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Abstract. We provide a simple convergence proof for the cyclic re-
duction algorithm for M/G/1 type Markov chains together with a
probabilistic interpretation which helps to better understand the re-
lationships between Logarithmic Reduction and Cyclic Reduction.

1. Introduction

A Markov chain of M/G/1 type [11], [10], [3] has a two-dimensional
state space {(i, j) : i ≥ 0, 1 ≤ j ≤ m}, where m is a positive integer, is
skip-free downward in its first coordinate, and except possibly for the
set of boundary states {(0, j) : 1 ≤ j ≤ m} is spatially homogeneous
with respect to the first coordinate. Specifically, calling the set of
states {(i, j) : 1 ≤ j ≤ m} as level i and partitioning the state space
according to levels 0, 1, · · · , we can write the transition matrix of the
Markov chain in the form

P =





B0 B1 B2 B3 · · ·
A−1 A0 A1 A2 · · ·

0 A−1 A0 A1
. . .

0 0 A−1 A0
. . .

...
. . .

. . .
. . .

. . .





where Bn and An−1, for n ≥ 0, are of order m × m and such that∑∞
n=−1 An,

∑∞
n=0 Bn are row-stochastic.
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An important quantity in the algorithmic analysis of a Markov
chain of the M/G/1 type is the matrix G whose element gij is the
probability that, starting in the state (1, i), the Markov chain makes
an eventual first passage into level 0 and does so by visiting the
specific state (0, j). It is well-known [11] that G is the minimal non-
negative solution of the matrix equation

G =
∞∑

n=−1

AnGn+1. (1)

The special case of Markov chains of the above form with An =
Bn = 0 for n ≥ 2 goes by the name Quasi-Birth-and-Death process
(QBD). For QBDs, an iterative, quadratically convergent algorithm
for G, briefly denoted by LR or Logarithmic Reduction and based
on censoring, was derived by Latouche and Ramaswami [9] which in-
volves viewing the Markov chain successively on levels of the form
{0, 2k, 2 ·2k, 3 ·2k, · · · }, k ≥ 0. The k-th iterate in this algorithm com-
putes an approximation for G by taking into account all paths that
go up to but not above the level 2k. That probabilistic interpretation
immediately yields the monotonicity of the iterates as well as their
quadratic convergence to the matrix G, in the nonnull recurrent case,
quite easily.

An algorithm similar to LR was derived by Bini and Meini [1],
[2] for the general M/G/1 type Markov chains. They called this algo-
rithm Cyclic Reduction (CR) due to the similarity of the method with
an odd-even reduction algorithm for linear systems due to Buzbee,
Golub and Nielson [4]. The algorithm is based on methods of lin-
ear algebra such as Schur complementation as they apply to Toeplitz
systems, and the approach taken does not rely on probabilistic argu-
ments. In fact, CR can be described either in an algebraic way or in
an analytic way by means of a functional representation [3].

Bini, Latouche and Meini did demonstrate the closeness of their
method to LR in the case of QBDs in [3]. Here, we further analyze
this closeness by means of a probabilistic interpretation, where the
CR algorithm is viewed as applying recursive censoring to a suitable
M/G/1 Markov chain. This interpretation enables us to provide a
convergence proof for the algorithm in a much easier way than pre-
viously possible.

The idea is to transform a positive recurrent Markov chain into a
transient one for which the convergence proof of CR is almost imme-
diate. It is interesting to observe that this reduction, reinterpreted in
the language of linear algebra as based on a diagonal rescaling, pro-
vides a convergence proof much simpler and more elegant than the
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one previously known, which is also independent of the probabilistic
interpretation.

A probabilistic interpretation of CR by means of successive cen-
sorings was previously obtained by Hunt in [7], [8], where at the kth
censoring step the levels 1 + n · 2k, n = 0, 1, 2, . . ., are considered.
Unlike in [7], in our approach the levels involved at the kth step are
0, 1 + n · 2k, for n = 0, 1, 2, . . .. The advantage of including level 0
is that there is a one-to-one correspondence between the matrix se-
quences generated by CR and the stochastic complements obtained
by means of the successive censorings. The interpretation in terms of
the simple odd-even censoring of [7] does not give this correspondence
immediately.

The paper is organized as follows. In section 2 we briefly recall
CR and the proof of its convergence in the transient case; then we
show that the positive recurrent case can be reduced to the transient
one, and provide a simple convergence proof. In Section 3 we give a
probabilistic interpretation of CR which relates this algorithm to LR.

2. A simple convergence proof of CR

The method of CR can be synthesized as follows. Equation (1) can
be rewritten in terms of the linear system





I − A0 −A1 −A2 . . .

−A−1 I − A0 −A1
. . .

. . .
. . .

. . .









G
G2

G3

...




=




A−1

0
...



 . (2)

By rearranging the equations and the unknowns according to the
even/odd block permutation yields

[
U1,1 U1,2

U2,1 U2,2

]





G2

G4

...
G
G3

...





=





0
0
...

A−1

0
...




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where

U1,1 =

2

6

6

6

6

6

6

4

I − A0 −A2 −A4 . . .

I − A0 −A2

. . .

I − A0

. . .

0
. . .

3

7

7

7

7

7

7

5

, U1,2 =

2

6

6

6

6

6

6

4

−A
−1 −A1 −A3 . . .

−A
−1 −A1

. . .

−A
−1

. . .

0
. . .

3

7

7

7

7

7

7

5

,

U2,2 = U1,1 and U2,1 is obtained by removing the first block column
of U1,2.

Eliminating the even powers of G by means of a Schur comple-
mentation yields the new system

S(1)





G
G3

G5

...




=




A−1

0
...



 , (3)

where

S(1) = U2,2 − U2,1U
−1
1,1 U1,2 =





I − Â
(1)
0 −Â

(1)
1 −Â

(1)
2 . . .

−A
(1)
−1 I − A

(1)
0 −A

(1)
1 . . .

−A
(1)
−1 I − A

(1)
0 . . .

0
. . .

. . .




(4)

Observe that the system (3) with matrix (4) has almost the same
form of (2) so that we can apply once again the same technique.

The recursive application of this scheme, known as Cyclic Reduc-
tion, provides the following sequence of systems





I − Â
(k)
0 −Â

(k)
1 −Â

(k)
2 . . .

−A
(k)
−1 I − A

(k)
0 −A

(k)
1 . . .

−A
(k)
−1 I − A

(k)
0 . . .

0
. . .

. . .









G

G2k+1

G2·2k+1

...




=




A−1

0
...



 . (5)

The first block equation yields the following expression for the
matrix G:

G = Gk + (I − Â
(k)
0 )−1

∑+∞
j=1 Â

(k)
j Gj·2k+1,

Gk = (I − Â
(k)
0 )−1A−1.

(6)

Equation (4) can be similarly rewritten at the general step k and

provides a means for relating the matrices A
(k+1)
i , Â

(k+1)
i to A

(k)
i , Â

(k)
i ,
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respectively, at two consecutive steps of CR. A more compact and
computationally efficient way for describing the general CR step relies
on a functional representation of this algorithm; the reader can find
more details on this topic in [3].

The matrices A
(k)
i−1 and Â

(k)
i , i ≥ 0, are nonnegative and such that

∑+∞
i=−1 A

(k)
i and A−1 +

∑+∞
i=0 Â

(k)
i are row stochastic. This implies

that ‖A
(k)
i ‖ and ‖Â

(k)
i ‖ are uniformly bounded for any matrix norm

‖ · ‖. It is a simple matter to prove that ‖(I − Â
(k)
0 )−1‖ is bounded as

well [3].
The convergence of Gk to G is equivalent to proving that

(I − Â
(k)
0 )−1

+∞∑

j=1

Â
(k)
j Gj·2k+1

converges to zero as k → ∞. In the book [3], this property is proved
in the positive recurrent case by relying on analytic tools on functions
of a complex variable, and in the transient case by means of almost
immediate algebraic manipulations. The latter proof is recalled in
Section 2.1.

We provide a new argument in Seciton 2.2 to show that the pos-
itive recurrent case is solved by means of a simple reduction to the
transient case. 2.2.

2.1. The transient case

For a transient Markov chain we have ρ(G) = η < 1, where ρ denotes
the spectral radius of a matrix (see [5]); this implies that for any
ǫ > 0 and for any matrix norm ‖ · ‖ there exists θ > 0 such that

‖Gn‖ ≤ θ(η + ǫ)n for any n > 0. (7)

In the case where all the eigenvalues of G of modulus η are simple
we may choose ǫ = 0. This is the case that we consider in the next
section.

From (6) we deduce that

‖G − Gk‖ ≤ ‖(I − Â
(k)
0 )−1‖

+∞∑

j=1

‖Â
(k)
j ‖ · ‖Gj·2k+1‖ ≤ γ(η + ǫ)2

k

for a suitable constant γ, since ‖Â
(k)
j ‖ and ‖(I − Â

(k)
0 )−1‖ are uni-

formly bounded. This proves quadratic convergence with rate η + ǫ.
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2.2. Reducing a positive recurrent to a transient Markov chain

Suppose that the Markov chain whose homogeneous part is defined
by Ai, i = −1, 0, 1, . . ., is positive recurrent so that ρ(G) = 1 (see
[5]). Let us assume that the matrix function A(z) =

∑+∞
i=−1 Aiz

i+1 is
analytic for |z| < R, for a suitable R > 1, and that there exists a zero
of det(zI−A(z)) of modulus greater than 1. Under these assumptions
it has been proved by Gail, Hantler and Taylor [6] that there exist
a real ξ and a positive vector u = (ui) such that 1 < ξ < R and
A(ξ)u = ξu. Moreover, ξ is a simple zero of det(zI − A(z)), and it
is such that every other zero of det(zI −A(z)) outside the unit circle
is strictly greater in modulus than ξ. The above assumptions are the
same as the ones stated in [3, Chapter 7] and are satisfied in general
if the matrix function A(z) is entire or rational [6].

Let D = Diag(u) be the diagonal matrix having u1, . . . , um as
diagonal entries, and define

Ci = ξiD−1AiD, i = −1, 0, 1, . . . ,

H = ξ−1D−1GD.
(8)

It is readily verified that Ci ≥ 0 and the matrix
∑+∞

i=−1 Ci is row
stochastic. Therefore, the matrices Ci, i = −1, 0, 1, . . ., define the
homogeneous part of an M/G/1-type Markov chain. Moreover, it is a
simple matter to show that G is the nonnegative minimal solution of
the equation (1) if and only if H is the nonnegative minimal solution
of

H =

∞∑

i=−1

CiH
i+1. (9)

Since ρ(H) = ξ−1ρ(G) and ρ(G) = 1, the matrix H has m eigenval-
ues of modulus strictly less than 1 and, therefore the Markov chain
associated with (9) is transient (see [5]).

From equation (4) one finds that applying the CR algorithm to

(9) generates matrices {C
(k)
i−1}i≥0 and {Ĉ

(k)
i }i≥0 which are related to

the matrices {A
(k)
i−1}i≥0 and {Â

(k)
i }i≥0 by the following equations:

C
(k)
i = ξi·2k

D−1A
(k)
i D, i = −1, 0, 1, . . . ,

Ĉ
(k)
i = ξi·2k

D−1Â
(k)
i D, i = 0, 1, 2, . . . .

Moreover, CR generates approximations {Hk} to the matrix H which
are related to {Gk} by the simple equation

Gk = ξDHkD
−1, k ≥ 0.
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Thus, convergence of CR for the positive recurrent case follows
from convergence in the transient case. More specifically, since the
eigenvalues of G with modulus 1 are all simple (see [5]) the eigenvalues
of H of modulus ξ−1 are simple and we may choose ǫ = 0 in the
inequality (7). Thus, we have

‖Gk −G‖ = ξ‖D(Hk −H)D−1‖ ≤ ξ‖D‖ ·‖D−1‖ ·‖Hk −H‖ ≤ γ′ξ−2k

,

for a suitable constant γ′ > 0; that is, a quadratic convergence obtains
with convergence rate ξ−1.

Concerning the convergence of the matrix sequences {A
(k)
i−1}k≥0

and {Â
(k)
i }k≥0 as k → ∞, from the relation A

(k)
i = ξ−i·2k

DC
(k)
i D−1

and from the property ‖C
(k)
i ‖1 ≤ 1 for any i ≥ −1 and k ≥ 0, we

deduce that

‖A
(k)
i ‖1 ≤ σξ−i·2k

, i = 0, 1, 2, . . . , k = 0, 1, 2, . . . ,

for a suitable constant σ. Therefore the sequence {A
(k)
i }k, for i ≥ 1,

converges quadratically to zero as k → ∞ with convergence rate ξ−i.
Similarly, we find that

‖Â
(k)
i ‖1 ≤ σ̂ξ−i·2k

, i = 0, 1, 2, . . . , k = 0, 1, 2, . . . ,

for a suitable constant σ̂, i.e., the sequence {Â
(k)
i }k, for i ≥ 1, con-

verges quadratically to zero as k → ∞ with convergence rate ξ−i.

3. Probabilistic interpretation: CR and LR

The computation of G for an M/G/1 type chain is indeed the com-
putation of the G matrix for the chain on levels {0, 1, 2, · · · } with
block partitioned transition matrix

P0 =





I 0 0 0 · · ·
A−1 A0 A1 A2 · · ·

0 A−1 A0 A1
. . .

0 0 A−1 A0
. . .

...
. . .

. . .
. . .

. . .




(10)

since the boundary matrices {Bn} play no role with respect to G.
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Now consider the embedded Markov chain on {0, 1, 3, 5, 7, · · · }.
To this purpose apply the permutation {0, 1, 3, 5, . . . , 2, 4, 6, . . .} and
partition the permuted matrix as





I 0 0

A−1 Â
(0)
even Â

(0)
odd

0 W (0) U
(0)
2,1

0 Y (0) U
(0)
1,1




,

where W (0) =
[
O U

(0)
2,2

]
with O being the infinite block column with

null entries, Y (0) =
[
V (0) U

(0)
1,2

]
with V (0) = [−AT

−1, 0, . . .]T and the

U -matrices are the matrices Ui,j in Section 2.
When we construct the embedded Markov chain P1, what we need

to do is to delete the last block of columns and rows corresponding
to the set {2, 4, 6, · · · } and also to make the following replacements
in the other columns:

Âeven ← Âeven + Âodd[I − U1,1]
−1Y

Y ← Y + U2,1 [I − U1,1]
−1 W

This step is also called censoring the Markov chain on the levels
{0, 1, 3, 5, 7, · · · } and amounts to looking at the Markov chain only
when it is on this set, i.e., eliminating periods when levels that are
an odd distance away to the right from level 1 are visited. That gives
a Markov chain on levels {0, 1, 3, 5, 7, ...} whose transition matrix is
given in partitioned form by

P1 =





I 0 0 0 · · ·

A−1 Â
(1)
0 Â

(1)
1 Â

(1)
2 · · ·

0 A
(1)
−1 A

(1)
0 A

(1)
1 · · ·

0 0 A
(1)
−1 A

(1)
0

. . .
...

. . .
. . .

. . .
. . .




. (11)

Observe that except for the first and the second block row, the re-
maining block rows have constant blocks along the diagonals. Observe
also that this step corresponds to computing the Schur complement
S(1) of (4). It is also trivial to note that the G-matrices associated
with P0 and P1 are identical, and computing G using these Markov
chains simply amounts to nothing more than a different way of book
keeping of the various levels visited in the first passage time to level
0.
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More specifically, the matrix G solves the equation

G = A−1 +
+∞∑

i=0

Â
(1)
i Gi+1,

while the matrix G1 = G2 solves the equation

G1 =
+∞∑

i=−1

A
(1)
i Gi+1

1 .

Simple path-based probabilistic arguments establish that the ma-

trices A
(1)
k , Â

(1)
k are the same as the ones obtained in equation (3)

by means of CR. In the linear algebra terminology, the above pro-
cess amounts to eliminating the last set of linear equations through
the creation of a Schur complement whereas in the probabilistic ap-
proach this amounts to visits to the last set of levels being accounted
through the matrix [I −U1,1]

−1 which can also be written as the sum∑∞
n=0[U1,1]

n of the probabilities that n successive transitions occur
within the last set of states before the set of interest is entered into.

We can now start with the chain given by P1, split the state space
again as {0}, {1, 5, 9, · · · }, {3, 7, 11, · · · } and repeat the procedure. In
general, we can do this k times and get a Markov chain on the levels
{0, 1, 1+2k, 1+2 · 2k, 1+3 · 2k, · · · } whose transition matrix is easily
seen to be

Pk =





I 0 0 0 · · ·

A−1 Â
(k)
0 Â

(k)
1 Â

(k)
2 · · ·

0 A
(k)
−1 A

(k)
0 A

(k)
1 · · ·

0 0 A
(k)
−1 A

(k)
0

. . .
...

. . .
. . .

. . .
. . .




. (12)

A point to note is that the matrix G is the same for all these
Markov chains, i.e.,

G = A−1 +
+∞∑

i=0

Â
(k)
i Gi+1,

and all that we have done is to calculate it differently each time
through different embedded Markov chains. Now in the k-th chain,
we can form the approximation

G ≈ [I − Â
(k)
0 ]−1A−1

by omitting visits to levels higher than level 1 in this embedded chain.
Due to the skip-free downward structure of the Markov chain we
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started from, it is clear that this process amounts to deleting all
paths that go to levels 1 + 2k and higher in the original chain we
started with.

In the language of linear algebra these properties correspond to
the fact that the block vector in the left-hand side of (5) has G as
first component and, consequently that G satisfies equation (6).
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