Algebra II - Esercizi - 1 Alcune Soluzioni

1. Sia A un anello tale che per ogni ideale I non contenuto nel nilradicale esiste $x \neq 0$, $x \in I$ tale che $x^2 = x$. Provare che il radicale di Jacobson e il nilradicale di A sono uguali.

Soluzione Sia J il radicale di Jacobson di A e N il nilradicale. Poiche' $N\subseteq J$ e' sufficiente provare l'inclusione opposta. Supponiamo che $J\not\subset N$. Allora $\exists x\neq 0,\ x\in J$ tale che $x^2=x$. Allora x(x-1)=0, poiche' $x\in J$, x-1 e' invertibile da cui si avrebbe x=0 contro l'ipotesi.

- 2. Sia A un anello, \mathcal{R} il nilradicale. Allora sono fatti equivalenti:
 - i) A possiede un unico ideale primo
 - ii) ogni elemento di A è invertibile oppure nilpotente
 - iii) A/\mathcal{R} è un campo

Soluzione i) => ii). In questo caso A e' un anello locale e $\mathcal{R} = \mathfrak{m}$. Se $x \in \mathfrak{m}$ allora e' nilpotente altrimenti $(x,\mathfrak{m}) = 1$ e quindi esistono $y \in A$, $m \in \mathfrak{m}$, tali che 1 = xy + m, dato che m e' nilpotente 1 - m = xy e' una unita' di A e quindi x e' invertibile.

- ii) = > iii). Se x e' nilpotente $x \in \mathcal{R}$ e quindi $\bar{x} = 0$ in A/\mathcal{R} ; se x non e' nilpotente x e' invertibile in A e quindi anche in A/\mathcal{R} . Cosi' ogni elemento $\bar{x} \neq 0$ e' invertibile in A/\mathcal{R} che quindi e' un campo.
- iii) => i) Sia $P \subset A$ primo. $\mathcal{R} = \cap_{\mathcal{P}} P_i \subset P$, con $\mathcal{P} = \{$ primi di $A \}$, ma poiche' \mathcal{R} e' massimale si ha $\mathcal{R} = P$, ossia esiste solo un primo $P \subset A$.
- 3. Sia A un dominio di integrita' con la proprieta' che ogni ideale proprio di A e' prodotto di un numero finito di ideali massimali. Provare che:
 - se $\mathfrak{m} \subset A$ e' un ideale massimale allora esistono un elemento $x \in A$ e un ideale $I \neq 0$ tali che $I\mathfrak{m} = (x)$.
 - $\bullet\,$ se J,Le $\mathfrak m$ sono ideali di Ae $\mathfrak m$ e' massimale allora $J\mathfrak m=L\mathfrak m$ implica J=L.

Soluzione Se $\mathfrak{m}=(0)$ allora A e' un campo e basta considerare x=0 e I=(1). Sia quindi $\mathfrak{m}\neq(0)$ e sia $x\in\mathfrak{m},\ x\neq0$, allora per ipotesi $(x)=\mathfrak{m}_1..\mathfrak{m}_k$ e' prodotto di ideali massimali. Poiche' $(x)=\mathfrak{m}_1..\mathfrak{m}_k=\mathfrak{m}_1\cap..\cap\mathfrak{m}_k\subset\mathfrak{m}$ esiste i tale che $\mathfrak{m}_i\subset\mathfrak{m}$ e dato che \mathfrak{m}_i e' massimale, $\mathfrak{m}_i=\mathfrak{m}$. Se poniamo $I=\mathfrak{m}_1..\mathfrak{m}_{i-1}\mathfrak{m}_{i+1}..\mathfrak{m}_k$ si ha la tesi.

Se A e' un campo la tesi e' ovvia visto che J=L=(0). Supponiamo quindi che A non sia un campo e che $J\mathfrak{m}=L\mathfrak{m}$. Siano $x\neq 0$ e $I\neq 0$ tali che $I\mathfrak{m}=(x)$, moltiplicando per I si ottiene $J(x)=J\mathfrak{m}I=L\mathfrak{m}I=L(x)$, da cui per ogni $j\in J$ esiste $l\in L$ tle che jx=lx ossia x(j-l)=0, poiche' $x\neq 0$ e A e' un dominio j=l e quindi la tesi.

- 4. Sia A un anello commutativo con identita'. Provare che se un elemento $a \in A$ e' tale che:
 - $a \in \mathbf{J}(A)$, $(\mathbf{J}(A)$ indica il radicale di Jacobson di A)
 - a e' idempotente modulo $I \subset A$ ideale di A, ossia $(a+I)^2 = a+I$,

allora $a \in I$.

Soluzione Per ipotesi per ogni $b \in I$ esiste $c \in I$ tale che $(a+b)^2 = (a+c)$. Quindi $a(1-a) = 2ab + b^2 - c \in I$. Poiche' $a \in \mathbf{J}(A)$, 1-a e' una unita' e quindi $a \in I$.

- 5. Siano I, J, K ideali di un anello A, tali che:
 - (i) $J \subseteq K$
 - (ii) $I \cap J = I \cap K$
 - (iii) (J+I)/I = (K+I)/I

Provare che J = K.

Soluzione. Per (i), basta provare che $K \subseteq J$. Sia dunque $k \in K$. Per (iii) esistono $j \in J$, $i_1, i_2 \in I$, tali che $k + i_1 \equiv j + i_2 \pmod{I}$, quindi, dato che $J \subseteq K$, $k - j \in I \cap K = I \cap J$ da cui segue $k \in J$.

- 6. Sia A un anello locale con ideale massimale $\mathfrak m$ principale Provare che valgono i seguenti fatti:
 - (i) $\forall a, b \in \mathfrak{m}, \ a, b \neq 0$ si ha che

$$(a) = (b) \iff a = bu, \ u \in A \text{ invertibile}$$

(ii) Se $\mathfrak{m} = (m) \neq (0)$, allora m e' un elemento irriducibile di A

Soluzione. (i) Se(a) = (b) esistono $r, s \in A$ tali che a = rb e b = sa. Supponiamo che r non sia invertibile. Allora $r \in \mathfrak{m}$. In questo caso, 1 - rs e' invertibile e quindi dalla relazione (1 - rs)a = 0 si ottiene a = 0 contro le ipotesi. Il viceversa e' ovvio.

- (ii) Sia m=ab e supponiamo che a non sia un'unita'. Allora per la prima parte della dimostrazione $(m) \subsetneq (b)$. Per la massimalita' di \mathfrak{m} allora (b)=A e quindi m e' irriducibile.
- 7. Sia A un anello tale che le seguenti condizioni siano soddisfatte:
 - i) Il radicale di Jacobson di A, $\mathfrak{J}(A)$, e' un ideale primo, diverso da (0).
 - ii) Ogni ideale $I \supseteq \mathfrak{J}(A)$ e' principale.
 - iii) $\mathfrak{D}(A) = \{ \text{ divisori di zero di } A \} \subseteq \mathfrak{J}(A).$

Allora A e' un anello locale e $\mathfrak{J}(A)$ e' massimale.

Soluzione. Bastera' dimostrare che ogni elemento $a \notin \mathfrak{J}(A)$ e' invertibile in A. Per (ii) esiste $x \in A$ tale che $\mathfrak{J}(A) = (x)$ e se $a \notin \mathfrak{J}(A)$ allora $(\mathfrak{J}(A), a) = (b)$ e $b \notin \mathfrak{J}(A)$. Da questo segue che x = by per $y \in A$. Poiche' $\mathfrak{J}(A)$ e' primo e $b \notin \mathfrak{J}(A)$, si deve avere $y \in \mathfrak{J}(A)$, quindi y = cx con $c \in A$. Cosi' otteniamo x = by = bcx, ossia x(1 - bc) = 0 e quindi per (iii) che $1 - bc \in \mathfrak{J}(A)$. Allora 1 - (1 - bc) = bc e' invertibile e quindi b e' invertibile in A e $(\mathfrak{J}(A), a) = A$. Allora esiste $s \in A$ tale che $1 - sa \in \mathfrak{J}(A)$ e come prima da questo segue che a e' invertibile, come volevamo.

8. Sia A un anello commutativo con identita' e sia $I \subset A$ un ideale contenuto nel nilradicale di A. Provare che A e' locale se e solo se A/I e' locale.

Soluzione. Per la corrispondenza fra ideali di A e A/I e' immediato che se A e' locale anche A/I e' locale. Supponiamo quindi che A/I sia locale e sia $\bar{\mathfrak{m}}$ il suo ideale massimale e sia $\pi^{-1}(\bar{\mathfrak{m}})=\mathfrak{m}\subset A$ (dove $\pi:A\longrightarrow A/I$ e' la proiezione canonica). Se proviamo che ogni elemento $a\not\in\mathfrak{m}$ e' invertibile, allora A e' locale e \mathfrak{m} e' il suo ideale massimale. Sia $a\not\in\mathfrak{m}$, allora $\pi(a)\not\in\bar{\mathfrak{m}}$ e quindi $\pi(a)$ e' invertibile in A/I ossia esiste $\bar{b}=\pi(b)$ tale che $\pi(a)\bar{b}=1$ in A/I, da cui segue ab=1+i con $i\in I$. Poiche' I e' contenuto nel nilradicale di A, 1+i e' invertibile da cui la tesi.

9. Sia A un anello commutativo con identita'. Provare che se per ogni $x \in A$ esiste n > 1 tale che $x^n = x$, allora ogni ideale primo di A e' massimale.

Soluzione. Proviamo la tesi dimostrando che se I e' ideale primo, allora in A/I ogni elemento diverso da zero e' invertibile. Sia dunque $\bar{x} \in A/I$, $\bar{x} \neq 0$. Per ipotesi si ha che $\bar{x}(\bar{x}^{n-1}-1)=0$ e quindi poiche' A/I e' un dominio d'integrita' si ha la tesi.

- 10. Sia $\varphi:A\longrightarrow B$ un omomorfismo surgettivo di anelli . Provare che:
 - i) Se $I \subset A$ e' un ideale di A, tale che $\ker \varphi \subseteq I$ allora $\sqrt{(\varphi(I))} = (\varphi(\sqrt{I}))$.
 - ii) Se $J \subset B$ e' un ideale di B allora $\sqrt{\varphi^{-1}(J)} = \varphi^{-1}(\sqrt{J})$.

Soluzionei) Osserviamo innanzitutto che, per la surgettivita' di φ si ha che $\varphi(I) = (\varphi(I))$ e quindi per ogni elemento $a \in (\varphi(I))$ esiste $c \in I$ tale che $a = \varphi(c)$.

Sia $a=\varphi(c)\in (\varphi(\sqrt{I}))$, con $c^m\in I.$ A $a^m=(\varphi(c))^m=\varphi(c^m)\in \varphi(I)$ da cui $a\in \sqrt{(\varphi(I))}.$

Per l'altra inclusione sia $a = \varphi(c) \in \sqrt{(\varphi(I))}$, e sia m tale che $a^m = \varphi(b) \in (\varphi(I))$. Quindi si ha che $c^m - b \in \ker \varphi \subset I$, ossia $c \in \sqrt{(I)}$ e cosi' $a \in (\varphi(\sqrt{I}))$.

(ii) Si ha che $a \in \sqrt{\varphi^{-1}(J)} \iff a^m \in \varphi^{-1}(J) \iff \varphi(a^m) \in J \iff (\varphi(a))^m \in J \iff \varphi(a) \in \sqrt{J} \iff a \in \varphi^{-1}(\sqrt{J}).$

- 11. Sia A un anello a ideali principali e sia $\mathfrak D$ l'insieme dei divisori di zero di A. Provare che se $\mathfrak J(A)=\mathfrak D\neq (0)$ (dove $\mathfrak J(A)$ e' il radicale di Jacobson di A) allora A e' un anello locale.
 - **Soluzione** Osserviamo innanzitutto che l'ideale $\mathfrak{J}(A)=(j)$ e' primo. Infatti se $ab\in\mathfrak{J}(A)=\mathfrak{D}$ allora esiste $v\neq 0$ tale che vab=0 da cui segue che o a o b e' in $\mathfrak{D}=\mathfrak{J}(A)$. Per provare la tesi, bastera' dimostrare che se $x\notin\mathfrak{J}(A)$ allora $(x,\mathfrak{J}(A))=A$. Sia (x,J(A))=(x,j)=(a), dove $a\notin\mathfrak{J}(A)$. Si ha che j=ab con $b\in\mathfrak{J}(A)$, poiche' $\mathfrak{J}(A)$ e' primo e possiamo scrivere b=jk, da cui segue che j(1-ak)=0 e quindi che $1-ak\in\mathfrak{D}=\mathfrak{J}(A)$. Allora 1-(1-ak)=ak e' invertibile e quindi (x,J(A))=(a)=A.
- 12. Sia A un anello commutativo con identita'. Provare che se $f = \sum f_i x^i, g = \sum g_i x^i \in A[x]$ sono tali che $(f_0, ..., f_n) = (g_0, ..., g_m) = A$ allora anche $h = \sum h_i x^i = fg$ e' tale che $(h_0, ..., h_s) = A$.
 - **Soluzione 1.** Se $(h_0,..,h_s) \neq A$ esiste un ideale massimale $\mathfrak{m} \supseteq (h_0,..,h_s)$, e d'altra parte, per ipotesi, esistono f_i e g_j che non appartengono ad \mathfrak{m} . Siano r,s i minimi indici per cui $f_r,g_s \notin \mathfrak{m}$. Allora da $h_{r+s} = \sum_{i=0}^{r+s} f_i g_{r+s-i} = \sum_{i=0}^{r-1} f_i g_{r+s-i} + f_r g_s + \sum_{i=r+1}^{r+s} f_i g_{r+s-i}$ si otterrebbe $f_r g_s \in \mathfrak{m}$. Assurdo.
 - **Soluzione 2** Se $(h_0, ..., h_s) \neq A$ esiste un ideale massimale $\mathfrak{m} \supseteq (h_0, ..., h_s)$, allora $fg \equiv 0 \pmod{\mathfrak{m}[x]}$ e questo e' assurdo poiche' $A[x]/\mathfrak{m}[x]$ e' un dominio e $f, g \not\equiv 0 \pmod{\mathfrak{m}}$.
- 13. Sia A un anello commutativo con identita'. Sia $a \in A$, definiamo $I_a = \{ax x | x \in A\}$ e diciamo che a e' un elemento quasi-regolare se $I_a = A$. Provare che:
 - i) $\forall a \in A, I_a$ e' un ideale,
 - ii) $a \in A$ e' quasi regolare se e solo se $\exists c \in A$ tale che a + c ac = 0
 - iii) ogni nilpotente e' quasi-regolare
 - iv) se ogni elemento di A diverso da 1 e' quasi-regolare allora A e' un campo.
 - **Soluzione**.(i) Siano $b_1 = ax_1 x_1, b_2 = ax_2 x_2 \in I_a$ allora $b_1 + b_2 = a(x_1 + x_2) (x_1 + x_2)$ e $kb_1 = a(kx_1) (kx_1)$ sono elementi di I_a . Oppure basta osservare che I_a e' l'ideale generato da 1 a in A. Quindi a e' quasi regolare se e solo se 1 a e' invertibile.
 - (ii) Se a e' quasi regolare allora $a \in I_a$, quindi esiste $c \in A$ tale che a = ac c. Viceversa, proviamo che $\forall d \in A, d \in I_a$. Per ipotesi a = ac c quindi $a \in I_a$ quindi $\forall d \in A$ se consideriamo $ad \in I_a$ e dalla definizione di I_a anche $ad d \in I_a$. Quindi $d = ad (ad d) \in I_a$.
 - (iii) Sia a nilpotente e n tale che $a^n = 0$. Consideriamo $b = -a a^2 ... a^{n-1}$ allora a + b ab = 0 e quindi per il punto (ii) a e' quasi regolare.
 - (iv) Sia $a \in A$, $a \neq 0, 1$, proviamo che a e' invertibile. a e' un elemento quasi regolare quindi 1 a e' invertibile. Allora esiste $x \neq 0$ tale che

x(1-a)=x-ax=1e quindiax=x-1,poiche $x\neq 1$ xe' quasi regolare, quindi x-1e' invertibile, da cui si ha la tesi.