## Renormalized Hennings invariants and TQFTs

Non-semisimple constructions in quantum topology produce strong invariants and TQFTs with unprecedented properties. The first family of non-semisimple quantum invariants of 3-manifolds was defined by Hennings in 1996. The construction enabled Lyubashenko to build mapping class groups representations out of every finite-dimensional factorizable ribbon Hopf algebra. Further attempts at extending these constructions to TQFTs only produced partial results, as the vanishing of Hennings invariants in many crucial situations made it impossible to treat non-connected surfaces.