Solvability for a class of semilinear elliptic Fuchsian PDEs

Ingo Witt University of Göttingen

We discuss solvability for semilinear elliptic equations of the form

$Au = F(x, B_1u, \dots, B_Ku)$ in $X \setminus \partial X$, Tu = g on ∂X ,

for a differential operator A that is Fuchsian with respect to ∂X , X being a C^{∞} compact manifold with non-empty boundary ∂X , where A together with the boundary condition Tu = 0 is positive definite in the weighted L^2 space $H^{0,\delta}(X)$, for some $\delta \in \mathbb{R}$. The Fuchsian differential operators B_1, \ldots, B_K are of orders strictly less than A, and the nonlinearity $F = F(x, \nu)$ is of at most polynomial growth in ν . Moreover, the linear surjective boundary map $T: D_+ \to \mathbb{R}^{\mu}$ factors through D_+/D_- , where D_+ and D_- are the maximal and minimal domains of A in $H^{0,\delta}(X)$, respectively; dim $D_+/D_- = 2\mu$.

As solutions to the above problem are unbounded in general, the main step of our approach consists in an *a priori* description of the asymptotics of these solutions u = u(x) as $x \to \partial X$.