Settimana Matematica 2015 - Apertura pre-iscrizioni

Sono aperte le pre-iscrizioni online per la Settimana Matematica 2015, la manifestazione di orientamento rivolta agli studenti degli ultimi anni della scuola secondaria di secondo grado organizzata dal Dipartimento di Matematica di Pisa nell'ambito del Piano Nazionale Lauree Scientifiche. Le pre-iscrizioni obbligatorie termineranno improrogabilmente il 15-01-2015.

Per tutte le informazioni sulla manifestazione cliccare sul seguente link: Settimana Matematica 2015.

On Aharonov-Bohm operators with moving poles

Relatore: 
Veronica Felli

In this talk, I will present some results in collaboration with L. Abatangelo
(Milano-Bicocca), L. Hillairet (Orléans), C. Léna (Torino),  B. Noris
(Amiens), M. Nys (Torino), concerning the behavior of the eigenvalues of
Aharonov-Bohm operators with one moving pole or two colliding
poles. In both cases of poles moving inside the domain and approaching
the boundary, the rate of the eigenvalue variation is estimated in
terms of the vanishing order of some limit eigenfunction. An accurate

Data Seminario: 
Tuesday, November 7, 2017
Aula: 
Sala Seminari (Dip. Matematica)
Ora Fine: 
0000 - 15:00
Affiliazione: 
Università di Milano bicocca
Ora Inizio: 
0000 - 14:00

Liouville-type problems on compact surfaces: a variational approach

Abstract. A class of Liouville equations and systems on compact surfaces is considered: we focus on the Toda system which is motivated in mathematical physics by the study of models in non-abelian Chern-Simons theory and in geometry in the description of holomorphic curves. We discuss its variational aspects which yield existence results.
Data Seminario: 
Wednesday, October 25, 2017
Relatore: 
Aleks Jevnikar
Ora Fine: 
0000 - 18:00
Aula: 
Sala Seminari (Dip. Matematica)
Ora Inizio: 
0000 - 17:00

Backward error analysis for polynomial rootfinders

Relatore: 
Leonardo Robol

The most common methods to compute roots of polynomials is to rephrase the problem in linear algebra terms: one constructs a companion matrix (or pencil) that has the roots of the polynomial as eigenvalues.
However, even when the eigenvalue method used is backward stable, it's non-trivial to map the backward error back on the polynomial. This problem has been studied extensively in the past and it has been shown that relying on the QR method does not provide a normwise backward-stable rootfinder. For this reason, one needs to rely on QZ + appropriate scaling.

Data Seminario: 
Tuesday, October 17, 2017
Aula: 
Sala Seminari (Dip. Matematica)
Ora Fine: 
0000 - 12:00
Affiliazione: 
ISTI--CNR Pisa
Ora Inizio: 
0000 - 11:00

Pages

Subscribe to www.dm.unipi.it/ RSS