric mean, the sign function or sector func-

tion, can be related to the coefficient H0 of zϕ(z)−1 for a suitable quadratic matrix

polynomial ϕ(z). Therefore they can be computed by means of CR [61].

5.7 Acceleration

According to Theorems 3 and 9, the convergence of CR is quadratic and depends on

the ratio r/R where A(r,R) is the domain where the function ϕ(z) is analytic and

invertible. The smaller is r/R the faster is convergence. We may improve convergence

by enlarging the invertibility and analyticity domain of ϕ(z) by means of the shift

technique introduced by He, Meini and Rhee in [53], extended to more general systems

in [13], [28] and applied to algebraic Riccati equations in [15], [48], and [50]. The shift

technique consists in moving one of the zeros of detϕ(z) with modulus r or R to zero or

to infinity, respectively, if the function is sufficiently regular. This goal can be obtained

by replacing ϕ(z) with eϕ(z) = ϕ(z)(I − z−1λuvT )−1, where λ is a root of detϕ(z)

of modulus r, v 6= 0 is a vector such that ϕ(λ)v = 0, and u is any vector such that

vT u = 1. With this transformation, the roots of det eϕ(z) are the roots of detϕ(z),

except that the root λ is replaced by 0. A similar formula is used for shifting the root

of modulus R to infinity.

The effectiveness of this acceleration is more important in the case where r = R

where the quadratic convergence properties given in Theorems 3 and 9 do not hold

anymore. In this difficult situation, typically encountered in null recurrent Markov

chains, performing the shift of one of the two unwanted roots allows one to maintain

the quadratic convergence of CR.

6 Conclusions

Cyclic Reduction, initially introduced to solving the discrete Poisson equation, has

been extended to more general systems and to matrix equations. Its formulation given

in terms of analytic functions provides a better understanding of its convergence prop-

erties.

New proofs of convergence have been given under weaker conditions. A complete

characterization of breakdown situations has been given by providing alternative for-

mulae for implementing CR in case of singularity or ill-conditioning.

Several applications to solving infinite systems and nonlinear matrix equations,

including algebraic Riccati equations, have been given.
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