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The first part of talks is based on joint papers [1]–[3]. We establish Luzin N - and
Morse–Sard properties for mappings f : Rn → Rm of the Sobolev–Lorentz class Wk

p,1 with
k = n − m + 1 and p = n

k
(this is the sharp case that guaranties the continuity of

mappings; for values k = n, p = 1 the Sobolev–Lorentz class Wn
1,1(Rn) coincides with the

usual Sobolev space Wn
1 (Rn)). Using these results we prove that almost all level sets of f

are finite disjoint unions of C1–smooth compact manifolds of dimension n −m (despite
of the fact that f itself is not C1 ) .

These results helped in mathematical fluid mechanics — for the so-called Leray’s
problem, which remained open for more than 80 years (starting from the publication
of the famous paper of Jean Leray 1933 [7] ). Namely, for plane and axially symmetric
spatial flows the existence theorem was proved for boundary value problem of stationary
Navier-Stokes equations in bounded domains under necessary and sufficient condition of
zero total flux (see [4]–[6]).

Recall that according to the mass conservation law the total flux (i.e. the amount of
fluid flows through all the boundary components of the domain) should be zero, it is a nec-
essary condition of solvability. However, J. Leray proved the existence of a solution under
a stronger assumption that the flow of fluid through each component of the boundary is
zero (this condition means the lack of sources and sinks). The case when the boundary
value satisfies only the necessary condition of zero total flux (i.e. when the sources and
sinks are allowed) was left open by him and the problem of existence (or nonexistence) of
a solution for such case is known in the scientific community as Leray’s problem.
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