
Introduction
In the last 50 years, dynamical systems have become one of the main objects of study
in mathematics, with many applications outside mathematics. It is a huge subject
that can be considered from many points of view. There are discrete and continu-
ous dynamical systems; there are local and global dynamical systems; there are one-
dimensional dynamical systems and infinitely-dimensional dynamical systems; there
are measurable dynamical systems, topological dynamical systems, smooth dynami-
cal systems—and there are holomorphic dynamical systems.

This book is devoted to a (relatively small) portion of the (quite vast) area of holo-
morphic dynamical systems: one-dimensional dynamical systems on Riemann sur-
faces; more specifically, on hyperbolic Riemann surfaces. The investigation of one-
dimensional holomorphic dynamical systems started in the second half of the nine-
teenth century,more or less in the same years when Poincaré began to understand the
importance of dynamical systems and started to investigate them in earnest. About
150 years later, the field of one-dimensional holomorphic dynamical systems is still
a very active area of research, both on nonhyperbolic Riemann surfaces (mainly the
Riemann sphere �� and the complex plane �) and on hyperbolic Riemann surfaces
(the unit disk � and all Riemann surfaces whose universal cover is the disk), with
several new papers appearing every year. There are many books describing the basics
of holomorphic dynamics on the Riemann sphere (see, e. g., [287]); on the other hand,
the only book devoted to holomorphic dynamics on hyperbolic Riemann surfaces as
far as I know is [3], that has been out of print since at least 20 years ago (more about
this later). By the way, I do not know of any introductory book on the dynamics of
holomorphic functions on the plane, a curious hole in the literature.

Let me now describe a bit more precisely what this book is about. A discrete holo-
morphic dynamical system is given by a holomorphic self-map f of a complex man-
ifold M. (A continuous holomorphic dynamical system is instead usually given by a
holomorphic vector field on a complex manifold; in this book, however, we shall take
a slightly different point of view, as I shall explain below.) As often happens with dy-
namical systems, the object of study is classical, in this case holomorphic maps; it is
the kind of questions that one asks on these objects that characterize the field.Namely,
we associate to f the sequence {f ν} of iterates of f , where f ν is the composition of f with
itself ν � � times; we also associate to each point z � X its orbit {f ν(z)}. In dynamical
systems we are then interested in the asymptotic behavior of the sequence of iterates,
that is, what happens as ν goes to infinity: is the sequence convergent? If it is not con-
vergent, can we anyway describe the set of accumulation points? What about single
orbits, do they all have the same behavior or different points that can behave differ-
ently? What about stability, that is, what happens if we perturb the starting point of
the orbit or even the original functions? Do chaotic behaviors appear? And so on. This
book shall try and give some answers for dynamical systems defined on hyperbolic
Riemann surfaces. In this case, theMontel theoremprevents the appearance of chaos;

https://doi.org/10.1515/9783110601978-201



VIII | Introduction

so, as we shall see, the flavor of the theory and the kind of results we shall obtain
is quite different from the case of holomorphic dynamical systems on nonhyperbolic
Riemann surfaces—even though recently it has been discovered that the theory devel-
oped for hyperbolic Riemann surfaces can be useful for understanding the behavior
of dynamical systems in the complex plane (see, e. g., [38]).

As anticipated above, the investigation of this subject began with the works of
Schröder [368, 369] in 1870 and Kœnigs [244] in 1883. They were mainly interested in
the local situation for holomorphic functions of one variable. Let z0 be a point of the
complex plane � and f a holomorphic function defined in a neighborhood of z0 such
that f (z0) = z0. Then the behavior of the sequence of iterates of f near z0 depends on
the value of the derivative of f at z0. More specifically, if |f �(z0)| < 1 every point z suffi-
ciently close to z0 is attracted by z0 (i. e., f ν(z)� z0 as ν � +�) while if |f �(z0)| > 1 the
points are repelled away from z0—or, if you prefer, they are attracted by z0 under the
action of f −1, which is defined in a neighborhood of z0. Finally, if |f �(z0)| = 1 (and there
is a bounded neighbourhood of z0 sent into itself by f ; otherwise more complicated
things can happen), the behavior of {f ν} is cyclic, with a finite period if f �(z0) is a root
of unity. As we shall see in Chapter 4, this local behavior has global repercussions; in
a very precise sense, if 0 < |f �(z0)| < 1 then the linear map given by the multiplication
by f �(z0) is a good model for the dynamics of f . In 1904, Böttcher [71] was able to give
a model also when f �(z0) = 0. Furthermore, for global maps in hyperbolic Riemann
surfaces necessarily |f �(z0)| � 1 and when |f �(z0)| = 1 then f is an automorphism with
simple dynamics; so in our context, the more interesting case is when f has no fixed
points.

The first really deep work on global holomorphic dynamical systems has been
done by Julia [215] in 1918. He investigated the dynamics of rational functions defined
on the Riemann sphere �� and discovered that the global behavior of the sequence of
iterates is both complicated and fascinating. Near fixed points it is possible to adapt
and clarify the local description, but new phenomena arise, linked for instance to the
distribution of periodic points (i. e., fixed points of f ν with ν > 1). Amain problemwas
the description of the Julia set of f , that is, of the set of points z0 � �� such that the
sequence of iterates {f ν} is not equicontinuous in any neighborhood of z0. The idea
is that if {f ν} is equicontinuous in a neighborhood of z0 then there is a subsequence{f νk } converging uniformly near z0 and then the behavior of the sequence of iterates is
somehow under control. In other words, the Julia set is in some sense the singular set
for the asymptotic behavior of {f ν}; it is the set where chaotic behavior appears.

Slightly later, in a series of papers Fatou [146–148] extended and deepened Julia’s
work, also investigating holomorphic dynamical systems on the complex plane gener-
ated by transcendental entire functions [149]. Again, a main role is played by the Julia
set, defined replacing the notion of equicontinuity by the notion of normality: the Fa-
tou set, the complement of the Julia set, is the largest open subset where the sequence
of iterates is normal in the sense of Montel.
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After Fatou, the study of dynamical systems generated by rational and entire func-
tionsmomentarily lost its impetus. Besides theworks of Cremer [132, 133], Siegel [378],
Töpfer [391], and Baker [29–32], mainly devoted to the study of periodic points, both
locally and globally by using Nevanlinna’s distribution value theory, and Brolin [86],
devoted to a deep investigation of the iteration of polynomials of low degree, and a
few others, nothing really new appeared.

The situation changed completely in the 1970s and 1980s when the work of Br-
juno, Hermann, Sullivan, Douady, Hubbard, and many others shed a completely new
light on the topic, showing its deep relationship with the theory of quasi-conformal
mappings and opening the gates for a flood of exciting new and deep results that is
still going on nowadays, thanks to so many mathematicians (including some Fields
medalists) that it is impossible to list their names here.

However, this is not the subject of this book. As hinted above, a main source of
complexity in the study of holomorphic dynamical systems on �� and� is that the se-
quence of iterates is not normal everywhere, and thus chaos appears. On the other
hand, the Montel theorem implies that on hyperbolic Riemann surfaces the whole se-
quence of iterates is normal everywhere. This completely changes the situation. In
fact, by normality, the sequence of iterates is relatively compact in a suitable func-
tion space and the compactness has strong consequences on the dynamics of f . For
instance, asmentioned before, if f is a holomorphic self-map of a hyperbolic Riemann
surface with a fixed-point z0, then |f �(z0)| � 1; moreover, |f �(z0)| = 1 if and only if f is
an automorphism and f �(z0) = 1 if and only if f is the identity. This can be obtained
by noticing that the sequence of iterates should have a converging subsequence and,
therefore, the coefficients of the Taylor expansion of f ν at z0 cannot tend to infinity as
ν � +�; since (f ν)�(z0) = f �(z0)ν, we get |f �(z0)| � 1 and from this it is not too difficult
to prove the rest of the assertion (see Theorem 3.1.10). It should be remarked that the
strength of this approach was completely understood only after its application (due
to H. Cartan [104, 105] and to Carathéodory [98] in the 1930s) to the theory of holo-
morphic maps of several complex variables, probably because in one variable it was
initially somehow concealed by the Schwarz–Pick lemma.

Thus we have the hope to be able to understand the holomorphic dynamics on
hyperbolic Riemann surfaces by using the Montel theorem and the Schwarz–Pick
lemma. As already remarked by Julia [215], if f is a holomorphic function of � into
itself with a fixed-point z0 � �, then the behavior of {f ν} can be easily derived by the
Schwarz–Pick lemma: if |f �(z0)| < 1, then z0 is globally attractive (and not just locally
attractive as already proved by Kœnigs) and if |f �(0)| = 1 then f is a non-Euclidean
rotation about z0.

The new ideas needed to study what happens when f has no fixed points were
provided by Wolff [414–416] and Denjoy [135] in 1926. Let τ � ��; then as z � � tends
to τ, the Poincaré disks of center z and fixed Euclidean radius tend to a horocycle at τ,
that is to an Euclidean disk internally tangent to �� at τ. Then Wolff proved a sort of
Schwarz lemma for holomorphic functionswithout fixed points, using the horocycles:
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if f sends � into itself without fixed points, then there exists a unique point τ � ��
(called theWolff point of f ) such that f sends every horocycle at τ into itself. Knowing
this, it is then not to difficult to prove, using the Montel theorem, that the sequence of
iterates {f ν} converges, uniformly on compact sets, to the constant map sending all�
in τ; this is theWolff–Denjoy theorem.

For amultiply connected domainD � � different from�∗ and,more generally, for
multiply connected hyperbolic Riemann surfaces the dynamics has been described by
Heins [184, 191] first in 1941 and then with more details in 1988. If f has a fixed point,
the local picture forces the global one, exactly as in�. If instead f has no fixed points,
then the sequence of iterates tends to the boundary. In particular, if the boundary of
D is sufficiently regular, then either the sequence of iterates converges, uniformly on
compact sets, to a constant map τ � D or f is an automorphism.

With a few partial exceptions, the study of continuous holomorphic dynamical
systems on Riemann surfaces started much later. A sequence of iterates can be inter-
preted as a homomorphism from the semigroup� endowedwith the sum to the semi-
group of holomorphic self-maps of the Riemann surface endowed with the composi-
tion. From this point of view, a continuous holomorphic dynamical system is a one-
parameter semigroup, that is a continuous homomorphism from the semigroup �+
endowed with the sum to the semigroup of holomorphic self-maps of the Riemann
surface endowedwith the composition. Again, we are interested in the asymptotic be-
havior. On the unit disk, Berkson and Porta [61] in 1978 showed that one-parameter
semigroups can be recovered as the flow of a semicomplete holomorphic vector field,
the infinitesimal generator of the semigroup. Shortly later, Heins [190] in 1981 has been
able to classify one-parameter semigroups on all Riemann surfaces, showing that the
only interesting ones are on�; furthermore, using the results of Berkson andPorta, he
was able to give neat geometric representations of one-parameter semigroups on�.

This was more or less the state of the art in 1989 when [3] was published. The
first part of that book was devoted to holomorphic dynamical systems in one complex
variable; the second part of the book dealt with the theory of holomorphic dynamical
systems in several complex variables, a subject that (with a few notable exceptions)
was just starting to be developed at that time. Thirty years have passed; also consid-
ering that [3] went soon out of print, a few years ago I thought that it was time for a
new updated edition. My expectationwas that the second part of the bookwould have
needed a thorough rewriting, because the landscape of the field in several variables
has changed a lot in the intervening years; but I also thought that the updating of the
first part should have been a much easier affair, because in one variable the theory
seemed to be already more or less complete at the end of 1980s.

Well, I was wrong. The book you have in your hands is the updated version of
only the first part of [3] and it is about three times longer than the original, going from
about 100 pages to more than 300 pages. What happened is that in the last 30 years,
even though the basic of the subject of course remained the same, many new excit-
ing developments have appeared and many new applications have been discovered;
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moreover, a new light has been shed on results that were already known in 1989 but
that I then left out because it was not yet clear (at least to me) how important they
were. A partial list of the new results included here is: the multi-point Schwarz–Pick
lemma discovered by Beardon andMinda [48] in 2004; the Burns–Krantz theorem [91]
published in 1994 on the boundary rigidity of holomorphic self-maps of �, with the
generalization given by Bracci, Kraus, and Roth [82] in 2020; the study of random it-
eration on hyperbolic Riemann surfaces, started essentially in the 1990s by Gill and
others butwhosemain resultswere obtained by Beardon, Carne,Minda, andNg [52] in
2004, by Keen and Lakic [224, 223, 225] in 2006 and by Short, Christodoulou and my-
self [116, 10] in 2021; the whole theory of models, starting from the fundamental work
of Pommerenke [338], Baker–Pommerenke [34] and Cowen [126] at the beginning of
the 1980s and then revised and completed by Arosio and Bracci [22] in 2016; the study
of backward dynamics done by Bracci and Poggi-Corradini [76, 327] in 2003; and so
on. Furthermore, the study of continuous holomorphic dynamical systems literally ex-
ploded, producing so many new results that to present even just the most important
ones would need yet another book—that, luckily, has already appeared [80]. (And yes,
in a few years you will also get the updated edition of the second part of [3]. I hope.)

Some comments and remarks about the structure of this work are in order. I have
written this book keeping inmind two different goals (and audiences). First of all, this
is intended as a reference book on holomorphic dynamical systems on hyperbolic Rie-
mann surfaces and related topics. During my own investigations, I found many beau-
tiful theorems never presented in book form; furthermore, thewhole theory seemed to
me requiring a comprehensive exposition collecting several results scattered around
in the literature. This allowed a unified exposition of the main results and a clearer
discussion of the threads connecting them.

So, the first audience of this book is mainly composed by researchers in holomor-
phic dynamical systems; they will find an up-to-date description of the field, open
problems to solve and many references to several topics not discussed here. But, as
already anticipated, I also had another goal in mind. This book would also like to be
an introduction to this area for, say, first-year Ph. D. students (or for good master stu-
dents, too), giving them both a sample of typical features and techniques, presented
from scratch starting from the Schwarz lemma, as well as motivations provided by the
historical development of the theory.

Also for this reason, I tried to keep prerequisites to a minimum. Besides a good
knowledge of the basics of function theory of one complex variable, only a good topo-
logical background (up to covering spaces and the fundamental group) is needed.
Sometimes we shall use notions or results from ordinary differential equations, differ-
ential geometry or measure theory, but whenever an external result is needed I have
tried to always give a precise statement and a reference to a place where a proof can
be found. Moreover, the Appendix contains statements and proofs of a few classical
results not always covered by standard introductory courses in complex analysis.



XII | Introduction

Let us now briefly describe the actual content of this book; more details can be
found in the introductions to each chapter.

Chapter 1 is a thorough introduction to geometric function theory on hyperbolic
Riemann surfaces. We shall discuss the Schwarz–Pick lemma, including the multi-
point version; the Poincaré metric and distance; the structure of the automorphism
group of � and, more generally, of hyperbolic Riemann surfaces; the Montel, Vitali,
and Picard theorems in full generality; the classification of Riemann surfaces; the
boundary behavior of the universal covering map of multiply connected hyperbolic
domains; the Ahlfors–Schwarz–Pick lemma; and much more.

In Chapter 2, we introduce the horocycles in� and their main properties, the Ju-
lia andWolff lemmas that are boundary versions of the Schwarz lemma. We use them
to study the angular derivative of holomorphic self-maps of� into itself, proving the
Julia–Wolff–Carathéodory theorem, and then to investigate the structure of the auto-
morphism group of a hyperbolic Riemann surface. We shall also prove the Lindelöf
theorem on the existence of nontangential limits and the Burns–Krantz theorem on
the boundary rigidity of holomorphic self-maps of�.

Chapter 3 is devoted to discrete dynamics on hyperbolic Riemann surfaces. We
start by describing the theory for holomorphic functionswith a fixed point; we present
twoproofs of theWolff–Denjoy theorem;wedevelop the iteration theory onhyperbolic
Riemann surfaces and its version in finitely connected hyperbolic domains; we study
the stability of the Wolff point; we introduce the notion of model for a holomorphic
self-map, proving its existence and uniqueness; and we study random iteration on
hyperbolic Riemann surfaces.

In Chapter 4,we concentrate our attention on the dynamics in the unit disk,where
we can get deeper results. We study in detail how the orbits approach the Wolff point;
we prove a complete classification of the possible models that can arise for holomor-
phic self-maps of �, including ways to detect the model just looking at the map; we
study the backward dynamics, understanding what happens to the orbits in the past
and not just in the future; and we get a few results about the existence of common
fixed points for commuting maps.

In Chapter 5, we investigate the one-parameter semigroups of holomorphic func-
tions on a Riemann surface. In particular, we present the results of Berkson–Porta
and Heins cited above about the existence and properties of the infinitesimal genera-
tor, the classification of one-parameter semigroups on Riemann surfaces other than�
and the geometrical realization of one-parameter semigroups on�.

Finally, as anticipated, to help the reader the Appendix contains the statement
and proofs of a number of less standard results in real and complex analysis of one
variable that we happen to use in the book.

Each section of each chapter ends with notes, containing history, comments, re-
marks, indications of related topics, and references to the bibliography. I tried to sys-
tematically trace who did what when and indeed the list of references includes more
than 400 entries from 1826 to 2022. However, I am painfully aware that this list is not
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complete and I apologize in advance to anybody I forgot to mention or that did not
receive a correct attribution.

Let us end this (long) introduction with the pleasant duty of acknowledgments.
First and foremost, I would like to deeply thank my wife, Adele, and my sons,
Leonardo, Jacopo, and Niccolò that supported me (in both the Italian meanings of
the word: sustain and endure) during all these years, not complaining too much
when their respectively husband and father disappeared in a mathematical hole with
a faraway look clearly showing that he was not listening to the much more important
things that they were saying to him. But when I emerge from the hole, I look at them
and I am proud of who they are and have become. And I apologize, at least most of
the time, and they forgive me, most of the times.

I thankfully and fondly remember the late Edoardo Vesentini, my Ph. D. advisor,
that somany years ago trustedmewhen I told him that I wanted to study holomorphic
dynamical systems (a field that at the time I called iteration theory). If I had a good
start in my mathematical career, it is because of him.

The complete list of friends and colleagues that helped me and accompanied me
in this 30-year long journey would occupy too much space to be printed here—and I
consider myself a very lucky person for having such an extensive list. A special role in
my mathematical and personal life has been played by Filippo Bracci, Chiara de Fab-
ritiis, Graziano Gentili, Giorgio Patrizio, Jasmin Raissy, Tamara Servi, and Francesca
Tovena but I extend a heartfelt thanks to all of you on the list. I could not have done
it without you, really.

A special thanks goes tomy editors at de Gruyter, in particular to Apostolos Dami-
alis, Steve Elliot, and Nadja Schedensack that put up with all my delays for so many
years. At last, this book is completed; let us see how many years I will need for the
next one.

Last but not least, I would like to thank my mother, Silvana, 88 years old but still
going strong and still trying to understand what I actually do for a living. Teaching,
is clear. Administration, is understandable. Mathematical research. . . but she always
trusted me no matter what. Thanks mom, this book is for you.


