

Geometria e Algebra Lineare / I parte — Scritto del 28/6/14 — Quesiti

Nome _____ Cognome _____ Matricola _ _ _ _

- 1. Determinare la base \mathcal{B} di \mathbb{R}^2 tale che $\left[\left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \right]_{\mathcal{B}} = \left(\begin{array}{c} 7x_1 + 3x_2 \\ 5x_1 + 2x_2 \end{array} \right)$ per ogni $x_1, x_2 \in \mathbb{R}$.
- **2.** Se in $X = \{p(t) \in \mathbb{C}_{\leq 4}[t] : p(-i) = p'(1+i) = 0\}$ sono dati $p_1(t), p_2(t), p_3(t)$ linearmente indipendenti, si può concludere che costituiscono una base? Giustificare la risposta.
- **3.** Se $f: \mathbb{R}^9 \to \mathbb{R}^7$ è lineare non surgettiva e $f(3e_2 + 7e_5) = 4e_6$, che dimensione può avere Ker(f)?
- 4. Risolvere $\begin{cases} 4x + y 2z = -1 \\ 3x y z = 2 \\ 5x + 3y 3z = -4. \end{cases}$
- 5. Calcolare $\begin{pmatrix} 1+i & -2 \\ 2-i & i-1 \end{pmatrix}^{-1}$.
- **6.** Data $A = (v_1, v_2, v_3) \in \mathcal{M}_{3\times 3}(\mathbb{R})$ con $\det(A) = -\frac{1}{10}$ calcolare $\det(2v_1 + 3v_3, -v_1 + 2v_2 + 4v_3, 6v_2 v_3)$.
- 7. Dati $X = \{x \in \mathbb{R}^3 : 2x_1 x_2 + 5x_3 = 0\}$ e $Y = \text{Span} \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix}$

calcolare la proiezione su X di $\begin{pmatrix} 7 \\ -1 \\ 1 \end{pmatrix}$ rispetto alla decomposizione $\mathbb{R}^3 = X \oplus Y$.

Le risposte devono essere sinteticamente giustificate

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Questo foglio deve essere intestato immediatamente con nome, cognome e matricola. Questo foglio va consegnato alla fine della prima ora. Durante la prima ora non è concesso alzarsi né chiedere chiarimenti. Durante la prima ora sul tavolo è consentito avere solo i fogli forniti e la cancelleria.

Corso di Laurea in Ingegneria Civile, Ambientale ed Edile

Geometria e Algebra Lineare / I parte — Scritto del 28/6/14 — Esercizî

- **1.** Considerare $A = \begin{pmatrix} 1 & 2 & 0 \\ -2 & 0 & 3 \\ 1 & 1 & -1 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 2 & -1 \\ 0 & -1 & 1 \\ 3 & -2 & 1 \end{pmatrix}$ $C = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 1 & 0 \\ 3 & 1 & 1 \end{pmatrix}$.
- (A) (3 punti) Posto $f(x) = A \cdot x$ provare che f è invertibile.
- (B) (2 punti) Calcolare $(A^{-1})_{23}$.
- (C) (2 punti) Provare che le colonne di B costituiscono una base \mathcal{B} di \mathbb{R}^3 .
- (D) (2 punti) Provare che le colonne di C costituiscono una base C di \mathbb{R}^3 .
- (E) (3 punti) Calcolare la seconda colonna di $[f]_{\mathcal{B}}^{\mathcal{C}}$.
- 2. Al variare di $t, s \in \mathbb{R}$ considerare in \mathbb{R}^3 i sottospazî affini

$$E_t: \left\{ \begin{array}{l} (t-1)x + (t-2)y + (1-2t)z = t \\ (t+1)x + (5-t)y - (3t+1)z = t+3 \end{array} \right. \qquad F_s = \left(\begin{array}{l} 1 \\ 1 \\ 2 \end{array} \right) + \operatorname{Span} \left(\left(\begin{array}{l} s+3 \\ -1-s \\ 3-s \end{array} \right), \ \left(\begin{array}{l} -s-7 \\ s+4 \\ s-2 \end{array} \right) \right).$$

- (A) (3 punti) Trovare $n, n_0 \in \mathbb{N}$ e $t_0 \in \mathbb{R}$ tali che E_t ha dimensione n per $t \neq t_0$, mentre ha dimensione n_0 per $t = t_0$.
- (B) (3 punti) Trovare $m, m_0 \in \mathbb{N}$ e $s_0 \in \mathbb{R}$ tali che F_s ha dimensione m per $s \neq s_0$, mentre ha dimensione m_0 per $s = s_0$.
- (C) (2 punti) Trovare equazioni parametriche di E_t per t=-2 e per $t=t_0$.
- (D) (2 punti) Trovare equazioni cartesiane di F_s per s=1 e per $s=s_0$.
- (E) (2 punti) Trovare l'intersezione tra E_1 e $F_{(-1)}$.

Geometria e Algebra Lineare / I parte — Scritto del 28/6/14 — Quesiti

Risposte

$$5. \diamondsuit$$

1.
$$\mathcal{B} = \left(\begin{pmatrix} -2 \\ 5 \end{pmatrix}, \begin{pmatrix} 3 \\ -7 \end{pmatrix} \right)$$

- **2.** Sì perché X ha dimensione 3
- 3. Tra 3 e 8 compresi

4.
$$\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + \operatorname{Span} \begin{pmatrix} 3 \\ 2 \\ 7 \end{pmatrix}$$

5.
$$\frac{1}{4} \begin{pmatrix} -2 & 2+2i \\ -3-i & 2i \end{pmatrix}$$

6. 7

7.
$$\frac{1}{7}\begin{pmatrix} 34 \\ 3 \\ -13 \end{pmatrix}$$

Geometria e Algebra Lineare / I parte — Scritto del 28/6/14 — Esercizî

Soluzioni

1.

(A)
$$\det(A) = -1$$

(C)
$$\det(B) = 4$$

(D)
$$\det(C) = -1$$

$$\begin{array}{c}
(E) & \begin{pmatrix}
-7 \\
-3 \\
27
\end{pmatrix}$$

2.

(A)
$$n = 1$$
, $n_0 = 2$, $t_0 = 3$

(B)
$$m = 2$$
, $m_0 = 1$, $s_0 = 5$

(C)
$$\begin{pmatrix} 7 \\ -1 \\ 3 \end{pmatrix} + \operatorname{Span} \begin{pmatrix} 11 \\ -2 \\ 5 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \operatorname{Span} \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 5 \\ 1 \end{pmatrix}$

(D)
$$2x + 3y - z = 3$$
,
$$\begin{cases} 3x + 4y = 7 \\ x + 4z = 9 \end{cases}$$

$$\begin{array}{c}
(E) & \begin{pmatrix} 2 \\ -1/2 \\ -1/2 \end{pmatrix}
\end{array}$$