

Geometria e Algebra Lineare / I parte — Scritto del 28/6/14 — Quesiti

Nome _____ Cognome ____ Matricola _ _ _ _

- 1. Determinare la base \mathcal{B} di \mathbb{R}^2 tale che $\left[\left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \right]_{\mathcal{B}} = \left(\begin{array}{c} 5x_1 + 3x_2 \\ 7x_1 + 4x_2 \end{array} \right)$ per ogni $x_1, x_2 \in \mathbb{R}$.
- **2.** Se in $X = \{p(t) \in \mathbb{C}_{\leq 4}[t]: p(-i) = p'(1+i)\}$ sono dati $p_1(t), p_2(t), p_3(t)$ linearmente indipendenti, si può concludere che costituiscono una base? Giustificare la risposta.
- **3.** Se $\varphi : \mathbb{R}^8 \to \mathbb{R}^7$ è lineare non surgettiva e $\varphi(7e_1 4e_3) = 8e_5$, che dimensione può avere $\text{Ker}(\varphi)$?
- **4.** Risolvere $\begin{cases} 2x + y 3z = 8 \\ 3x y z = 6 \\ x + 3y 5z = 10. \end{cases}$
- 5. Calcolare $\begin{pmatrix} 1-i & 2 \\ 2-i & 1+i \end{pmatrix}^{-1}$.
- **6.** Data $A = (v_1, v_2, v_3) \in \mathcal{M}_{3\times 3}(\mathbb{R})$ con $\det(A) = -\frac{1}{13}$ calcolare $\det(2v_1 + 3v_2, -v_1 + 2v_2 + 4v_3, 6v_1 v_3)$.
- 7. Dati $X = \{x \in \mathbb{R}^3 : 5x_1 x_2 + 5x_3 = 0\}$ e $Y = \text{Span}\begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix}$

calcolare la proiezione su X di $\begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$ rispetto alla decomposizione $\mathbb{R}^3 = X \oplus Y$.

Le risposte devono essere sinteticamente giustificate

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Questo foglio deve essere intestato immediatamente con nome, cognome e matricola. Questo foglio va consegnato alla fine della prima ora. Durante la prima ora non è concesso alzarsi né chiedere chiarimenti. Durante la prima ora sul tavolo è consentito avere solo i fogli forniti e la cancelleria.

Corso di Laurea in Ingegneria Civile, Ambientale ed Edile

Geometria e Algebra Lineare / I parte — Scritto del 28/6/14 — Esercizî

- **1.** Considerare $A = \begin{pmatrix} 1 & 2 & 0 \\ -3 & 0 & 2 \\ 1 & -1 & 1 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 3 & -1 \\ 2 & 0 & -1 \\ 2 & -3 & 1 \end{pmatrix}$ $C = \begin{pmatrix} 2 & 3 & -1 \\ 1 & 1 & 0 \\ 3 & 1 & 1 \end{pmatrix}$.
- (A) (3 punti) Posto $f(x) = A \cdot x$ provare che f è invertibile.
- (B) (2 punti) Calcolare $(A^{-1})_{21}$.
- (C) (2 punti) Provare che le colonne di B costituiscono una base \mathcal{B} di \mathbb{R}^3 .
- (D) (2 punti) Provare che le colonne di C costituiscono una base C di \mathbb{R}^3 .
- (E) (3 punti) Calcolare la prima colonna di $[f]_{\mathcal{B}}^{\mathcal{C}}$.
- 2. Al variare di $s,t\in\mathbb{R}$ considerare in \mathbb{R}^3 i sottospazî affini

$$E_s: \left\{ \begin{array}{l} (1-2s)x + (s-2)y + (s-1)z = s \\ -(3s+1)x + (5-s)y + (s+1)z = s + 3 \end{array} \right. \qquad F_t = \left(\begin{array}{c} 2 \\ 1 \\ 1 \end{array} \right) + \operatorname{Span} \left(\left(\begin{array}{c} 3-t \\ -1-t \\ t+3 \end{array} \right), \left(\begin{array}{c} t-2 \\ t+4 \\ -t-7 \end{array} \right). \right)$$

- (A) (3 punti) Trovare $m, m_0 \in \mathbb{N}$ e $s_0 \in \mathbb{R}$ tali che E_s ha dimensione m per $s \neq s_0$, mentre ha dimensione m_0 per $s = s_0$.
- (B) (3 punti) Trovare $n, n_0 \in \mathbb{N}$ e $t_0 \in \mathbb{R}$ tali che F_t ha dimensione n per $t \neq t_0$, mentre ha dimensione n_0 per $t = t_0$.
- (C) (2 punti) Trovare equazioni parametriche di E_s per s=-2 e per $s=s_0$.
- (D) (2 punti) Trovare equazioni cartesiane di F_t per t=1 e per $t=t_0$.
- (E) (2 punti) Trovare l'intersezione tra E_1 e $F_{(-1)}$.

Geometria e Algebra Lineare / I parte — Scritto del 28/6/14 — Quesiti

Risposte

 $5. \heartsuit$

1.
$$\mathcal{B} = \left(\begin{pmatrix} -4 \\ 7 \end{pmatrix}, \begin{pmatrix} 3 \\ -5 \end{pmatrix} \right)$$

- **2.** No perché X ha dimensione 4
- 3. Tra 2 e 7 compresi

4.
$$\begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} + \operatorname{Span} \begin{pmatrix} 4 \\ 7 \\ 5 \end{pmatrix}$$

5.
$$\frac{1}{4} \begin{pmatrix} -2i & 2+2i \\ 3+i & -2 \end{pmatrix}$$

6.
$$-5$$

7.
$$\frac{1}{18} \begin{pmatrix} 21 \\ -25 \\ -26 \end{pmatrix}$$

Geometria e Algebra Lineare / I parte — Scritto del 28/6/14 — Esercizî

Soluzioni

1.

(A)
$$\det(A) = 12$$

(B)
$$\frac{5}{12}$$

(C)
$$\det(B) = -9$$

(D)
$$\det(C) = 1$$

(E)
$$\begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$$

2.

(A)
$$m = 1$$
, $m_0 = 2$, $s_0 = 3$

(B)
$$n=2$$
, $n_0=1$, $t_0=5$

(C)
$$\begin{pmatrix} 3 \\ -1 \\ 7 \end{pmatrix} + \operatorname{Span} \begin{pmatrix} 5 \\ -2 \\ 11 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \operatorname{Span} \begin{pmatrix} \begin{pmatrix} 2 \\ 0 \\ 5 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 5 \\ 0 \end{pmatrix}$

(D)
$$x - 3y - 2z = -3$$
,
$$\begin{cases} 4x + z = 9 \\ 4y + 3z = 7 \end{cases}$$

$$(E) \left(\begin{array}{c} -1/2\\ -1/2\\ 2 \end{array}\right)$$