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Abstract
Let {f

𝜈
} ⊂ Hol(X,X) be a sequence of holomorphic self-maps of a hyperbolic Riemann 

surface X. In this paper we shall study the asymptotic behaviour of the sequences obtained 
by iteratively left-composing or right-composing the maps {f

�
} ; the sequences of self-maps 

of  X so obtained are called left (respectively, right) iterated function systems. We shall 
obtain the analogue for left iterated function systems of the theorems proved by Beardon, 
Carne, Minda and Ng for right iterated function systems with value in a Bloch domain; and 
we shall extend to the setting of general hyperbolic Riemann surfaces results obtained by 
Short and the second author in the unit disk � for iterated function systems generated by 
maps close enough to a given self-map.

Keywords Wolff-Denjoy theorem · Random iteration · Iterated function system · Bloch 
domain

Mathematics Subject Classification 37H12 (primary) · 37F99, 30D05 (secondary)

1 Introduction

A classical result in one variable holomorphic dynamics is the Wolff-Denjoy theorem:

Theorem 1.1 (Wolff [15–17], Denjoy [5]; 1926) Let f ∈ Hol(�,�) be a holomorphic self-
map of the unit disk 𝔻 ⊂ ℂ , not an elliptic automorphism. Then there exists a point � ∈ � 
such that the sequence {f k} of iterates of f converges, uniformly on compact subsets, to the 
constant �.
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In this statement, an elliptic automorphism is an automorphism of � with a fixed point 
in � . Up to a conjugation an elliptic automorphism is a rotation, and so its dynamics is 
well understood; Theorem 1.1 describes completely the dynamics of all other holomor-
phic self-maps of � . The point � in the statement is the Wolff point of the function f.

This result has been generalised by Heins in 1941 to hyperbolic Riemann surfaces as 
follows:

Theorem  1.2 (Heins [9]; 1941) Let X be a hyperbolic Riemann surface, and let 
f ∈ Hol(X,X) . Then either: 

 (i) f has an attracting fixed point in X, or
 (ii) f is a periodic automorphism, or
 (iii) f is a pseudoperiodic automorphism, or
 (iv) the sequence {f k} is compactly divergent.

Furthermore, the case (iii) can occur only if X is either simply connected (and f has a fixed 
point) or doubly connected (and f has no fixed points).

An attracting fixed point z0 of f is a fixed point (that is, f (z0) = z0 ) where the derivative 
of f (which is well-defined because z0 is a fixed point) has modulus less than 1; in particu-
lar, it follows that the sequence of iterates {f k} converges, uniformly on compact subsets, 
to the constant function z0 . A periodic automorphism is an automorphism  f ∈ Aut(X) such 
that f q = idX for some q ≥ 1 — and then the dynamics of f is trivial. A pseudoperiodic 
automorphism is an automorphism f ∈ Aut(X) such that there exists a subsequence of 
iterates converging to the identity  idX . Elliptic automorphisms of � are always periodic 
or pseudoperiodic. A doubly connected hyperbolic Riemann surface is necessarily biholo-
morphic to a pointed disk or to an annulus; furthermore, pseudoperiodic automorphisms 
are conjugated to rotations, either of the disk or of the pointed disk or of an annulus, and so 
their dynamics is well known.

Finally, a sequence {f
𝜈
} ⊂ Hol(X, Y) of holomorphic maps between two Riemann sur-

faces is compactly divergent if for every compact K ⊆ X and every compact L ⊆ Y  there is 
a �0 ∈ ℕ such that f

�
(K) ∩ L = ∅ for all � ≥ �0 . Roughly speaking, a compactly diverging 

sequence is diverging to infinity (or, more precisely, is converging to the infinity point of 
the Alexandroff compactification of  Y). Restricting to the case of self-maps for simplic-
ity, when X = Y = D is a domain in a larger compact Riemann surface  X̂ , a compactly 
divergent sequence of iterates is converging toward the boundary, in the sense that all accu-
mulation points of the sequence are constant maps contained in the boundary, and the set 
of accumulation points is closed and connected. Furthermore, when the boundary of D is 
sufficiently nice, Heins has obtained a complete analogue of the Wolff-Denjoy theorem:

Theorem 1.3 (Heins [11]; 1988) Let D ⊂ �X be a hyperbolic domain in a compact Riemann 
surface X̂ . Assume that �D consists of a finite number of isolated points or disjoint Jordan 
curves. Let f ∈ Hol(D,D) be such that the sequence of iterates {f k} is compactly divergent 
in D. Then the sequence {f k} converges, uniformly on compact subsets, to a point � ∈ �D.

See also [1] for proofs and other related results.
A sequence of iterates is obtained by composing the same map over and over. Stim-

ulated from problems coming from continued fractions theory, computer simulations 
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of dynamical systems and other sources, in the ’80s mathematicians have started to 
study properties of sequences obtained by composing different self-maps. This area of 
exploration is often called “random dynamics" because the self-maps to consider can 
be chosen at random according to a suitable probability distribution, for instance with 
mass concentrated around a fixed self-map, thus obtaining random perturbations of the 
sequence of iterates. We shall not pursue a probabilistic approach in this paper, prefer-
ring a more topological approach, but we kept the term “random dynamics" in the title 
as done, for instance, in [2].

Let us define the sequences of self-maps appearing in random dynamics.

Definition 1.4 Let {f
�
} be a sequence of self-maps of a Riemann surface X, all different 

from the identity. The left (or direct or forward) iterated function system (or composition 
system) generated by {f

�
} is the sequence of self-maps {L

�
} given by

The right (or reverse or backward) iterated function system generated by {f
�
} is instead the 

sequence of self-maps {R
�
} given by

When all the maps f
�
 belong to a given family F  of self-maps of X, we shall say that the 

corresponding left or right iterated function system is in F .

Clearly, general left or right iterated function systems can have very erratic behav-
iours. Moreover, left and right iterated function systems generated by the same sequence 
can behave very differently; consider for instance the case when all f

�
 ’s are constant. So 

to get meaningful theorems one has somehow to restrict the class F  of functions used to 
generate the iterated function systems.

In this paper we shall consider iterated function systems generated by two classes of 
self-maps: maps belonging to Hol(X,Ω) , where Ω ⊂ X is a Bloch subdomain of X; and 
maps sufficiently close to a given self-map F ∈ Hol(X,X).

Roughly speaking (see Section 2 for a precise definition) a Bloch subdomain Ω of a 
hyperbolic Riemann surface is a domain Ω ⊂ X such that all holomorphic maps from X 
into Ω are strict contraction with respect to the Poincaré distance of X. Right iterated 
function systems in Hol(X,Ω) have been thoroughly studied by Beardon, Carne, Minda 
and Ng [2] in 2004. Left iterated function systems, on the other hand, are not so well 
studied, with the exception of a few results due to Gill in the unit disk (see [6–8]) and to 
Keen and Lakic on plane domains (see [12], Section 11.2).

In this paper, along the lines followed in [2] for right iterated function systems, we 
shall complete the study of left iterated function systems in Bloch domains proving the 
following result:

Theorem 1.5 Let Ω ⊂ X be a Bloch domain in a hyperbolic Riemann surface X, and let 
{f

�
} be a sequence of holomorphic self-maps of X such that f

𝜈
(X) ⊆ Ω for all � ∈ ℕ , that is 

{f
𝜈
} ⊂ Hol(X,Ω) . Then: 

 (i) all limit points of the left iterated function systems {L
�
} generated by {f

�
} are con-

stant;

L
�
= f

�
◦f

�−1◦⋯◦f0 .

R
�
= f0◦f1◦⋯◦f

�
.
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 (ii) each f
�
 admits a unique fixed point z

�
∈ Ω and {L

�
} converges to a constant z∞ ∈ X 

if and only if z
�
→ z∞.

Random iteration for holomorphic self-maps ot the unit disk � sufficiently close 
to a given map have been thoroughly studied by Short and the second author in 2019 
(see [4]). In this paper we shall extend their results to the setting of generic hyperbolic 
Riemann surfaces in the spirit of Heins theorems. According to Theorem 1.3 we need 
to distinguish three cases: when F ∈ Hol(X,X) has an attracting fixed point; when the 
sequence {F�} of iterates of  F is compactly divergent; and when F is a periodic or 
pseudoperiodic automorphism of X.

When F has an attracting fixed point, we shall prove a fairly complete result:

Theorem  1.6 Let X be a hyperbolic Riemann surface and let F ∈ Hol(X,X) be with an 
attracting fixed point z0 ∈ X . Then: 

 (i) there exists a neighbourhood U of F in Hol(X,X) such that every right iterated func-
tion system generated by {f

𝜈
} ⊂ U converges to a constant in X;

 (ii) if {f
𝜈
} ⊂ Hol(X,X) is a sequence converging to F, then the left iterated function 

system generated by {f
�
} converges to z0.

Notice that the convergence to a constant of a right iterated function system gener-
ated by {f

�
} depends only on the behaviour of f

�
 for � large enough, but the actual value 

of the constant limit  z∞ depends on the whole sequence {f
�
} ; in particular, one can 

change z∞ only by changing  f0 (see Remark 4.2).
When the sequence of iterates of F is compactly divergent, simple examples (see, 

e.g., Example 4.6) show that in general we cannot deduce much on the behaviour of 
right iterated function systems generated by functions close to F. On the other hand, if 
f
�
 converges to F fast enough, we shall prove that the behaviour of {L

�
} is dictated by 

the dynamical behaviour of F:

Theorem 1.7 Let X be a hyperbolic Riemann surface, and let F ∈ Hol(X,X) be such that 
its sequence of iterates {Fk} is compactly divergent. Then we can find a sequence of neigh-
bourhoods U

𝜈
⊂ Hol(X,X) of  F such that if f

�
∈ U

�
 for all � ∈ ℕ , then the left iterated 

function system {L
�
} generated by {f

�
} is compactly divergent. Furthermore, if X ⊂ �X is a 

hyperbolic domain in a compact Riemann surface and {Fk} converges to a point � ∈ �X , 
then {L

�
} converges to �.

Surprisingly enough, if the convergence of f
�
 to F is too slow, then the left iterated 

function system might be oscillating even when the sequence of iterates of F converges 
to a point in the boundary; see Example 4.5.

Finally, if F is a periodic or pseudoperiodic automorphism of  X, in Section  4 we 
shall see that the only interesting case is X = � , that has already been studied in [4].

2  Preliminaries

In this section we collect known definitions and results that we shall use in the sequel.



Random iteration on hyperbolic Riemann surfaces  

1 3

Let X be a hyperbolic Riemann surface. We shall denote by �X the Poincaré distance 
on  X, which is a complete distance whose main property is the classical Schwarz-Pick 
lemma:

Theorem 2.1 Let X and Y be two hyperbolic Riemann surfaces, and f ∶ X → Y  a holomor-
phic function. Then

Furthermore, equality at some z1 ≠ z2 implies that f is a covering map; conversely, if f is a 
covering map, then for every w1 , w2 ∈ Y  and z1 ∈ X with f (z1) = w1 we can find z2 ∈ X so 
that f (z2) = w2 and �Y (w1,w2) = �X(z1, z2).

For a proof see, e.g., [3].
For each z ∈ X and R > 0 we shall denote by BX(z,R) the ball with respect to �X centred 

in z and with radius R. The completeness of �X implies that the closed balls BX(z,R) are 
compact in X.

Definition 2.2 If Ω ⊂ X is a domain in a hyperbolic Riemann surface X and z ∈ Ω put

and

We say that Ω is a Bloch domain of X if R(Ω,X) < +∞.

It is easy to see that relatively compact subdomains of a hyperbolic Riemann surface are 
Bloch domains; but it is not too difficult to find examples of Bloch domains which are not 
relatively compact (see, e.g., [2]).

The main property of Bloch domains is the following:

Proposition 2.3 (Beardon, Carne, Minda, Ng [2]) Let Ω ⊂ X be a Bloch domain in a hyper-
bolic Riemann surface X. Then there exists 0 < � < 1 such that

for all z, w ∈ X and all f ∈ Hol(X,Ω) ⊂ Hol(X,X).

A hyperbolic domain D in a compact Riemann surface  X̂ is a domain D ⊂ �X which is 
a hyperbolic Riemann surface on its own. A useful property of the Poincaré distance of 
hyperbolic domains is the following:

Proposition 2.4 Let D ⊂ �X be a hyperbolic domain in a compact Riemann surface. 
Take  �0 ∈ �D , and a sequence  {z

𝜈
} ⊂ D converging to  �0 . Let {w

𝜈
} ⊂ D be another 

sequence, and assume there is M > 0 so that

∀z1, z2 ∈ X �Y

(
f (z1), f (z2)

)
≤ �X(z1, z2) .

R(z; Ω,X) = sup{r > 0 ∣ BX(z, r) ⊆ Ω}

R(Ω,X) = sup
z∈Ω

R(z; Ω,X) = sup{r > 0 ∣ ∃z ∈ Ω ∶ BX(z, r) ⊆ Ω} .

�X

(
f (z), f (w)

)
≤ � �X(z,w)

∀𝜈 ∈ ℕ 𝜔D(z𝜈 ,w𝜈
) < M .
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Then w
�
→ �0 as � → +∞.

For a proof see, e.g., [14].
We shall need a few properties of the spaces of holomorphic maps between hyperbolic 

Riemann surfaces, that we shall always consider endowed with the compact-open topology 
(which is equivalent to the topology of uniform convergence on compact sets). The first one is 
the classical Vitali theorem (for a proof see, e.g., [1], Theorem 1.1.45):

Theorem  2.5 (Vitali) Let X and Y be hyperbolic Riemann surfaces, and let {f
�
} be a 

sequence of functions in Hol(X, Y) . Assume there is a set A ⊂ X with at least one accumu-
lation point such that {f

�
(z)} converges for every z ∈ A . Then {f

�
} converges uniformly on 

compact subsets of X to a function f ∈ Hol(X, Y).

The next two results are again due to Heins [10]:

Theorem 2.6 Let X be a hyperbolic Riemann surface with non-abelian fundamental group. 
Then idX is isolated in Hol(X,X) . In particular, Aut(X) is discrete, and each f ∈ Aut(X) is 
isolated in Hol(X,X).

Proposition 2.7 Let X be a hyperbolic Riemann surface not biholomorphic to  � 
or �∗ = � ⧵ {0} . Then Aut(X) is open and closed in Hol(X,X).

For a modern proof see, e.g., [1], Theorem 1.2.19, Corollary 1.2.24.
The next result is another consequence of Heins’ works; we include a proof for 

completeness.

Corollary 2.8 Let X be a hyperbolic Riemann surface and f ∈ Hol(X,X) a self-covering 
of X. Assume that f has a fixed point z0 ∈ X . Then f is a periodic or pseudoperiodic auto-
morphisms of X, and z0 is not attracting.

Proof Let �X ∶ � → X the universal covering map. Given z̃0 ∈ �
−1
X
(z0) we can choose a 

lifting f̃ ∶ � → � of f such that f̃ (̃z0) = z̃0 . Since (see, e.g., [13], Lemma 12.1) f̃  is a self-
covering of � , it must be an automorphism; therefore |̃f �(̃z0)| = 1 , by the classical Schwarz-
Pick lemma. This clearly implies that |f �(z0)| = 1 , and the assertion follows from Theo-
rem 1.2.   ◻

Finally, we recall a few standard facts about doubly connected hyperbolic Riemann sur-
faces; for proofs see, e.g., [1].

A Riemann surface is doubly connected if and only if its fundamental group is isomorphic 
to ℤ . A doubly connected hyperbolic Riemann surface is necessarily biholomorphic either to 
the pointed disk �∗ = � ⧵ {0} or to an annulus

for some 0 < r < 1 . A hyperbolic Riemann surface has abelian fundamental group if and 
only if it is simply connected (and hence is biholomorphic to � ) or doubly connected.

Finally, we can completely describe the automorphisms of doubly connected hyperbolic 
Riemann surfaces. Indeed, every automorphism of �∗ is of the form �(z) = ei�z for some 

A(r, 1) = {z ∈ ℂ ∣ r < |z| < 1}
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� ∈ ℝ ; and every automorphism of A(r, 1) is either of the form �(z) = ei�z or of the form 
�(z) = ei�rz−1 for some � ∈ ℝ.

3  Random iteration on Bloch domains

In this section we shall study left iterated function systems in Hol(X,Ω) , where Ω ⊂ X is a 
Bloch domain in a hyperbolic Riemann surface X. As in [2] the main result is of topological 
nature:

Theorem 3.1 Let {f
𝜈
} ⊂ C0(X,X) be a sequence of continuous self-maps of a metric space 

(X, d), and assume that there exists 0 < � < 1 such that

Let {L
�
} be the left iterated function system generated by {f

�
} . Then 

 (i) every (pointwise) limit point of {L
�
} is constant;

 (ii) if a subsequence {L
�k
} converges pointwise to a constant x0 ∈ X , then it converges 

to x0 uniformly on compact subsets;
 (iii) assume that every f

�
 has a (necessarily unique) fixed point x

�
∈ X . Then {L

�
} 

converges uniformly on compact subsets to a constant function if and only if the 
sequence {x

�
} converges in X.

Proof 

 (i) Assume that a subsequence {L
�k
} converges pointwise to a map g ∈ C0(X,X) . Then 

for every x, y ∈ X we have 

 and thus g is constant.
 (ii) Assume that L

�k
(x) → x0 for each x ∈ X  . Let K ⊆ X  be compact, and let 

d0 = maxx∈K{d(x0, x)} < +∞ . Then 

 for all x ∈ K , and thus L
�k
→ x0 uniformly on K.

 (iii) Assume first that x
�
→ x∞ ∈ X . Then for all x ∈ X we have 

(1)∀x, y ∈ X ∀� ∈ ℕ d
(
f
�
(x), f

�
(y)

)
≤ �d(x, y) .

d
(
g(x), g(y)

)
= lim

k→+∞
d
(
f
�k
◦⋯◦f0(x), f�k◦⋯◦f0(y)

)
≤ lim

k→+∞
𝓁
�k+1d(x, y) = 0 ,

d
(
L
�k
(x), x0

)
≤ d

(
L
�k
(x),L

�k
(x0)

)
+ d

(
L
�k
(x0), x0

)

≤ �
�k+1d(x, x0) + d

(
L
�k
(x0), x0

)
≤ �

�k+1d0 + d
(
L
�k
(x0), x0

)
,

d
(
L
�
(x), x∞

)
≤ d

(
f
�
◦⋯◦f0(x), f�(x�)

)
+ d(x

�
, x∞)

≤ 𝓁d
(
f
�−1◦⋯◦f0(x), x�

)
+ d(x

�
, x∞)

≤ ⋯

≤ 𝓁
�+1d(x, x0) +

�−1∑

j=0

𝓁
�−jd(xj, xj+1) + d(x

�
, x∞) .
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 The first and third addends in the last line clearly goes to zero as � → +∞ . To 
prove that the second addend goes to zero too, let M = maxj d(xj, xj+1) < +∞ , and 
fix 𝜀 > 0 . Choose �0 ∈ ℕ so that d(xj, xj+1) < 𝜀(1 − �)∕2 as soon as j ≥ �0 and 
�1 ∈ ℕ such that �j

< 𝜀(1 − �)∕(2M) as soon as j ≥ �1 . Then if � ≥ �0 + �1 , we have 

 In this way we have proved that L
�
→ x∞ pointwise — and hence uniformly on 

compact subsets by (ii) — as claimed. Conversely, assume that L
�
→ x∞ and, by 

contradiction, that there exist r > 0 and a subsequence {x
�k
} such that d(x

𝜈k
, x∞) > r 

for all k. Fix x ∈ X . Since L
�
(x) → x∞ , we know that 

 for � large enough. Then for k large enough we have 

 and then d(x
�k
, x∞) ≤ r , contradiction.

  ◻

Remark 3.2 If (X,  d) is complete, the Banach fixed point theorem implies that every 
f ∈ Hol(X,X) satisfying (1) has a unique fixed point in X, and thus the hypothesis in (iii) is 
automatically satisfied.

As recalled in Section 2, if Ω ⊂ X is a Bloch domain, then there exists 0 < � < 1 such 
that

for every z, w ∈ X and every f ∈ Hol(X,Ω) . Therefore Theorem 1.5 is a consequence of 
Theorem  3.1, as shown in the following result, where for the sake of completeness we 
report also what has been proved in [2] for right iterated function systems:

�−1∑

j=0

�
�−jd(xj, xj+1) =

�−�1∑

j=0

�
�−jd(xj, xj+1) +

�−1∑

j=�−�1+1

�
�−jd(xj, xj+1)

≤ M

�−�1∑

j=0

�
�−j +

�(1 − �)

2

�−1∑

j=�−�1+1

�
�−j

= M

�∑

j=�1

�
j +

�(1 − �)

2

�1−1∑

j=1

�
j

≤
M

1 − �
�
�1 +

�(1 − �)

2

1 − �
�1

1 − �
≤ � .

d
(
L
𝜈
(x), x∞

)
<

1 − �

1 + �
r

d(x
�k
, x∞) −

1 − �

1 + �
r ≤ d(x

�k
, x∞) − d

(
L
�k
(x), x∞)

≤ d
(
L
�k
(x), x

�k

)

≤ �d
(
L
�k−1

(x), x
�k

)
≤ �d

(
L
�k−1

(x), x∞
)
+ �d(x

�k
, x∞)

≤
1 − �

1 + �
�r + �d(x

�k
, x∞) ,

�X

(
f (z), f (w)

)
≤ ��X(z,w)
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Corollary 3.3 Let Ω ⊂ X be a Bloch domain in a hyperbolic Riemann surface X, and let 
{f

�
} be a sequence of holomorphic self-maps of X such that f

𝜈
(X) ⊆ Ω for all � ∈ ℕ , that is 

{f
𝜈
} ⊂ Hol(X,Ω) . Then: 

 (i) all limit points of the left and right iterated function systems, {L
�
} and {R

�
} , gener-

ated by {f
�
} are constant;

 (ii) each f
�
 admits a unique fixed point z

�
∈ Ω and {L

�
} converges to a constant z∞ ∈ X 

if and only if z
�
→ z∞;

 (iii) if there is z0 ∈ X such that the set {f
�
(z0)} is relatively compact in X, then {R

�
} con-

verges to a constant function.

Proof The statements for {R
�
} are in [2]. For {L

�
} , since the Poincaré distance of X is com-

plete, by Proposition 2.3 and Remark 3.2 we can apply Theorem 3.1, and we are done.  
 ◻

4  Random iteration of small perturbations

In this section we shall discuss the behaviour of iterated function systems generated 
by functions close enough to a given self-map  F; in particular we would like to under-
stand whether the dynamics of the iterated function systems mimics the dynamics of the 
sequence of iterates of F.

Recalling Theorem  1.2, we see that we have three cases to consider: when F has an 
attracting fixed point, when F is a periodic or pseudoperiodic automorphism and when the 
sequence {Fk} is compactly divergent.

In the first case we have a fairly complete result.

Theorem  4.1 Let X be a hyperbolic Riemann surface and let F ∈ Hol(X,X) be with an 
attracting fixed point z0 ∈ X . Then: 

 (i) there exists a neighbourhood U of F in Hol(X,X) such that every right iterated func-
tion system generated by {f

𝜈
} ⊂ U converges to a constant in X;

 (ii) if {f
𝜈
} ⊂ Hol(X,X) is a sequence converging to F, then the left iterated function 

system generated by {f
�
} converges to z0.

Proof Fix r > 0 and let D = BX(z0, r) . Since D is compact and F is not a self-covering of X 
(see Corollary 2.8), by the general Schwarz-Pick lemma Theorem 2.1 there is 0 < k < 1 
such that �X

(
F(z),F(w)

)
≤ k�X(z,w) for all z, w ∈ D . In particular, since F(z0) = z0 , we 

have F(D) ⊆ BX(z0, kr) ⊂ D . Choose a real number t such that kr < t < r and put

clearly U is a neighbourhood of  F. Notice that D is a hyperbolic Riemann surface, and 
BX(z0, t) is a Bloch domain, because it is relatively compact in  D. If {f

𝜈
} ⊂ U , then, by 

Corollary 3.3 (iii), the corresponding right iterated function system converges in D—and 

U = {h ∈ Hol(X,X) ∣ h(D) ⊂ BX(z0, t)} ;
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hence, by Vitali theorem (Theorem 2.5), in X—to a constant contained in BX(z0, t) , and 
thus (i) is proved.

For (ii), since f
�
→ F , we have f

�
∈ U for all � large enough; truncating L

�
 by finitely 

many terms on the right and relabelling we can assume without loss of generality that 
f
𝜈
(D) ⊂ D for all � ∈ ℕ . Choose now z ∈ D . We have F�(z), L

�
(z) ∈ D for all � ∈ ℕ ; hence

Repeating this argument we get by induction

Fix 𝜀 > 0 . Since 0 < k < 1 and, by assumption, f
�
→ F uniformly on compact subsets, we 

can find �0 large enough so that kj < (1−k)𝜀

4r
 and sup

w∈D

𝜔X

(
fj(w),F(w)

)
<

(1−k)𝜀

2
 as soon as 

j ≥ �0∕2 . Therefore if � ≥ �0 , we have

and so �X

(
L
�
(z),F�(z)

)
→ 0 uniformly on  D as � → +∞ . Since Theorem  1.2 implies 

F�
→ z0 , it follows that L

�
→ z0 on  D and hence, again by Vitali theorem, on  X, as 

claimed.   ◻

Remark 4.2 In Theorem  4.1.(i) by changing  f0 one can change the constant limit of the 
right iterated function system {R

�
} almost arbitrarily. Indeed, in the proof one can choose 

r > 0 so that D = BX(z0, r) is biholomorphic to � . Take {f
𝜈
} ⊂ U , and let z∞ ∈ BX(z0, t) be 

the limit of {R
�
} . Then by replacing f0 with �◦f0 where � ∈ Hol(D,D) is any holomorphic 

self-map of D with 𝜙
(
BX(z0, t)

)
⊂ BX(z0, t) , and since D is biholomorphic to � there are 

plenty of such maps, we obtain a right iterated function system still generated by functions 
in U but converging to �(z∞).

The next example, taken from [4], shows that in Theorem 4.1.(ii) we cannot replace 
the hypothesis f

�
→ F by the hypothesis {f

𝜈
} ⊂ U  for any neighbourhood U  of F.

Example 4.3 Let F ∈ Hol(�,�) be given by F(z) = 1

2
z , and let U ⊂ Hol(�,�) be a neigh-

bourhood of F. Given 𝛿 > 0 and � ∈ ℝ , put f
�,�(z) =

1

2
z + �ei� . Clearly f

�,� ∈ Hol(�,�) as 
soon as 𝛿 < 1∕2.

We claim that we can choose � small enough so that f
�,� ∈ U for all � ∈ ℝ . Indeed, 

fix a compact subset K ⊂ � and let V ⊂ � be an open neighbourhood of F(K), so that 

�X

(
L
�
(z),F�(z)

)
≤ �X

(
L
�
(z),F

(
L
�−1(z)

))
+ �X

(
F
(
L
�−1(z)

)
,F�(z)

)

≤ sup
w∈D

�X

(
f
�
(w),F(w)

)
+ k�X

(
L
�−1(z),F

�−1(z)
)
.

�X

(
L
�
(z),F�(z)

)
≤

�∑

j=0

kj sup
w∈D

�X

(
f
�−j(w),F(w)

)
.

𝜔X

(
L
𝜈
(z),F𝜈(z)

)
≤

𝜈∕2∑

j=0

kj sup
w∈D

𝜔X

(
f
𝜈−j(w),F(w)

)

+

𝜈∑

j=𝜈∕2

kj sup
w∈D

𝜔X

(
f
𝜈−j(w),F(w)

)

<

[
(1 − k)𝜀

2
+ 2rk𝜈∕2

] 𝜈∕2∑

j=0

kj < 2
(1 − k)𝜀

2

1

1 − k
= 𝜀 ,
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F ∈ U(K,V) = {h ∈ Hol(�,�) ∣ h(K) ⊂ V} . Since F(K) ∩ �V = ∅ , there is a 𝛿0 > 0 such 
that d

(
w,F(K)

)
< 𝛿0 implies w ∈ V  , where d denotes the Euclidean distance. As a conse-

quence, if � ≤ �0 , we have f
𝛿,𝜃(K) ⊂ V  for all � ∈ ℝ . Since U contains a finite intersection 

of sets of the form U(K,V) the claim follows.
Given {𝜃

𝜈
} ⊂ ℝ it is easy to check by induction that the left iterated function system 

{L
�
} generated by {f

�,�
�

} is given by

For instance, taking ei�j = (−1)j we get

that does not converge when � → +∞ , and thus {L
�
} cannot be convergent.

The next case is when {F�} is compactly divergent. If f
�
 converges to F fast enough, 

then the dynamics of the left iterated function system generated by {f
�
} is dictated by the 

dynamics of {F�}:

Theorem 4.4 Let X be a hyperbolic Riemann surface, and let F ∈ Hol(X,X) be such that 
the sequence of iterates {F�} is compactly divergent. Then we can find a sequence of neigh-
bourhoods U

𝜈
⊂ Hol(X,X) of  F such that if f

�
∈ U

�
 for all � ∈ ℕ , then the left iterated 

function system {L
�
} generated by {f

�
} is compactly divergent. Furthermore, if X ⊂ �X is a 

hyperbolic domain in a compact Riemann surface X̂ and {F�} converges to a point � ∈ �X , 
then {L

�
} converges to �.

Proof Fix a reference point z0 ∈ X . For � ∈ ℕ set

Since �X

(
F�(z0), z0

)
→ +∞ as � → +∞ we have X =

⋃
�∈ℕ D�

 . Given � ∈ ℕ , choose 
z1,… , zr ∈ D

�
 such that F(D

𝜈
) ⊆

r⋃
j=1

BX

�
F(zj), (3 ⋅ 2

𝜈+1)−1
�
 . Put 

Bj = BX

(
F(zj), (3 ⋅ 2

�+1)−1
)
 , Kj = D

�
∩ F−1(Bj) and B̃j = BX

(
F(zj), 2

−�−2
)
 ; in particular, 

D
�
=

r⋃
j=1

Kj and if z ∈ Kj , then �X

(
F(z),F(zj)

)
≤ (3 ⋅ 2�+1)−1 . Finally, put

this is a neighbourhood of F because F(Kj) ⊆ Bj ⊂
�Bj for all j = 1,… , r by construction.

Take h ∈ U
�
 . If z ∈ D

�
 , we must have z ∈ Kj for some j = 1,… , r ; then

L
�
(z) =

1

2�+1
z + �

�∑

j=0

1

2j
ei��−j .

L
�
(0) = �(−1)�

�∑

j=0

(
−
1

2

)j

D
�
= BX

(
z0, 1 + �X(F

�(z0), z0)
)
.

U
𝜈
=

r⋂

j=1

{
h ∈ Hol(X,X) || h(Kj) ⊂

�Bj

}
;

(2)
𝜔X

(
h(z),F(z)

)
≤ 𝜔X

(
h(z),F(zj)

)
+ 𝜔X

(
F(zj),F(z)

)

<
1

2𝜈+2
+

1

3 ⋅ 2𝜈+1
<

1

2𝜈+1
.
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Now take {f
𝜈
} ⊂ Hol(X,X) with f

�
∈ U

�
 for all � ∈ ℕ ; notice that (2) implies that f

�
→ F . 

We will prove, by induction, that

for all � ∈ ℕ . For � = 0 it follows immediately from (2). Assume it holds for � − 1 ; then

Now, since

we have L
�−1(z0) ∈ D

�
 . Therefore since f

�
∈ U

�
 we can use (2) to get

and thus

as claimed.
As a consequence for any z ∈ X we have

as � → +∞ , and thus {L
�
} is compactly divergent.

Finally, assume that X ⊂ �X is a hyperbolic domain and that F�
→ � ∈ �X . Then since 

𝜔X

(
L
𝜈
(z0), F

𝜈+1(z0)
)
< 1 for all � ∈ ℕ we can apply Proposition  2.4 to get L

�
(z0) → � . 

Moreover, for any z ∈ D we also have �X

(
L
�
(z), L

�
(z0)

)
≤ �X(z, z0) ; so another application 

of Proposition 2.4 yields L
�
(z) → � for all z ∈ X , and we are done.   ◻

Surprisingly enough, if the convergence of f
�
 to F is too slow, then the left iterated 

function system might not be convergent, as the next example shows.

Example 4.5 Let F ∈ Hol(ℍ+,ℍ+) be given by F(w) = w − 1 . Moreover, for � ∈ ℕ put

𝜔X

(
L
𝜈
(z0),F

𝜈+1(z0)
)
< 1 −

1

2𝜈+1

𝜔X

(
L
𝜈
(z0),F

𝜈+1(z0)
)

≤ 𝜔X

(
L
𝜈
(z0),F

(
L
𝜈−1(z0)

))
+ 𝜔X

(
F
(
L
𝜈−1(z0)

)
,F𝜈+1(z0)

)

≤ 𝜔X

(
L
𝜈
(z0),F

(
L
𝜈−1(z0)

))
+ 𝜔X

(
L
𝜈−1(z0),F

𝜈(z0)
)

< 𝜔X

(
L
𝜈
(z0),F

(
L
𝜈−1(z0)

))
+ 1 −

1

2𝜈
.

𝜔X

(
L
𝜈−1(z0), z0

)
≤ 𝜔X

(
L
𝜈−1(z0),F

𝜈(z0)
)
+ 𝜔X

(
F𝜈(z0), z0

)

< 1 + 𝜔X

(
F𝜈(z0), z0

)
,

𝜔X

(
L
𝜈
(z0),F

(
L
𝜈−1(z0)

))
= 𝜔X

(
f
𝜈

(
L
𝜈−1(z0)

)
,F

(
L
𝜈−1(z0)

))
<

1

2𝜈+1

𝜔X

(
L
𝜈
(z0), F

𝜈+1(z0)
)
<

1

2𝜈+1
+ 1 −

1

2𝜈
= 1 −

1

2𝜈+1

�X

(
L
�
(z), z0

)

≥ �X

(
F�+1(z0), z0

)
− �X

(
F�+1(z0), L�(z0)

)
− �X

(
L
�
(z0), L�(z)

)

≥ �X

(
F�+1(z0), z0

)
− 1 − �X(x0, z) → +∞

�
�
(w) =

�w − 1

w + �

=
w cos �

�
− sin �

�

w sin �
�
+ cos �

�

,
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where �0 = �∕2 and �
�
= arctan

1

�
 for � ≥ 1 . It is easy to check that each �

�
 is an elliptic 

automorphism of ℍ+ fixing i; furthermore �
�
→ id

ℍ+ as � → +∞.
Now let g

�
= �

�
◦F◦�−1

�
 . By construction, each g

�
 is a parabolic automorphism of ℍ+ ; 

furthermore we have

and a quick computation shows that g
�
(�) = � . In particular, for each w ∈ ℍ

+ as soon as k 
is sufficiently large we have gk

�
(w) arbitrarily close to � . Moreover, g

�
→ F as � → +∞.

We shall now build by induction a sequence {f
𝜈
} ⊂ Aut(ℍ+) generating a left iterated 

function system {L
�
} and an increasing sequence {𝜈j} ⊂ ℕ with the following properties: 

(a) �0 = 0 and �1 = 1;
(b) f0 = g0 and f1 = F;
(c) �2j ≥ �2j−1 + j for all j ≥ 1;
(d) f

�2j−1+1
= ⋯ = f

�2j−j
= gj and f

�2j−j+1
= ⋯ = f

�2j+1
= F for all j ≥ 1;

(e) |L
𝜈2j
(i)| < 1∕2j and |L

𝜈2j+1
(i)| > j for all j ∈ ℕ.

Since |g0(i)| < 1 and |F◦g0(i)| > 0 condition (e) is satisfied for j = 0 . Now choose 
n1 ∈ ℕ such that |gn1

1

(
L
𝜈1
(i)
)
− 1| < 1∕2 ; in particular, ||(F◦g

n1
1
)
(
L
𝜈1
(i)
)|| < 1∕2 . Choose 

now m1 ∈ ℕ so that ||(Fm1+1◦g
n1
1
)
(
L
𝜈1
(i)
)|| > 1 ; putting �2 = �1 + n1 + 1 , �3 = �2 + m1 , 

f
�1+1

= ⋯ = f
�2−1

= g1 and f
�2
= ⋯ = f

�3
= F we get |L

𝜈2
(i)| < 1∕2 and |L

𝜈3
(i)| > 2 , that is 

conditions (c)–(e) are satisfied for j = 1.
Now given j ≥ 1 assume by induction that we have found 𝜈0 < ⋯ < 𝜈2j−1 and 

f0,… , f
�2j−1

∈ Aut(ℍ+) satisfying (a)–(e). Choose nj ∈ ℕ such that

in particular, ||(Fj
◦g

nj

j
)
(
L
𝜈2j−1

(i)
)|| < 1∕2j . Choose now mj ∈ ℕ so that 

||(F
mj+j◦g

nj

j
)
(
L
𝜈2j−1

(i)
)|| > j ; putting �2j = �2j−1 + nj + j and �2j+1 = �2j + mj and choosing 

f
�2j−1+1

,… , f
�2j+1

 as in (d) we get |L
𝜈2j
(i)| < 1∕2j and |L

𝜈2j+1
(i)| > j , as required.

In this way we have constructed a sequence {f
𝜈
} ⊂ Aut(ℍ+) converging (very slowly) 

to  F generating a left iterated function system with L
�2j
(i) → 0 and L

�2j+1
(i) → ∞ as 

j → +∞ ; in particular {L
�
} does not converge.

The left iterated function system we constructed in this example, though not converging, 
it is still compactly divergent. It would be interesting to find an example (or to prove that it 
does not exists) of a self-map F ∈ Hol(�,�) such that {F�} is compactly divergent and of a 
sequence {f

�
} converging to F so that {L

�
} is not compactly divergent.

Finally, there is no hope to get a version of Theorem  4.4 for right iterated function 
systems:

Example 4.6 Let F ∈ Hol(ℍ+,ℍ+) be given by F(w) = w + 1 , and define 
{f

𝜈
} ⊂ Hol(ℍ+,ℍ+) by setting f0(w) = i + e2�iz and f

�
= F for � ≥ 1 . Then f

�
→ F in 

g
�
(w) =

(�2 + � + 1)w − �
2

w + �2 − � + 1
,

|gnj
j

(
L
𝜈2j−1

(i)
)
− j| < 1

2j
;
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the fastest possible way but R
�
= f0 for all � ∈ ℕ , and thus {R

�
} is not even compactly 

divergent.

We are left with the case when F is a periodic or pseudoperiodic automorphism of X. 
If the fundamental group of  X is not abelian, Theorem  2.6 implies that F is isolated 
in Hol(X,X) ; therefore any map close enough to F coincides with F and the study of ran-
dom iteration of functions sufficiently close to F reduces to the study of the dynamics of F, 
which is trivial.

If the fundamental group of X is abelian, we know that X is biholomorphic either to � or 
to �∗ or to an annulus A(r, 1) with 0 < r < 1 . If X is biholomorphic to �∗ , then every holo-
morphic self-map of �∗ extends to a holomorphic self-map of � , and thus random iteration 
on �∗ reduces to random iteration on �.

If X is biholomorphic to an annulus A(r,  1), then Proposition 2.7 says that Aut(X) is 
open in Hol(X,X) ; in particular, maps sufficiently close to  F are automorphisms of  X. 
The group Aut

(
A(r, 1)

)
 has two connected components, A1 = {�

�,1 ∣ � ∈ ℝ} and 
A−1 = {�

�,−1 ∣ � ∈ ℝ} , where �
�,1(z) = ei�z and �

�,−1(z) = ei�rz−1 . If F ∈ A1 , then every 
holomorphic self-map of A(r, 1) sufficiently close to F belongs to A1 ; since A1 ⊂ Aut(�) , 
in this case random iteration of holomorphic self-maps close to F is reduced to random 
iteration on � . If instead F ∈ A−1 , then every holomorphic self-map of A(r, 1) sufficiently 
close to F belongs to A−1 . Since it is easy to check that

we see that every iterated function system generated by self-maps close enough to F splits 
in the union of an iterated function system contained in A1 , obtained considering an even 
number of maps, and of the composition of �0,−1 with an iterated function system again 
contained in A1 , obtained considering an odd number of maps. Thus in this case too we are 
led to the study of random iteration in �.

Summing up, when F is a periodic or pseudoperiodic automorphism of X for our aims 
we can safely assume that X = � . This situation has been studied in [4]; for the sake of 
completeness we conclude this paper by reporting the main result in this case, referring to 
[4] for proofs, examples and comments.

Theorem 4.7 Let F ∈ Aut(�) be a periodic or pseudoperiodic (and hence elliptic) auto-
morphism of � ; the case F = id

�
 is allowed. Let {f

𝜈
} ⊂ Hol(�,�) be a sequence of non-

constant holomorphic self-maps of � for which

for two distinct points a, b ∈ � . Then f
�
→ F as � → +∞ , and the sequences {F−�

◦L
�
} and 

{R
�
◦F−�} converge to non-constant holomorphic self-maps of �.
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