QUANTUM COMPUTATION AND GROVER’S ALGORITHM

AARON KRAHN

ABSTRACT. This paper provides an introduction to quantum computation by develop-
ing the qubit, quantum gate, and quantum circuits. Three simple quantum algorithms
provide a nice illustration of the fundamentals and help the reader become familiar with
standard quantum computational techniques. Finally, we provide a detailed proof of
Grover’s searching algorithm. Throughout, we attempt to show the advantages of quan-
tum algorithms over their classical counterparts.
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In classical computation, there are a of number problems that cannot be solved with
efficient algorithms. For example, the best classical algorithm for factorizing a large integer
N increases exponentially with the size of the integer. If we continue to increase the size
of the integer, it does not take long before our algorithm takes longer than the age of
the universe to complete itself. In the searching problem (locating a target object in
an N object database), the best classical algorithm increases directly as the size of the
database. Quantum computation is a new computational model that utilizes the principles
of quantum physics with a number of applications. Its goal is both to solve problems that
cannot be solved classically as well as solve a number of problems much more efficiently! In
particular, quantum algorithms for both the factorizing problem and the searching problem
are more efficient than the best classical alternatives. Our approach will closely follow [1]
and [2].

Throughout the rest of the paper, we will adopt Dirac notation to be consistent with that
1
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used in quantum physics. We will denote a vector v in a vector space V by |v). The
inner product of two vectors v and w will be denoted by (v|w).! We can interpret a linear
operator O either as simply acting on a vector v, as O|v) or by acting as (v|Of, where
Ot is the Hermitian adjoint to O. These conventions are in place to ensure that the inner
product of two vectors is defined in the standard way. We will also always assume that
any vector spaces are over the complex numbers.

1. PRELIMINARIES

1.1. The tensor product.

Definition 1.1: Suppose that V and W are vector spaces. Let {|ay),...,|a,)} and
{|61),...,]bk)} be bases for V and W such that for any |v) in V and |w) in W, we
have |v) = Y% | v; |a;) and |w) = Z§:1 wy, |b) , where v; and w; are sets of scalars
from the associated fields. Then we define the tensor product of V and YV as a space
U =YV ® W whose basis elements are given by pairs (|a;), |b;)) and are denoted by

{lay@|b;) - i=1,...,n;j=1,...,k} (1.1.1)

Definition 1.2: For two vectors |v) in V and |w) in W, we define the map ® :
([0}, [w)) = |v) @ [w) by

) @ [w) => Y (viw;) |as) @ |by).

i=1 j=1
We can easily verify a number of properties. For |u), |v) in V and |w) in W, we have

(lu) + |v) @ [w) = [u) © [w) + |v) © [w). (1.1.2)

Similarly, for |v) in V and |wy), |we) in W, we have

[v) @ (Ju) + |w)) = |v) ® |u) + |v) @ |w). (1.1.3)

Definition 1.3: Let A and B be linear transformations (which we will usually call
operators) from V and W, respectively. Then the action of A ® B is defined by

(A® B)(|v) ® |w)) = Alv) ® Blw). (1.1.4)

This definition appears very natural, but it is not at first clear why we can define the
action of the operator in this way. Is this definition even unique? It turns out that
it is, and this observation is at the heart of quantum computation. It allows us to

IThe convention (v] is used to denote the dual-vector and is conjugate linear.
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decompose an operation on a entire quantum system into operations on individual
components and makes the construction of quantum algorithms much simpler. To
prove that this definition is unique, we must first abstract ourselves from our first
definition of the tensor product.

Definition 1.4: Suppose that V and W are vector spaces. Then the tensor product
of V and W is a pair (U, ®) where Y = V@ W is a vector space and ® : VX W — U
is a bilinear map which satisfies the following property:

for any space F and any bilinear function F' : V x W — F, there is a unique linear
function G : V @ W — F such that F(|v), |w)) = G(Jv) ® |w)).

Proposition 1.1: Definition 1.1 satisfies Definition 1.4.

Proposition 1.2: Let A:V — V' and B : W — W be linear operators. Then
there is a unique linear operator A® B : V® W — V' ® W’ such that for any |v) in
V and |w) in W, we have (A ® B)(|v) ® |w)) = Alv) ® Blw)

The proofs of these two propositions are given in [1].

1.2. The basics of quantum computation.

In classical computation, the notion of a bit is highly fundamental. Classically, a
bit can be in one of two states— 0 or 1. For example, the two states of a bit may
correspond to the position of a switch in a particular circuit (on and off), so the bit
has a lot of physical motivation. In quantum computation, however, we generalize
and abstract this notion. We allow a ‘bit’ to be in the states 0 and 1, but also in a
superposition of these states, i.e. a linear combination of the states 0 and 1. We call
this mathematical object a ‘qubit’ and define it more carefully:

Definition 1.5: A qubit is described up to a phase factor by a unit vector in C2.
By convention, we will always take the basis of C? to be

m=(s). w=(}) (12,0

such that the state of qubit can written in the form |¢)) = a|0) 4 8|1), where a and
are complex numbers satisfying |a|?+ |3|> = 1. The requirement that |«|?+|3]? =1
(that it is a unit vector) comes from the fact that in quantum mechanics, if we
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measure a vector |¢0) = a|0) + 3|1), we will obtain the state |0) with probability |«|?
and the state |1) with probability |3]?, and these probabilities must sum to one.

Remark: Multiplying |¢) by a factor ¢ (¢ real) results in an indistinguishable state,
since for any complex number «, |a e?|? = |a|?. This means that we can only define
the state of a qubit up to a phase.
We can therefore re-write [¢), using the the fact that |o|> + |8]* = 1 & a = cos§
and = e"sin g.
6 .0
|v) = cos§|0) +ez¢sm§|1) (1.2.2)

where 6 and ¢ are real numbers and |0) and |1) are the standard basis states. We
have written the state of the system in such a way that the numbers # and ¢ define
a point on a three-dimensional unit sphere, which we call the Bloch Sphere. This is a
useful way of viewing a single qubit because quantum gates and circuits have simple
analogs when viewed from the Bloch Sphere representation.

Definition 1.6: Given a qubit in a state described by the Bloch Sphere Represen-
tation, we define the unit vector (cos ¢ sin @, cos ¢ cosf,sin @) to be the state’s Bloch
vector.

Now we can consider a system with multiple qubits. It is defined in the natural way.

n times
7\

Definition 1.7: An n—qubit system is described by a unit vector in @2 C?*®---@C?
where each of the factors C? corresponds to the space of a single qubit. We denote
this space by C2*" or B®", where B is equal to the space C2 with the |0),|1) basis.

By definition of the tensor product, the basis states for B®" are therefore all possible
products of the form

which, we often write as either |zy,xs,...,2,) or |z), x € {0,1}". Given these basis
states, the state of an arbitrary n-qubit system can be written in the form

Z ag|T), where Z o |? =1 (1.2.4)
z€{0,1}" z€{0,1}"

Once again, the requirement that the amplitudes squared of all of the basis states
sum to one is because the vector is defined as having unit length.
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Example 1.1: Consider a 3-qubit system. By definition, the state of the system is a
unit vector in B®? and can written as

‘lp> = a000|000>+a001|001>+0z010\010)+o¢100|100>—|—0z011|011>+0z101\101)+a110|110>+a111|111>
(1.2.5)

Definition 1.8: A guantum gate on an n-qubit system is an arbitrary operator U

acting on an ordered set M, |M| < n of qubits and the identity operator acting on

the remaining qubits, and is denoted by U[M].

Proposition 1.3: Only unitary operators are valid quantum gates.

Proof. Let
W)= Y aglz), where Y [’ =1 (1.2.6)

z€{0,1}7 ze{0,1}7

and let |¢) = Uly). Then
Y. Pr(je)=l2) = Y (la)(ale) = WUTU) = (wl) = 1. (1.2.7)

ze{0,1}m z€{0,1}"

g

Since unitary operators preserve the inner product, they preserve the length of unit
vectors. This is a necessity for any quantum mechanical system since any state vector
of a system must have unit length.

In the case that M is just a single arbitrary qubit, the action of U[M] is just the
operator U acting on the space of the qubit and the identity operator acting on the

remaining qubits.

Example 1.2: Let H be a two-by-two Hadamard matrix, defined by

H= % G _11) . (1.2.8)
HI0) = i2 G _11) (é) _ iQ G) _ % (1.2.9)

HIY = iz G _11> (2) _ % (_11> _ % (1.2.10)

Then

Similarly,
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Thus, H acts on each computational basis state by bringing it to a superposition of
both basis states.? Likewise, for a two-qubit system, a Hadamard gate applied to
each qubit brings any basis state to a superposition of all four basis states.

Definition 1.9: Let U be a set of quantum gates over an n-qubit system. Then
a quantum circuit over the set U is a sequence Uy [M,], Us[Ms], ..., Up[My,], where
every U; is in U and M; denotes an ordered set of qubits.

We can draw quantum circuits using quantum circuit diagrams. We let each qubit
of the system reside in a row of the diagram and then move left to right acting with
quantum gates, which we denote with the operator name. We surround each gate
with a box and connect all gates with wires. For a list of the different components
of a quantum circuit diagram, consult Nielsen and Chuang.

2. SIMPLE QUANTUM ALGORITHMS

2.1. Deutsch’s Algorithm.

Suppose that Alice, living in Albany, and Bob, living in Boise, are playing the fol-
lowing game. Alice picks a number 0 or 1, and tells Bob her choice by sending him
a letter with the number enclosed. When Bob receives the letter, he sends a either
a 0 or a 1 back to Alice. Then, Alice selects the other number and sends it to Bob,
who responds in the same way. Alice’s job is to figure out whether Bob’s response
function is one-one or not by eliciting the smallest number of responses from Bob.

In mathematical terms, this amounts to the following question: Given a function
f:{0,1} — {0,1}, is f one-one?

Classically, the solution algorithm is trivial: it always takes two evaluations of the
function. We first compute f(0) and then compute f(1). If they yield the same
output, then f is one-one. A quantum computer, however, can solve this problem
by evaluating f only once.

2Equations (1.2.9) and (1.2.10) allow us to write the action of H on a basis state of a single qubit very
succinctly. Namely,

(1™
z€{0,1} \/5

This fact is very useful and will be referenced later in quantum algorithms.
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Deutsch’s Algorithm: Prepare a two-bit quantum system initialized to [¢)) = |01).
Then perform the following quantum circuit:

H[1), H[2], W[1,2], H[1], (2.1.1)

where W is defined by Wiz,y) = |z,y & f(x)) and & means addition modulo 2.
Finally, we perform a measurement of the first qubit.

Proof. We start by preparing a 2-qubit system in which the first qubit is in the state
|0) and the second qubit is in the state |1), that is, |[¢)) = |01). We then apply a
Hadamard gate to each qubit to give

_ (o) (10 =11
- (200 (), 12

Then if we apply W to [¢)), we are brought to the state
L () (8582 - 5i0) = oo
by = (2.1.3)
O—[D ) [ 10=]1)) .
i<7> (T) 2 f(0) # £(1)
Acting with a Hadamard gate on the first qubit then gives

+0)(1242) : £(0) = (1)
¥) = (2.1.4)
1) (12) : £(0) # (1)
If we measure the first qubit of |¢)), we will obtain |0) if f is not one-one and |1) if it

is. Since this algorithm solves the problem using only 1 evaluation of f, it is faster
than any possible classical algorithm. O

2.2. The Deutsch-Josza Algorithm.

The Deutsch algorithm is a very simple example, but it is a useful illustration of the
potential of the quantum computer. Now let’s make the game harder. Suppose that
Alice is given a natural number N = 2" for some positive n, and Bob is instructed
to assign a value 0 or 1 to each positive integer less than or equal to N. Let’s also
assume that Bob is a nice guy—-he is either going to assign the same value to each
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number he is given, or he will assign a 0 to half of the numbers he is given and
a 1 to the other half. Alice’s job is to figure out which method Bob is using by
sending him one number at a time and seeing how he responds. Clearly, in the worst
case scenario, Alice would need to send Bob a number % + 1 times to determine his
response function.

Mathematically, this is equivalent to the following problem:

Given a function f : {0,1}" — {0,1} that is either balanced or constant, determine
using the least number of evaluations of f which one it is.

Since there are 2™ distinct inputs for f, we can associate each n-bit string to a positive
integer less than or equal to N.

The Deutsch-Josza Algorithm: Prepare an n+1 qubit system initialized to
|0Y*™|1). Then perform the following quantum circuit:

H[1,2,....n,n+1],W[l,....,.n+ 1], H[1,...,n].

Finally, we perform a measurement of the first n qubits.

i

0) —=
W

Hen
1) ——H]

Proof.
We start by preparing an n+1 qubit system in which the first n qubits are in the state
|0) and the last qubit is in the state |1), that is, [¢) = 0) ® [0) ® - - - ® |0) ®|1). We

vV
ntimes

then apply a Hadamard gate to each qubit of [¢)). This action on the first n qubits
results in an equal superposition of all the basis states for B®", and the action on
the (n 4 1)th qubit is as usual.

oy = > \|;62>—n(’0>\;§|1>>. (2.2.1)

z€{0,1}"

Applying W to [¢) results in

EEAVICOIS _
e 3 ¢ 1)@ | ><|o>ﬂu>>, (222)
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since for any |x), if f(z) = 0, then Wlx,y) = |z,y) and if f(z) = 1, then Wz, y) =
(=Dlz,y).

The Hadamard gate is then applied to each of the first n qubits, which gives

_ (1 [ (04 | [10) — 1)

|¢>—x€{§0;}n VoG ’; N ” 7 ] (2.2.3)
Loy GV ymmEmmeenngy | o) 1)
| BT

=2 2

2€{0,1}" ze{0,1}"

(=17 @z) | | ]0) — [1)
o] [ a2

where x - 2 = 1121 ® 920 D -+ B x,,2,.

Now let’s consider the probability that the first n qubits of |¢) are in the state |0)*".
As postulated in quantum mechanics, this probability is just the modulus squared
of the amplitude of [0)*", which in this case is just

@]’
[ > %] . (2.2.6)

z€{0,1}"

If f is constant, then either f(x) = 0 for all x or f(x) = 1. In either case, the
probability of the first n qubits being in the state |0>®” is just 1. This means that
the coefficients of the other basis states have to be zero! In other words, if f is
constant and we measure the first n qubits, then we will always obtain the state
|O>®n! On the other hand, if f is balanced, the probability of the first n qubits being
in the state |0)*" is 0. O

The Deutsch-Josza algorithm is able to solve the problem with certainty using only
one evaluation of the function f, as compared to the classical approach which takes
% + 1 evaluations. This is because the quantum algorithm takes advantage of the
superposition of all possible states in order to extract information about f much
more quickly than is possible classically.

Yet, despite the seemingly impressive result of this algorithm, there are a few set-
backs. First of all, this problem in and of itself is not very useful—it has few known
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applications. In addition, if we allow ourselves to use a probabilistic classical com-
puter rather than a deterministic one, the problem becomes almost trivial. Let us
turn to a much more important result, the quantum search algorithm.

2.3. The Quantum Fourier Transform.

For the last of our basic quantum algorithms, we will discuss the quantum version
of the fourier transform and how to implement it with a quantum circuit.

Definition 2.1: The Quantum Fourier Transform on an arbitrary orthonormal basis
[1),12),...,|N) is a linear operator defined by

N
. 1 T
i = DN, (233.1)

where [j) is a member of the orthonormal basis.

For the rest of this section, we will assume that N = 2" for some natural number
n so that an n-qubit system system with the standard basis states can be expressed
as |1),2),...,|N). Then, for j € {1,..., N}, we have |j) = |jija...,Jn), With each
Ji € B. More formally, we have

=27 4 a2n T 2 (2.3.2)

Proposition 2.1: The quantum fourier transform (QFT) is unitary.

Proof. We must show that the QFT preserves the inner product. By definition,

N
1
<j|QFTTQFT|Z> — 27rzylc/N e27rmk/N k’]{? 627mk ])/N
o S e - L3
(2.3.3)
This is just a geometric series, whose sum is given by
1 — 2m(i—7)

1 — e2m(i—j)/N

U
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|j2)

’jn—1>

)
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Proposition 2.2 Let |j) = |j1, j2,-- -, jn) be an arbitrary basis state. Then

(|0 + €2m3n/2|1))(|0) 4 2mUn=1/2+in/D|1)) .. . (|0) + e2milin/ZHiz/4+-+in/27)| 1))

(2.3.5)
That is, the QFT can be given a product representation.?
Proof. Straightforward algebra ( [2] has a direct proof). O

Theorem 2.3.1. The following quantum circuit implements the QFT.

D e i

—— - H Ry o Ry

The gate Ry is defined by
1 0
Rk = <O 627r7,/2k> (236)

By the wvertical connecting wires, we mean that we only apply the gate Ry if the
connected qubit (with a black dot) is in the state |1). We do not apply Ry, if the qubit
is in the state |0).

3. GROVER’'S QUANTUM SEARCH ALGORITHM

Suppose we are given an address book of N names, and we wish to find and contact
one individual in the book. Classically, the obvious algorithm to employ is to search
from the beginning of the book to the end. We will have to browse through N/2
entries to have a 50% chance of finding the one we want. In other words, the algo-
rithm takes O(N) operations, meaning that the number of steps of the algorithms
asymptotically grows as the length of the list. On a quantum computer, we can make
our lives much easier by using Grover’s Algorithm. Grover’s Algorithm searches an

3This product representation is often taken to be the definition of the QFT, but we choose to define it
with a sum so that it can be compared more easily with its classical analog.

|

e i
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N-object unsorted database for an object in O(v/ N) operations, offering a quadratic
speedup from its classical counterpart. We will use the same approach as [2].

Theorem 3.1. Let N be a large positive integer such that 1,2,...,N — 1, N is an
N-object unsorted database. Assume that N = 2" for some natural number n and
let y be a positive integer in the database such that there is a function f from the
database to the set {0, 1}that satisfies f(y) = 1 and f(z) = 0 for each x # y in
the database. Then the following algorithm outputs the target object y with O(\/N)
operations and succeeds with probability O(1).

Initialize an n + 1 qubit system to the state |0)*"|1). Define operators O and W by
Olz, z) = |z)|z @ f(x)) and W = 2|¢)(b| — I. Then perform the following quantum
circuit:

R times
7\

Ve

H[1,2,...,N,N+1],[O[1,...,N], W[1,...,N], (3.0.7)

L 4N . Finally, measure the first n qubits.

where R ~

‘O) n [yén Wwen .

o \
\

1) —H]
where the three dots on the top wire indicate that we iterate the grouped gates R
times.

Before we prove this main theorem, we will prove a few other results from which

Grover’s Algorithm will follow rather directly.

Proposition 3.1: Consider an n + 1 qubit quantum system intialized to

T 0)—|1
R L;(r >¢§| >>.

z€{0,1}"

Let f : {0,1}" — {0,1} be a function with the restriction that there is only one
z in {0,1}" such that f(x) = 1, which we denote by y. Let O be defined as in
the statement of the theorem. Then the action of the operator O can be viewed as
flipping the amplitude of the basis state |y) and leaving all other states unchanged.
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Proof. As in the Deutsch-Josza algorithm, applying O to |¢)) gives

—1)7@|z) [ 10) — |1
v — Zn( >¢2_nr><|>ﬁ\>>‘

ze{0,1}

We can decompose this sum into two parts in order to simplify it.

— 1)@ —1)/® T

zFy
since f(z) =0 for x # y.* O

In the statement of the theorem, we assumed that we had an N-object unsorted
database with N = 2" for some n. Since there are 2" computational basis states for
an n-qubit system and 2™ objects in the database, we can associate each object in
the database to a basis state of the quantum system. In other words, we associate
object 1 of the database with the basis state |0...0), object 2 with the basis state
|0...1) and so on and so forth.

This allows us to rewrite an equal superposition of all basis states of an n-qubit
system, which we denote by [¢), in terms of N rather than n:

Z 2 Z (3.0.9)

z€{0,1}"
In fact, we can go further, by decomposing the sum into its solution and non-solution
components in the following way:

Z \/_ \/_ (3.0.10)

Definition 3.1: We define the normalized state |«) by

a) Z |z), (3.0.11)

xséy
such that Equation (3.0.10) can be rewritten as

(3.0.12)

“We ignore the (n + 1) qubit in the last steps because it is unchanged by the operator O.
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Lemma 3.1: Given a quantum system in the state given by Equation (3.0.12), the
operator O performs a reflection of the vector |¢)) about the vector |«) in the plane
defined by |a) and |y).
Proof. Let
N -1 . 1 |
VN V"’
such that [¢) is in the space spanned by |a) and |y). Then by Proposition 3.1,

VN -1

¥) = ) )

1
Oy = a) — —|y), 3.0.13
) = Lot e) = <l 3.0.13)
since by definition, |«) is the collection of non-solutions. O

Lemma 3.2 Let the state of a quantum system be given by
N -1 1 |
VN VN’

Let |¢) be as in Lemma 3.1. Then the operator W can be viewed as a reflection of

the vector |¢) about [¢) in the space spanned by |«) and |y).

|6) = ) )-

Proof. By straightforward computation. U

The two above lemmas shows that the action of O followed by W is a rotation in the
space spanned by |a) and |y), since the product of these two reflections is a rotation
by twice the angle between the initial vectors (simple fact from geometry). Now the
methodology of Grover’s Algorithm is becoming clear. We construct a vector [1))
in the span of |a) and |y) and successively rotate it using the operators O and W,
moving it closer and closer to our solution vector, |y). We are now ready to prove
the main theorem.

Proof. (Theorem 3.1) We start with a quantum system in the |0)*"|1). After ap-
plying the Hadamard gate for each qubit, we are brought to a superposition of the
computational basis states, as in the Deutsch-Josza algorithm:

oy =Y \|;02>_n<,0>\;§|1>>. (3.0.14)

z€{0,1}"
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We can now rewrite the first n qubits, as we did in Equation (3.0.10) and then again
in Equation (3.0.12), giving

B N -1 1 10) —|1)
¥) = ( Wici o) + m|y>> (—\/5 ) (3.0.15)

Now, let us denote the angle between [¢) and |a) by g. By a property of the inner

product, cos(m — &) = (yly) = \/LN In other words, rotating [¢)) by arccos(\/%v)

radians brings it to |y). We know by the remark below Lemma 3.2 that O and then
W acting on [¢)) rotates it by 6 radians. Therefore, we will need to iterate this

rotation
R = CL (arccos \/1/N>5’

7

times in order to rotate |¢) to within an angle 0/2 of |y).

This is the exact value of R. However, for practical purposes, it is much more useful
to have a simpler and more intuitive expression for R. To achieve this, we use the
fact that the arccos function is bounded above by 7 and the fact that since there is
only one solution to the search problem, 6 is small, so

0 0 1

This gives that

(3.0.17)

or in other words, R = O(v/N). 0

Example 3.1: Take N = 4. Let f be a function such that f(3) = 1 and f(x) = 0
for x = 1,2,4. Choose a two-qubit system, n = 2, so that 2" = N. Initialize it to
|tb) = 100)|1). Following Theorem 3.1, we apply the Hadamard gate to each qubit,

which gives
00)  |o1) [10)  [11) 0) —[1)
( 2 2 2 2 > ( V2 ) (3018)

5By CL, we mean the closest integer, rounding down. For example, CL(3.7) = 4.
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We now rewrite the state of the system following Equations (3.0.10) and (3.0.12) and
ignore the last qubit due to footnote 4 .

bR B w) VB 1
(7—1—74-7—1—7) = 7|04> ‘|‘§|3>7 (3'0'19)

where |«) is, by definition, equal to \/L§|1> + \/Lg|2) + \/ig|4> Finally, we apply Grover’s
Iteration R =1 time and then measure.

V3 1
WOlyp) = |3). (3.0.21)
If we measure the state of the system, we will get |3) with certainty! And, we were
able to search for the target object with only application of Grover’s Iteration. This

is faster than any classical search algorithm!
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