ISOMETRIES FOR THE CARATHÉODORY METRIC

MARCO ABATE AND JEAN-PIERRE VIGUÉ

1. Introduction

The following problem has been studied by many authors. Let D_{1} and D_{2} be two bounded domains in complex Banach spaces and let $f: D_{1} \rightarrow D_{2}$ be a holomorphic map such that $f^{\prime}(a)$ is a surjective isometry for the Carathéodory infinitesimal metric at a point a of D_{1}. The problem is to know whether f is an analytic isomorphism of D_{1} onto D_{2}. For example, J.-P. Vigué [8] proved this is the case when D_{1} and D_{2} are two bounded domains in \mathbb{C}^{n} and D_{1} is convex. Similar results have been obtained when D_{2} is convex using the Kobayashi infinitesimal metric (I. Graham [3] and L. Belkhchicha [1]). We have to remark that all these results are based on the theorem of L. Lempert ([5] et [6]; one can also consult M. Jarnicki and P. Pflug [4]) on the equality of Kobayashi and Carathéodory metrics on a bounded convex domain in \mathbb{C}^{n}. J.-P. Vigué [9] proved the first results on this subject in the case of bounded domains in complex Banach spaces.

Now, we can study the same problem dropping the hypothesis that $f^{\prime}(a)$ is surjective. So, we only suppose that $f^{\prime}(a)$ is an isometry for the Carathéodory infinitesimal metric. Does this imply that $f\left(D_{1}\right)$ is a complex analytic closed submanifold of D_{2} and that f is an analytic isomorphism of D_{1} onto $f\left(D_{1}\right)$?

Some results have been obtained by J.-P. Vigué [10] and P. Mazet [7] assuming that D_{1} and D_{2} are open unit balls in complex Banach spaces, that $a=0$, and that the image of $f^{\prime}(0)$ contains enough complex extremal points of the boundary of D_{2}. Under these hypotheses they proved that f is linear equal to $f^{\prime}(0)$. This result shows that $f\left(D_{1}\right)$ is an analytic submanifold of D_{2} and that f is an analytic isomorphism of D_{1} onto $f\left(D_{1}\right)$.

Of course, if we do not suppose the existence of complex extremal points in the image of $f^{\prime}(0)$, the map f has no reason to be linear. However, one can hope that $f\left(D_{1}\right)$ still is a complex analytic submanifold of D_{2}. In this paper we shall be able to prove such a result for maps of unit balls of complex Banach spaces, under some additional hypotheses on the Banach spaces involved.

The authors would like to thank the referee for his/her useful remarks.

2. The main Results

We shall prove the following theorem:
Theorem 1. Let $\left(E_{j},\| \| \|_{j}\right)$ be complex Banach spaces and let $B_{j}=$ $\left\{x \in E_{j} \mid\|x\|_{j}<1\right\}$, for $j=1,2$. Let $f: B_{1} \rightarrow B_{2}$ be a holomophic mapping with $f(0)=0$ and $\left\|f^{\prime}(0)(X)\right\|_{2}=\|X\|_{1}$ for all $X \in E_{1}$. Then the following statements are equivalent :
(1) there exists a direct decomposition $E_{2}=f^{\prime}(0)\left(E_{1}\right) \oplus F$ such that the corresponding projection $\pi: E_{2} \rightarrow f^{\prime}(0)\left(E_{1}\right)$ has norm 1;
(2) $f\left(B_{1}\right)$ is a closed complex direct submanifold of B_{2}, the map f is a biholomorphism of B_{1} onto $f\left(B_{1}\right)$, and there exists a holomorphic retraction of B_{2} onto $f\left(B_{1}\right)$.
To apply this theorem, we give the following definition:
Definition 1. We say that a pair $\left(E_{1}, E_{2}\right)$ of complex Banach spaces has the property (V) if for every linear isometry $L: E_{1} \rightarrow E_{2}$ there exists a direct decomposition $E_{2}=L\left(E_{1}\right) \oplus F$ such that the corresponding projection π : $E_{2} \rightarrow L\left(E_{1}\right)$ has norm 1 .

From theorem 1 and definition 1, we deduce the following
Theorem 2. Assume that the pair $\left(E_{1}, E_{2}\right)$ of complex Banach spaces has the property (V), and let B_{1} and B_{2} be their open unit balls. Let $f: B_{1} \rightarrow B_{2}$ be a holomorphic map such that
(1) $f(0)=0$, and $f^{\prime}(0)$ is an isometry for the Carathéodory infinitesimal metric,
or
(2) B_{1} and B_{2} are homogeneous, and there exists $a \in B_{1}$ such that $f^{\prime}(a)$ is an isometry for the Carathéodory infinitesimal metric.
Then $f\left(B_{1}\right)$ is a closed complex direct submanifold of B_{2}, the map f is a biholomorphism of B_{1} onto $f\left(B_{1}\right)$, and there exists a holomorphic retraction of B_{2} onto $f\left(B_{1}\right)$.

Now, we clearly need examples of pairs of complex Banach spaces satisfying property (V). The first (easy) example is given by Hilbert spaces.

Proposition 1. Let E_{2} a complex Hilbert space. Then, for every complex Banach space E_{1} the pair $\left(E_{1}, E_{2}\right)$ has property (V).

More interesting is the following theorem:

Theorem 3. Let I be a set and let $l^{\infty}(I)$ be the complex Banach space of bounded sequences indexed by I, with the usual norm. Let E_{2} be any Banach space. Then, the pair $\left(l^{\infty}(I), E_{2}\right)$ has property (V).

Other pairs enjoying property (V) can be constructed using suitable subspaces of $\ell^{\infty}(I)$. For instance, let $c_{0}(I) \subset \ell^{\infty}(I)$ be the subspace given by the elements $\left(a_{i}\right)_{i \in I} \in \ell^{\infty}(I)$ such that for every $\varepsilon>0$ there exists a finite subset $K \subseteq I$ so that $\left|a_{i}\right|<\varepsilon$ when $i \notin K$. Then:
Theorem 4. For any sets I, J the pair $\left(c_{0}(I), c_{0}(J)\right)$ has property (V).
Applying Theorem 2 and 3 with I finite, we get in particular a new result in the finite-dimensional case:

Corollary 1. Let $f: \Delta^{n} \rightarrow D$ be a holomorphic map between a polydisk $\Delta^{n} \subset \mathbb{C}^{n}$ and an open convex circular bounded domain $D \subset \mathbb{C}^{N}$ (i.e., D is the unit ball for a suitable norm in $\left.\mathbb{C}^{N}\right)$. We also assume $n \leq N$, and that D is homogeneous (for instance, $D=\Delta^{N}$, B^{N} or a bounded symmetric domain). Assume that there exists $a \in \Delta^{n}$ such that $f^{\prime}(a)$ is an isometry for the Carathéodory infinitesimal metrics. Then $f\left(\Delta^{n}\right)$ is a closed complex submanifold of D, the map f is a biholomorphism onto its image, and $f\left(\Delta^{n}\right)$ is a holomorphic retract of D.

Before proving these results, we need to recall some facts.

3. Some classical results

The definition and the main properties of Carathéodory and Kobayashi infinitesimal metrics E_{D} and F_{D} on a bounded domain D are given in the book of T. Franzoni et E. Vesentini [2] (see also the book of M. Jarnicki and P. Pflug [4]).

Let B be the open unit ball of a complex Banach space E. It is well known that

$$
E_{B}(0, x)=F_{B}(0, x)=\|x\|
$$

Furthermore, every biholomorphism $f: D_{1} \rightarrow D_{2}$ between domains in complex Banach spaces is an isometry for the Carathéodory and Kobayashi infinitesimal metrics.

Finally, let us recall that, the open unit balls B of the complex Banach spaces $c_{0}(I)$ and $l^{\infty}(I)$ are homogeneous. Indeed, it is easy to check that, for every $a \in B$, the map $\varphi_{a}: B \rightarrow B$ given by

$$
\forall i \in I \quad \varphi_{a}(f)_{i}=\frac{f_{i}+a_{i}}{1+\overline{a_{i}} f_{i}}
$$

is an analytic automorphism of B.
Another example of homogeneous unit ball is given by the open unit ball B of the space $C(S, \mathbb{C})$ of continuous complex functions on a
compact space S, because for every $a \in B$ the map $\varphi_{a}: B \rightarrow B$ given by

$$
\varphi_{a}(f)=\frac{f+a}{1+\bar{a} f}
$$

is a biholomorphism of B.

4. Proof of Theorems 1 and 2

To begin, let us prove theorem 1.
Proof of Theorem 1. First, if $r: B_{2} \longrightarrow f\left(B_{1}\right)$ is a holomorphic retraction, $r^{\prime}(0)$ is a projection of norm ≤ 1 for the Carathéodory infinitesimal metrics, and,
as the Carathéodory infinitesimal metric at the origin is equal to the given norm, we get $\left\|r^{\prime}(0)\right\|=1$. This proves that (2) implies (1).

To prove that (1) implies (2), let us consider

$$
\varphi=\pi \circ f: B_{1} \rightarrow f^{\prime}(0)\left(E_{1}\right) .
$$

We have $\varphi(0)=0, \varphi\left(B_{1}\right) \subseteq f^{\prime}(0)\left(E_{1}\right) \cap B_{2}$ (because π has norm 1), and $\varphi^{\prime}(0)=\pi \circ f^{\prime}(0)=f^{\prime}(0)$. So $\varphi^{\prime}(0)$ is a linear isometry from E_{1} onto $f^{\prime}(0)\left(E_{1}\right)$. Using Cartan's uniqueness theorem (see [2]), one easily proves that φ is a linear isometry from B_{1} onto $B_{2}^{\prime}=f^{\prime}(0)\left(E_{1}\right) \cap B_{2}$.

Finally, let $\psi: B_{2}^{\prime} \rightarrow F$ be defined by

$$
\psi(y)=(\operatorname{id}-\pi)\left(f\left(\varphi^{-1}(y)\right)\right) .
$$

Then the set $f\left(B_{1}\right)$ is the graph of ψ, the map $(\pi, \psi \circ \pi): B_{2} \rightarrow f\left(B_{1}\right)$ is a holomorphic retraction of B_{2} onto $f\left(B_{1}\right)$, and $\left.\varphi^{-1} \circ \pi\right|_{f\left(B_{1}\right)}: f\left(B_{1}\right) \rightarrow$ B_{1} is a holomorphic inverse of f, and the theorem is proved.

Now, we can prove Theorem 2.
Proof of Theorem 2. First, let us remark that, in case (2), by precomposing f with an analytic automorphism of B_{1} and post-composing it with an analytic automorphism of B_{2}, we can assume that $f(0)=0$ and that 0 is precisely the point a such that $f^{\prime}(0)$ is an isometry for the Carathéodory infinitesimal metrics. Thus without loss of generality in both cases we can assume that $f^{\prime}(0)$ is an isometry for the norms of E_{1} and E_{2}.

Since $\left(E_{1}, E_{2}\right)$ satisfies the property (V), there exists a direct decomposition $E_{2}=f^{\prime}(0)\left(E_{1}\right) \oplus F$ such that the corresponding projection $\pi: E_{2} \rightarrow f^{\prime}(0)\left(E_{1}\right)$ has norm 1 and we can apply Theorem 1.

5. Examples of pair of Banach spaces with property (V)

Now we have to give examples of pair of complex Banach spaces satisfying property (V). Proposition 1 (the case of Hilbert spaces) is easy and left as an exercise. Let us now give the

Proof of Theorem 3. We suppose that $E_{1}=l^{\infty}(I)$ and we consider an isometry $L: \ell^{\infty}(I) \rightarrow E_{2}$. Let $G: L\left(E_{1}\right) \rightarrow l^{\infty}(I)$ be the inverse of L. So, G is a linear map of norm 1 ; for every $i \in I$, let G_{i} be the i-component of G. Then G_{i} is a linear form from $L\left(E_{1}\right)$ to \mathbb{C} of norm 1. By the Hahn-Banach Theorem, we can extend G_{i} to a linear form $H_{i}: E_{2} \rightarrow \mathbb{C}$ still of norm 1. Setting $H=\left(H_{i}\right)_{i \in I}$ we obtain a linear map $H: E_{2} \rightarrow l^{\infty}(I)$ of norm 1 extending G. Then it is clear that $L \circ H$ is a projection of E_{2} onto $L\left(l^{\infty}(I)\right)$ of norm 1, and taking $F=\operatorname{Ker}(L \circ H)$ the theorem is proved.

Proof of Theorem 4. Let $L: c_{0}(I) \rightarrow c_{0}(J)$ be an isometry, and let $\left(e^{k}\right)_{k \in I}$ be the canonical basis of $c_{0}(I)$. Since L is an isometry, for every $k \in I$ there exists $j(k) \in J$ such that $\left|L\left(e^{k}\right)_{j(k)}\right|=1$. Now, if we consider an element $v=\left(v_{i}\right)_{i \in I}$ of $c_{0}(I)$ such that $v_{k}=0$, then $L(v)_{j(k)}=0$. In fact, suppose that $L(v)_{j(k)} \neq 0$. For $\lambda \in \mathbb{C}$ small enough, we have $\left\|e^{k}+\lambda v\right\|=1$. But

$$
L\left(e^{k}+\lambda v\right)_{j(k)}=L\left(e^{k}\right)_{j(k)}+\lambda L(v)_{j(k)}=e^{i \theta}+\lambda L(v)_{j(k)} .
$$

Therefore if $L(v)_{j(k)} \neq 0$, there exists $\lambda \in \mathbb{C}$ small enough such that the modulus of $L\left(e^{k}+\lambda v\right)_{j(k)}$ is greater than 1 , and thus $\left\|L\left(e^{k}+\lambda v\right)\right\|>1$, contradiction. It follows that the map $k \mapsto j(k)$ is injective.

Let $M=\{j(k) \mid k \in I\} \subseteq J$, and let $\pi: c_{0}(J) \rightarrow c_{0}(M)$ be the canonical projection. The previous argument shows
that $\pi \circ L\left(e^{k}\right)=\lambda_{k} e^{j(k)}$ with $\left|\lambda_{k}\right|=1$ for all $k \in I$; it is then easy
to check that $\varphi=\pi \circ L: c_{0}(I) \rightarrow c_{0}(M)$ is a linear surjective isometry, and that $L \circ \varphi^{-1} \circ \pi: c_{0}(J) \rightarrow L\left(c_{0}(I)\right)$ is a linear projection of norm 1 of $c_{0}(J)$ onto $L\left(c_{0}(I)\right)$, as required.

It might be interesting to remark that the same proof yields that a pair $\left(E_{1}, E_{2}\right)$ of complex Banach spaces satisfies property (V) if each E_{j} has a Schauder basis $\left(e_{j}^{k}\right)$ such that

$$
\left\|\sum_{k} \lambda_{k} e_{j}^{k}\right\|_{E_{j}}=\sup _{k}\left|\lambda_{k}\right| .
$$

6. Final Remarks

Not all pairs of complex Banach spaces have property (V); so we do not know whether Theorem 2 holds in general.

For example, the Banach spaces $c_{0}(\mathbb{N})$ is not complemented in $l^{\infty}(\mathbb{N})$, and so the pair $\left(c_{0}(\mathbb{N}), l^{\infty}(\mathbb{N})\right)$ does not have property (V).

It is also possible to build finite dimensional examples. Take $E_{2}=$ $\left(\mathbb{C}^{3},\|\cdot\|_{\infty}\right)$, so that the unit ball of E_{2} is the open polydisk Δ^{3}. If $L: \mathbb{C}^{2} \rightarrow \mathbb{C}^{3}$ is given by $L(x, y)=(x, y, x+y)$, then $B=L^{-1}\left(\Delta^{3}\right)$ is the open unit ball in \mathbb{C}^{2} for a norm $\|\cdot\|$; set $E_{1}=\left(\mathbb{C}^{2},\|\cdot\|\right)$. We claim that the pair $\left(E_{1}, E_{2}\right)$ does not satisfy property (V). By construction, $L: E_{1} \rightarrow E_{2}$ is a linear isometry. The set $(1,0,1)+(\{0\} \times \Delta \times\{0\})$ is contained in the boundary of Δ^{3}. Since $(1,0,1) \in L(\partial B)$, it is easy to check that if there exists a projection π of norm 1 from \mathbb{C}^{3} onto $L\left(\mathbb{C}^{2}\right)$, then π must vanish on $\{0\} \times \mathbb{C} \times\{0\}$. Considering the point $(0,1,1)$, we analogously see that π must vanish on $\Delta \times\{0\} \times\{0\}$; and thus such a projection cannot exist.

References

[1] L. Belkhchicha. Caractérisation des isomorphismes analytiques sur la bouleunité de \mathbb{C}^{n} pour une norme. Math. Z. 215 (1994), 129-141.
[2] T. Franzoni and E. Vesentini. Holomorphic maps and invariant distances. Notas de Matematica [Mathematical Notes], 69. North-Holland Publishing Co., Amsterdam-New York, 1980.
[3] I. Graham. Holomorphic mappings into strictly convex domains which are Kobayashi isometries at one point. Proc. Amer. Math. Soc. 105 (1989), 917-921.
[4] M. Jarnicki and P. Pflug. Invariant distances and metrics in complex analysis. de Gruyter Expositions in Mathematics, 9. Walter de Gruyter and Co., Berlin, 1993.
[5] L. Lempert. La métrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. Math. France 109 (1981), 427-474.
[6] L. Lempert. Holomorphic retracts and intrinsic metrics in convex domains. Anal. Math. 8 (1982), 257-261.
[7] P. Mazet. Principe du maximum et lemme de Schwarz à valeurs vectorielles. Canad. Math. Bull. 40 (1997), 356-363.
[8] J.-P. Vigué. Sur les points fixes d'applications holomorphes. C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), 927-930.
[9] J.-P. Vigué. Sur la caractérisation des isomorphismes analytiques entre domaines bornés d'un espace de Banach complexe. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21 (1994), 145-155.
[10] J.-P. Vigué. Un lemme de Schwarz pour les boules-unités ouvertes. Canad. Math. Bull. 40 (1997), no. 1, 117-128.

Marco Abate, Dipartimento di Matematica, Università di Pisa,Largo Pontecorvo 5, 56127 Pisa, Italy.
e-mail : abate@dm.unipi.it
J.-P. V., LMA, Université de Poitiers, CNRS, Mathématiques, SP2MI, BP 30179, 86962 FUTUROSCOPE.
e-mail : vigue@math.univ-poitiers.fr

