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Abstract In an earlier paper we have shown that the pair-of-pants product on
the Floer homology of the cotangent bundle of an oriented compact manifold Q
corresponds to the Chas-Sullivan loop product on the singular homology of the free
loop space ofQ. We now give chain level constructions of further product structures
in Floer homology, corresponding to the cup product on the homology of any path
space, and to the Goresky-Hingston product on the relative cohomology of the free
loop space modulo constant loops. Moreover, we give a explicit construction for the
inverse isomorphism between Floer homology and loop space homology.

1 Introduction and Main Results

Let Q be a closed, smooth manifold, and let H WT � T �Q ! R be a time-periodic
smooth Hamiltonian on its cotangent bundle. The cotangent bundle is viewed as a
symplectic manifold with the canonical symplectic structure ! D d�, where � is
the Liouville one-form, whose expression in local coordinates is � D P

pj dqj .
The corresponding Liouville vector field Y , which is defined by !.Y; �/ D �, has
the local expression Y D P

pj
@

@pj
.

We assume that H is of quadratic type, i.e., it satisfies the conditions

(H1) dH.t; q; p/ŒY � �H.t; q; p/ � h0jpj2 � h1,
(H2) jrqH.t; q; p/j � h2.1C jpj2/, jrpH.t; q; p/j � h2.1C jpj/,
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for every .t; q; p/, for some positive constants h0, h1 and h2. Here the norm j � j
and the covariant derivative r are induced by some fixed metric on Q, but the
conditions are actually independent on the choice of this metric. Condition (H1)
essentially says that H grows at least quadratically in p on each fiber of T �Q, and
that it is radially convex for jpj large. Condition (H2) implies thatH grows at most
quadratically in p on each fiber. Such Hamiltonians include in particular physical
Hamiltonians with magnetic fields,

H.t; q; p/ D 1

2
jp �A.t; q/j2 C V.t; q/;

where A.t; �/ is a one-form and V.t; �/ is a smooth function on Q, both depending
1-periodically on t 2 R. Generically, the Hamiltonian system

Px.t/ D XH .t; x.t//; (1)

for the Hamiltonian vector fieldXH defined by !.XH ; �/ D �dH , has a discrete set
P1.H/ of 1-periodic orbits. In fact, the following non-degeneracy condition holds
for a generic set of H :

(H0) The time-1-map of the flow ˆt
H generated by XH has only non-degenerate

fixed points, i.e. Dˆ1
H .x/ has no eigenvalue 1 for any fixed point x of ˆ1

H .

The free abelian group F�.H/ generated by the elements x 2 P1.H/, which by
x 7! x.0/ correspond exactly to the fixed points of ˆ1

H , graded by their Conley-
Zehnder index �cz.x/, supports a chain complex, the Floer complex .F�.H/; @/.
The boundary operator @ is defined by an algebraic count of the maps u from the
cylinder R � T to T �Q, solving the Cauchy-Riemann type equation

@su.s; t/CJ.t; u.s; t//�@t u.s; t/�XH .t; u.s; t/
� D 0; for all .s; t/ 2 R�T; (2)

in short @J;H u D 0, and converging to two 1-periodic orbits x; y for s ! �1
and s ! 1. Here, J is an almost-complex structure on T �Q calibrated by the
symplectic structure in the sense that !.J �; �/ gives a positive definite and symmetric
form.

The equation (2) can be seen as the negative L2-gradient equation for the
Hamiltonian action functional

AH WC1.T; T �Q/ ! R; A.x/ D
Z

T

�
x�� �H.t; x.t// dt

�
: (3)

The almost complex structure J is chosen in a generic way, so that for every pair
.x; y/ of 1-periodic orbits, the space of solutions of (2) with asymptotics x and y
is the zero-set of a Fredholm section of a Banach bundle which is transverse to the
zero-section, and in particular it is a finite dimensional manifold.
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This construction is due to A. Floer (see e.g. [13–16]) in the case of a closed
symplectic manifold .M;!/, in order to prove a conjecture of V. Arnold on the
number of periodic Hamiltonian orbits. The extension to non-compact symplectic
manifolds, such as the cotangent bundles we consider here, requires suitable
conditions on the asymptotic behavior of both the Hamiltonian H and the almost
complex structure J . A possibility is to assume that H satisfies the asymptotic
quadratic growth conditions (H1) and (H2) and that J is C 0-close to the Levi-Civita
almost complex structure on T �Q which is induced by the Riemannian metric on
Q (see [2]). Another possibility is to consider Hamiltonians which are superlinear
functions of jpj for jpj large and almost complex structures which are of contact
type with respect to � (see e.g. [25]). Here we stick to the former set of conditions,
although everything we say could also be adapted to the latter one.

The Floer complex obviously depends on the Hamiltonian H , but its homology
often does not, so it makes sense to call this homology the Floer homology of the
underlying symplectic manifold .M;!/, and to denote it by HF�.M/. The Floer
homology of a compact symplectic manifoldM without boundary is isomorphic to
the singular homology ofM , as proved by A. Floer for special classes of symplectic
manifolds, and later extended to larger and larger classes by several authors (the
general case requiring special coefficient rings, see [18, 20, 21]).

Unlike the compact case, the Floer homology of a cotangent bundle T �Q for
Hamiltonians of quadratic type is a truly infinite-dimensional homology theory,
being isomorphic to the singular homology of the free loop space ƒQ of Q. This
fact was proved by C. Viterbo (see [26]) using a generating functions approach,
later by D. Salamon and J. Weber using the heat flow for curves on a Riemannian
manifold (see [23]) and then by the authors in [2].

In particular, our proof reduces the general case to the case of a Hamiltonian
which is uniformly convex in the momenta, meaning that it satisfies the condition

(H3) rppH.t; q; p/ � h3I , for some h3 > 0,

and for such a Hamiltonian it constructs an explicit isomorphism between the Floer
complex .F�.H/; @/ and the Morse complex .M�.SL/; @/ of the action functional

SL.�/ D
Z

T

L.t; �.t/; P�.t//dt; � 2 W 1;2.T;Q/;

associated to the Lagrangian LWT � TQ ! R which is the Fenchel dual of H ,

L.t; q; v/ D max
p2T �

q Q

�hp; vi �H.t; q; p/
�
;

a Lagrangian of Tonelli type. The latter complex is the standard chain complex
associated to the Lagrangian action functional SL. The domain of such a functional
is the infinite dimensional Hilbert manifold W 1;2.T;Q/ consisting of closed loops
of Sobolev class W 1;2 on Q. The functional SL is bounded from below, it has non-
degenerate critical points a with finite Morse index i.a/, it satisfies the Palais-Smale
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condition, and, although in general it is not of class C 2, it admits a smooth Morse-
Smale pseudo-gradient flow (see [3]). The construction of the Morse complex in
this infinite-dimensional setting and the proof that its homology is isomorphic to the
singular homology of the ambient manifold are described in [1]. The isomorphism
goes from the Morse to the Floer complex and is obtained by coupling the Cauchy-
Riemann type equation on the half-cylinder RC � T with the pseudo-gradient flow
equation for the Lagrangian action. We call this the hybrid method.

Since the space W 1;2.T;Q/ is homotopy equivalent to ƒQ, we get the asserted
isomorphism

ˆƒWH�.ƒQ/
Š�! HF�.T �Q/ :

This isomorphism result was generalized in [6] for more general path spaces than
the free loop space. In fact, given a closed submanifoldR � Q�Q, we can consider
the path space

�RQ D ˚
c 2 W 1;2.Œ0; 1�;Q/ j .c.0/; c.1// 2 R �

:

In particular, the choice R D 4, the diagonal in Q � Q, produces the free loop
spaceƒQ, while the based loop space�qo

Q is given by the choiceR D f.qo; qo/g.
Given a submanifold S � Q we have its associated conormal bundle

N �S D f .q; p/ 2 T �Q j q 2 S; pjTqS � 0
�
;

which is a Lagrangian submanifold of .T �Q;d�/ on which the Liouville one-
form � vanishes identically. The non-degeneracy assumption for a Hamiltonian
H W Œ0; 1� � T �Q ! R is now that the Lagrangian submanifold

GH D ˚ �
˛;C�1

H .˛/
� j ˛ 2 T �Q

� � T �Q � T �Q D T �.Q �Q/

should have a transverse intersection with N �R in T �.Q �Q/, where CW .q; p/ 7!
.q;�p/ is the anti-symplectic conjugation on T �Q.

In [6] it was shown that we have an associated Floer homology HF R� , with the
chain complex FR� .H/ generated by the Hamiltonian paths

PR.H/ D ˚
xW Œ0; 1� ! T �Q j Px.t/ D XH .t; x.t//;

�
x.0/;Cx.1/

� 2 N �R
�
;

(4)
and the boundary operator @WF R� ! FR��1 defined by counting the Floer trajectories

uWR � Œ0; 1� ! T �Q; @J;H u D 0;
�
u.s; 0/;Cu.s; 1/

� 2 N �R 8s 2 R;

converging to x and y 2 PR.H/ as s ! �1 and s ! 1. Note that this is a well-
posed Fredholm problem becauseN �R is a Lagrangian submanifold of T �.Q�Q/.
Compactness and energy estimates hold because .�˚ �/jN �R � 0.
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Theorem 1.1. [6] We have HF R� .T �Q/ Š H�.�RQ/ via an explicit chain
complex isomorphism

ˆRWM�.SLj�RQ/
Š�! F R� .H/

whereL W Œ0; 1��TQ ! R is the Lagrangian which is Fenchel dual to the quadratic
type HamiltonianH .

The first aim of this paper is to give an explicit chain level construction of a chain
complex homomorphism

‰RWF R� .H/ ! M�.SLj�RQ/

which might not be a chain complex isomorphism, but which induces an
isomorphism

‰R� WHF R� .H/
Š�! HM�.SLj�RQ/

such that ‰R� D �
ˆR�

��1
. Such a chain map brings methodical advantages when

comparing the ring structures on the Floer and on the topological side, as we are
going to show.

An important structure in Floer homology is its canonical ring structure, the so-
called pair-of-pants product in the case of the free loop space (see [24]), or triangle
product in the case of the path space with endpoints on Lagrangian submanifolds.
Already in the case of a closed symplectic 2n-dimensional manifold .M;!/, the
pair-of-pants product

m4WHF�.M/˝HF�.M/ ! HF��n.M/

encodes a truly symplectic invariant. While HF�.M/ as an abelian group is
isomorphic to the ordinary singular homology of M , the pair-of-pants product in
general deviates from the expected intersection product (note that the grading ofm4
becomes consistent with that of the intersection product by the grading shift in the
isomorphism HF�.M/ Š H�Cn.M/). In fact, as shown in [22], Floer homology
with the pair-of-pants product is ring isomorphic to the quantum homology of
QH�.M;!/ of .M;!/, a deformation of the intersection ring structure due to the
presence of pseudoholomorphic spheres.

In the context of cotangent bundles, such a deformation by pseudoholomorphic
spheres cannot occur, since they simply cannot exist for the exact symplectic
structure ! D d�. But the question remains, what the pair-of-pants ring structure
corresponds to in view of the isomorphismHF�.T �Q/ D HF �� .H/ Š H�.ƒQ/.
In [5], we finally give the proof that the same isomorphism ˆ� intertwines m4
with the Chas-Sullivan loop product (see [9]), provided that we consider closed and
oriented smooth manifoldsQ.
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For the definition of the pair-of-pants product on chain level

m4WF4� .H/˝ F4� .H/ ! F4��n.H
.2//;

in [5] we use as a model for the domain surface the branched 2:1-covering of the
standard cylinder, a smooth pair-of-pants surface with two cylindrical entrances
and one cylindrical exit and a conformal structure globally given in the cylindrical
coordinates as sCit. Note that, for precise energy estimates, we use the Hamiltonian
H .2/.t; q; p/ D 2H.2t; q; p/ whose 1-periodic orbits equal the 2-periodic ones for
H . Equivalently, we define m4 by counting the solutions of the following problem

u D .u1; u2/WR � Œ0; 1� ! T �.Q �Q/; @J;H ui D 0; i D 1; 2;

�
u1.s; 0/;Cu1.s; 1/; u2.s; 0/;Cu2.s; 1/

� 2
(
N �.412 � 434/; s � 0;

N �.414 � 423/; s � 0 ;

(5)

with asymptotics .x; y/ 2 P1.H/ � P1.H/ for s ! �1 and z 2 P2.H/ for
s ! 1 (see Fig. 1). Here

412 � 434 D ˚
.q; q; q0; q0/ j q; q0 2 Q �

;

414 � 423 D ˚
.q; q0; q0; q/ j q; q0 2 Q �

:
(6)

Similarly, when R D f.q0; q0/g we have the triangle product

mf.q0;q0/g W HF f.q0;q0/g� .H/˝HF f.q0;q0/g� .H/ ! HF f.q0;q0/g� .H .2//;

and [5] contains the proof of the following:

u1

u2

N ∗�12

N ∗�34 N ∗�23
N ∗�14

s = 0 s → ∞

Fig. 1 The pair-of-pants product
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Theorem 1.2. The chain complex isomorphisms ˆRWM�.SLj�RQ/ ! FR� .H/,
for R D � or R D f.q0; q0/g, induces ring isomorphisms

.H�.ƒQ/; ı/ Š .HF4� ; m4/; .H�.�qo
Q/; #/ Š .HF f.q0;q0/g� ; mf.q0;q0/g/;

for the Chas-Sullivan product ı on the singular homology of the free loop space and
the Pontrjagin product # on the singular homology of the based loop space.

If we view the submanifoldR � Q�Q as a correspondence, these products have
natural generalizations in terms of composition of correspondences. In fact, given
two correspondencesR1; R2 � Q �Q, their composition is defined as R2 ıR1 D
	13

�
.R1 �Q/ \ .Q � R2/

�
, where 	13WQ � Q � Q ! Q �Q is the projection

on the first and third coordinate. We actually have R ıR D R both for the free loop
caseR D 4 and for the based loop case R D f.qo; qo/g. WhenR1 �Q andQ�R2

intersect cleanly in Q3, and the restriction of 	13 to such an intersection is regular,
meaning that the kernel of its differential has constant dimension, then R1 and R2

are said to be smoothly composable. In this case, R2 ı R1 is a closed submanifold
of Q �Q, so the Floer homologyHF R2ıR1� .H/ is still defined.

One can show that the pair-of-pants product m4 on HF4� and the triangle

productmf.q0;q0/g onHF f.q0;q0/g� can be unified in terms of a binary operation

mR1;R2
WHF R1� ˝HF R2� ! HF

R2ıR1

��d.R1;R2/

for composable correspondences. In fact, in (5) we have to replace 412 � 434 for
s � 0 by R1 � R2, and 414 � 423 for s � 0 by .R2 ı R1/ � 423. Depending on
the correspondencesR1 andR2, there is a degree shift d.R1; R2/, which equals the
codimension of the clean intersection .R1 �R2/\ .Q �� �Q/ in R1 � R2.

In general,mR1;R2
is isomorphic to a binary operator

H�
�
�R1

Q
� ˝H�

�
�R2

Q
� ! H��d.R1;R2/

�
�R2ıR1

Q
�
;

generalizing the loop product. Such a binary operator is defined as the composition

Hj

�
�R1

Q/˝Hk.�R2
Q

� ��! Hj Ck

�
�R1

Q ��R2
Q

�

D Hj Ck

�
�R1�R2

Q �Q� !
iŠ�! Hj Ck�d

�
�.R1�R2/\.Q���Q/Q �Q� �! Hj Ck�d

�
�R2ıR1

Q
�
;

where � is the exterior product, iŠ is the Umkehr morphism induced by the
d -co-dimensional and co-oriented inclusion

i W �.R1�R2/\.Q���Q/Q �Q ,! �R1�R2
Q �Q;

and the last homomorphism is induced by the concatenation map.
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In this paper, we want to emphasize the general rule that Floer homology
on cotangent bundles should be able to remodel any known algebro-topological
structure in classical (co-)homology of loop spaces of closed, oriented manifolds. In
fact, there should always be an independent chain level construction which, under
the isomorphismˆ, is isomorphic to a corresponding structure on the classical side.
This has been carried out successfully with the loop product and the Pontrjagin
product in [5], where in fact, for the loop product, it was the pair-of-pants product
which had been considered first, whereas the loop product had for whatever reason
essentially eluded the topologists’ attention until [9].

In the present paper we want to address in the same light two more product
structures on the classical side. One is the cup-product on cohomology, which can
be equivalently seen as a coproduct on the homology of �RQ,

[WH�.�RQ/ ! H�.�RQ/˝H�.�RQ/ :

We give a Floer-theoretical construction of such a product, and we prove the
following:

Theorem 1.3. Given a generic triple of quadratic type Hamiltonians, we have a
chain level operation uWFR� .H1/ ! FR� .H2/˝FR� .H3/which induces a coproduct
u�WHF R� ! HF R� ˝HF R� isomorphic to the cup-coproduct onH�.�RQ/ via the
isomorphism ˆR� .

An interesting question is whether the coalgebra structure u� on HF R� can be
seen to be an algebra homomorphism .HF R� ; mR/ ! .HF R� ˝HF R� ; mR ˝mR/,
or equivalently, whether mR is a coalgebra morphism for u�. In other words, this
is the question of whether .HF R� ; mR; u�/ carries a Hopf algebra structure, which
for the based loop space homology .H�.�Q/; #;[/ is classically known to hold.
Clearly, the fact that the isomorphism ˆ� intertwines # with mf.q0;q0/g and [ with
u� (Theorems 1.2 and 1.3) implies that the Hopf algebra structure also exists on
the Floer side for R D .qo; qo/. In fact, this Hopf algebra property can be verified
directly on chain level on the Floer side for the based loop space version. For general
R with R ıR D R, this Hopf algebra property cannot hold already for dimensional
reasons, e.g. for the free loop space version R D 4.

The other structure we are interested in is a coproduct derived from the obvious
pair-of-pants type coproduct with one entrance and two exits (see [11]). This
coproduct, however, is essentially trivial, but it gives rise to a secondary coproduct
on homology of loop space relative to the constant loops,

�WH�.ƒQ;Q/ ! �
H�.ƒQ;Q/˝H�.ƒQ;Q/

�
��nC1

:

This coproduct has been constructed by M. Goresky and N. Hingston in [19], and
computed for interesting examples such as spheres.

Given the special Hamiltonian 1
2
jpj2 with a generic and small potential pertur-

bations V.t; q/ we can consider Floer cohomology filtered by the action, F ��a.H/.
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On the level of cohomology we can perform a limit for the perturbation V ! 0, and
we have the following:

Theorem 1.4. For every action values a; b > 0, Floer cohomology comes equipped
with a product operation

QwWHF ��a.
1
2
jpj2/˝HF �

�b
.1

2
jpj2/ ! HF �Cn�1

�aCb
.1

2
jpj2/:

When the positive numbers a; b are small enough, the isomorphism ˆ� induces a
ring isomorphism from .HF �

>0; Qw/ to .H�.ƒQ;Q/;�/.

In fact, it is possible to replace 1
2
jpj2 by any superlinear cjpj1Cı , ı > 0.

This is not of quadratic type and requires a somewhat different argument for the
C 0-estimates of the moduli spaces involved. In this paper, we give an explicit
construction of Qw. The proof of the equivalence with � will be given elsewhere.

2 The Inverse Isomorphism

Let us recall the construction of the isomorphism from H�.�RQ/ to HF R� .T �Q/
from [2] and [6]. When the Hamiltonian H 2 C1.Œ0; 1� � T �Q/ satisfies (H1),
(H2) and (H3), its Fenchel dual Lagrangian L 2 C1.Œ0; 1� � TQ/ is well-defined
and satisfies the analogous quadratic growth and strict convexity assumptions. We
denote by S

R
L the restriction of the Lagrangian action functional

SL.�/ D
Z 1

0

L.t; �; P�/ dt;

to the path space �RQ. Here �RQ carries a W 1;2-Hilbert manifold structure, SR
L

is of class C 1;1 on �RQ and it is twice Gateaux-differentiable. The fact that the
HamiltonianH is non-degenerate with respect to the correspondenceR implies also
the non-degeneracy of all critical points of SR

L . This fact allows to construct a smooth
negative pseudo-gradient Morse vector field for SR

L , see [3]. We denote by M�.SR
L/

the chain complex generated by the critical points a 2 Crit SR
L , graded by the

non-negative Morse index i.a/, with boundary operator @WM�.SR
L/ ! M��1.S

R
L/

defined by algebraically counting the unparametrized connecting trajectories for the
generically chosen negative pseudo-gradient vector field for SR

L . A result from [1]
shows that H�.M�.SR

L/; @/ Š H�.�RQ/ in a natural way, i.e. compatible with the
continuation isomorphism H�.M�.SR

L/; @/ Š H�.M�.SR
L0/; @/ for homotopies of

the Lagrangian.
In [2] and generalized for the path spaces �RQ in [6], a chain complex

isomorphism

ˆRW �
M�.SR

L/; @
� Š�! �

FR� .H/; @
�
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was constructed explicitly building on the Legendre-Fenchel duality of H and L.
Given generators x 2 PR.H/, a 2 Crit.SR

L/, we have the moduli space of hybrid
type trajectories

MaIx D ˚
uW Œ0;1/ � Œ0; 1� ! T �Q

ˇ
ˇ @J;H u D 0; u.C1/ D x;

�
u.s; 0/;Cu.s; 1/

� 2 N �R; .	 ı u/.0; �/ 2 W u.SR
LI a/�; (7)

where W u.SR
LI a/ denotes the unstable manifold of a for the negative pseudo-

gradient flow of SR
L . For generic choices of J and of the pseudo-gradient vector

field, MaIx is a manifold of dimension i.a/� �R.x/, where �R.x/ is the Maslov-
type index of x as a solution of the non-local Lagrangian boundary value problem
(4) (see [6] for the precise definition). Assuming arbitrary orientations for all
unstable manifolds W u.SR

LI a/ and using the concept of coherent orientation for
Floer homology according to [17], we show in [2] that all MaIx are orientable in a
coherent way, that is, compatible with the splitting-off of boundary trajectories on
either side. The compactness proof for this moduli space follows from the energy
estimate for u 2 MaIx

SL.a/ � SL

�
.	 ı u/.0/

� �AH .u.0; �// � AH .x/;

with equality if and only if 	 ı x D a and u is constant in s with 	.u.s; �// D a, in
particular #M�.x/Ix D 1. The central estimate is an immediate consequence of the
Fenchel-Legendre duality between L and H .

As a consequence from the identification of the generating sets, consistent even
with index and critical value

	WPR.H/
Š�! Crit SR

L; i.	.x// D �R.x/; SL.	.x// D AH .x/;

the chain morphism

ˆRa D
X

x2PR.H/
AH .x/�SL.a/

�
#algMaIx

� � x;

gives a chain complex isomorphism, as it is representable by a semi-infinite
triangular matrix with ˙1 on the diagonal.

We now give an equally explicit chain level construction of a chain morphism

‰RWF R� .H/ ! M�.SR
L/

such that at the homology level ‰R� D .ˆR� /�1. Here, we cannot give an argument
why the given ‰R should already be a chain complex isomorphism, certainly not
necessarily equal to .ˆR/�1. However, the concrete form of ‰R allows for simpler
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proofs of ring isomorphism properties of ˆR� , compared with the construction
from [5].

Let us consider the moduli space for x 2 PR.H/,

M�
x D ˚

uW .�1; 0��Œ0; 1� ! T �Q
ˇ
ˇ @J;H u D 0; u.�1/ D x;

u.0; �/ 2 0Q;
�
u.s; 0/;Cu.s; 1/

� 2 N �R
�
;

(8)

where 0Q denotes the zero-section of T �Q. For generic J , this is a smooth manifold
of dimension �R.x/, compact modulo splitting-off Floer trajectories at �1, in
particular C1

loc -compact. Hence, we find an upper bound c D c.x/ depending on
x for the Lagrangian action of the path .	 ı u/.0; �/ 2 �RQ,

SL

�
.	 ı u/.0; �/� � c.x/ for all u 2 M�

x :

Given x 2 PR.H/, a 2 CritSR
L , we now set

MxIa D ˚
u 2 M�

x

ˇ
ˇ .	 ı u/.0/ 2 W s.SR

LI a/ �
;

whereW s.SR
LI a/ denotes the stable manifold of a. Provided that x 6� 0Q or 	ıx 6D

a if x � 0Q (Fig. 2), we find for generic J and pseudo-gradient vector field for SR
L

that MxIa is a smooth manifold of dimension�R.x/�i.a/, compact up to splitting-
off boundary trajectories, and oriented via coherent orientation. We set

‰RWF R� .H/ ! M�.SL/; ‰Rx D
X

a2Crit SR
L

SL.a/�c.x/

�
#algMxIa

� � a;

and we obtain a chain complex morphism.
However, in general c.x/>AH .x/ is possible, in fact necessary if MxI�.x/ 6D ;,

so that we cannot expect ‰R to be of triangular shape similarly to ˆR. In fact, ‰R

u1

a ΩRQ

0Q

s = 0

Fig. 2 The inverse construction, MxIa
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can easily be defined for any pair .H;L/ of a quadratic type Hamiltonian and a
Lagrangian which does not need to be Fenchel dual to H .

The idea of using half-cylinders with boundary on the zero section of the
cotangent bundle in order to provide cycles in the path space from cycles in the
Floer chain complex via the evaluation at the zero section has been known for a
while. In [10] this technique is used towards an isomorphism for linearized contact
homology instead of Floer homology. The same idea is also used in [7].

Let us now give the proof that‰RıˆR is chain homotopy equivalent to idM�.SL/,
which already implies that‰R� D .ˆR� /�1 since we knowˆR� to be an isomorphism.

Proposition 2.1. Given H of quadratic type we have‰R ıˆR ' id on M�.SR
L/.

Proof. Via the usual gluing result for Floer theory we clearly have that ‰R ıˆR is
chain homotopy equivalent to the chain morphism M�.SR

L/ ! M�.SR
L/ defined by

counting

M�
a;b D ˚

wW Œ0; 
� � Œ0; 1� ! T �Q j @J;H w D 0;

�
w.s; 0/;Cw.s; 1/

� 2 N �R; w.
; �/ � 0Q; (9)

.	 ı w/.0; �/ 2 W u.SR
LI a/; .	 ı w/.
; �/ 2 W s.SR

LI b/ �

for a; b 2 Crit SR
L with equal Morse index, and for 
 > 0 fixed. The chain homotopy

to idM�.SR
L

/ then follows from letting 
 shrink to 0.
In order to simplify this argument, let us insert a further cobordism step. Namely,

we clearly obtain a chain homotopy equivalence to the chain morphism onM�.SR
L/

defined by counting

fM�;�
a;b

D ˚
wW Œ0; 
� � Œ0; 1� ! T �Q j @J;H w D 0;

�
w.s; 0/;Cw.s; 1/

� 2 N �R; w.
; �/ � 0Q; (10)

.	 ı w/.0; �/ 2 W u.SR
LI a/; .	 ı w/.�; �/ 2 W s.SR

LI b/ �

for 
 > 0 fixed and � 2 Œ0; 
� given. For � D 
 we have exactly M�
a;b

, and for
� D 0 we obtain

fM�
a;b D ˚

.c;w/
ˇ
ˇ c 2 W u.SR

LI a/\W s.SR
LI b/; w 2 M�

c

�

with

M�
c D ˚

wW Œ0; 
� � Œ0; 1� ! T �Q j @J;H w D 0;
�
w.s; 0/;Cw.s; 1/

� 2 N �R; (11)

.	 ı w/.0; t/ D c.t/; w.
; t/ 2 0Q 8 t 2 Œ0; 1� � :

If i.a/ D i.b/ we have for .c;w/ 2 fM�
a;b

that a D b D c, w 2 M�
a . The proof of

the Proposition then follows from the following:
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Lemma 2.2. Given c 2 �RQ there exists a 
o D 
o.c/ > 0 such that for each

 2 .0; 
o� the solution space M�

c contains a unique solution, compatible with
coherent orientation.

In fact, for 
n ! 0, the solution sequence wn converges uniformly with all
derivatives to the path .c; 0/ 2 �N �RT

�Q. Compatibility with coherent orientation
implies that

#algM�
a D #M�

a D 1 for 
 2 .0; 
o�; a 2 CritSL :

Hence, counting fM�
a;b

for 
 2 .0; 
o� defines exactly the identity operator on

M�.SR
L/. This concludes the proof of Proposition 2.1 ut

For the proof of Lemma 2.2 we refer to Proposition 4.10 in [5]. It follows from
a uniform convergence analysis of solutions wn 2 M�n

c as 
n ! 0 together with a
Newton type method to prove the unique existence of solutions for 
 small enough.
Note that, for example forHo D 1

2
jpj2, a first order approximation of solutions w 2

M�
c is given by w�

approx.s; t/ D �
c.t/; .
 � s/ Pc.t/�, where we identify TQ Š T �Q

via the Legendre transformation fromHo.
Moreover, there is also a parametric version of Lemma 2.2, where we allow c to

vary in a relatively compact family K � �RQ, for example an unstable manifold
W u.SLI a/. This would be the version to use in order to show‰R ıˆR ' id directly
by considering M�

a;b
above for 
 running from 1 to 0.

3 Cup Product

We now show that also the cup-coproduct structure on path space homology

[WH�.�RQ/ ! H�.�RQ/˝H�.�RQ/

has a Floer theoretic counterpart given by a chain level construction, isomorphic to
[ via ˆR.

Given three R-nondegenerate Hamiltonians Hi , i D 0; 1; 2, we define a chain
operation

uWF R� .H0/ ! F R� .H1/˝ F R� .H2/

as follows. Given generators xi 2 PR.Hi /, i D 0; 1; 2, we consider three-fold Floer
half-strips coupled by a conormal boundary condition

M[;R
x0Ix1;x2

D ˚
u D .u0; Nu1; Nu2/W .�1; 0� � Œ0; 1� ! T �Q3

ˇ
ˇ

@J;Hi
ui D 0; i D 0; 1; 2; ui .˙1; �/ D xi ;

�
ui .s; 0/;Cui .s; 1/

� 2 N �R; 0 � jsj < 1;

u.0; t/ 2 N �4.3/
�
;

(12)
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where Nui .s; t/ D Cui .�s; t/ and 4.3/ D f .q; q; q/ j q 2 Qg � Q3. Note that the
conormal condition u.0; �/ 2 N �4.3/ means that

	 ı u0.0; �/ D 	 ı u1.0; �/ D 	 ı u2.0; �/ DW q.�/ and

u0.0; �/ D u1.0; �/C u2.0; �/ in T �
q.�/Q :

(13)

Hence, we have a well-posed Fredholm problem for M[;R
x0Ix1;x2

with

dimM[;R
x0Ix1;x2

D �R.x0/ � �R.x1/� �R.x2/ :

For the index formula for half-strips with piecewise conormal boundary condition
see [5], Theorems 5.24 and 5.25. It remains to provide an energy estimate in order
to obtain the usual compactness result. We compute with ui .0; �/ D �

q.�/; pi .�/
�

and (13)

AH0
.x0/ � AH0

.u0.0; �// D
Z 1

0

�hp0; Pqi �H0.t; q; p0/
�
dt

.13/D
Z 1

0

�hp1 C p2; Pqi �H0.t; q; p0/
�
dt

D AH1
.u1.0; �//C AH2

.u2.0; �//

C
Z 1

0

�
H1.t; q; p1/CH2.t; q; p2/�H0.t; q; p0/

�
dt : (14)

Thus, we obtain the required action monotonicity provided that the Hamiltonians
satisfy

H0.t; q; p C p0/ � H1.t; q; p/CH2.t; q; p
0/

for all t 2 Œ0; 1�; q 2 Q; p; p0 2 T �
q Q :

For example, this is satisfied for geodesic type Hamiltonians with time-dependent
potential perturbation,

H0.t; q; p/ D 1

2
jpj2 C V.t; q/; H1.t; q; p/ D H2.t; q; p/ D jpj2 C 1

2
V.t; q/ :

Note that we have canonical isomorphismsHF R� .H0/ Š HF R� .Hi /, i D 1; 2 from
the standard continuation argument. We define u by counting M[;R

x0Ix1;x2
with the

usual orientation procedure,

uWF�.H0/ ! F�.H1/˝ F�.H2/; u.x/ D
X

.y; z/ 2 PR.H1/� PR.H2/
�R.y/ C �R.z/ D �R.x/

�
#algM[;R

xIy;z

�
y ˝ z :

(15)
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We shall prove the following:

Theorem 3.1. The chain level operation uWFR� .H0/ ! F R� .H1/ ˝ FR� .H2/

induces a coproduct u�WHF R� ! HF R� ˝ HF R� which is isomorphic to the cup
coproduct on H�.�RQ/ via the isomorphism ˆR� .

Before proving the ring isomorphism property, let us remark that we have a
variety of homotopically equivalent definitions for the cup coproduct in Floer
homology. In fact, given xi 2 PR.Hi /, i D 0; 1; 2, we can consider the problem for
� 2 Œ0; 1�,

u0W .�1; 0� � Œ0; 1� ! T �Q; ui W Œ0;1/ � Œ0; 1� ! T �Q; i D 1; 2;

@Ji ;Hi
ui D 0I u1.�1/ D x1; ui .C1/ D xi ; i D 1; 2;

�
ui .s; 0/;Cui .s; 1/

� 2 N �R; f.a. 0 � jsj < 1; i D 0; 1; 2;

.	 ı u0/.0; �/ D .	 ı u1/.0; �/ D .	 ı u2/.0; �/ DW q;
i.e. ui .0; �/ D .q; pi /; i D 0; 1; 2; p0 D �p1 C .1 � �/p2 : (16)

This is a well-posed Fredholm problem for all � 2 Œ0; 1�, and for � D 1=2

we obtain a problem which is essentially equivalent to (12) (Fig. 3). In order to get
compactness for the above problem, it is convenient to assume that the Hamiltonians
H0, H1 and H2 are physical Hamiltonians with the same kinetic part,

Hj .t; q; p/ D 1

2
jpj2 C Vj .t; q/; 8j D 0; 1; 2;

and that J is C 0-close enough to the Levi-Civita almost complex structure J0.
Under these assumptions we have the following compactness result, where as usual
on the space of maps we consider the C1

loc topology:

u0

u1

u2

s = 0 s → ∞

Fig. 3 The cup coproduct
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Lemma 3.2. For every triple xj 2 PR.Hj /, the space of solutions .�; u0; u1; u2/

of (16) is pre-compact. Moreover, the existence of a solution .�; u0; u1; u2/ of (16)
gives rise to the estimate

�AH1
.x1/ C .1 � �/AH2

.x2/ � AH0
.x0/C kV0k1 C max

˚kV1k1; kV2k1
�
:

(17)

Proof. By the special form of the Hamiltonians, we have

H0

�
t; q; �p1 C .1 � �/p2

� � �H1.t; q; p1/ � .1 � �/H2.t; q; p2/

� kV0k1 C max
˚kV1k1; kV2k1

�
:

Therefore,

AH0
.u0.0; �// D

Z

p0dq �H0.t; q; p0/ dt

D
Z

�
�p1 C .1 � �/p2

�
dq �H0.t; q; p0/ dt

D �AH1
.u1.0; �// C .1 � �/AH2

.u2.0; �//

�
Z

�
H0.t; q; p0/ � �H1.t; q; p1/� .1� �/H2.t; q; p2/

�
dt

� �AH1
.u1.0; �// C .1 � �/AH2

.u2.0; �//
� kV0k1 � max

˚kV1k1; kV2k1
�
; (18)

and the estimate (17) follows from the bounds

AH0
.u0.0; �// � AH0

.x0/; AH1
.u1.0; �// � AH1

.x1/;

AH2
.u2.0; �// � AH2

.x2/: (19)

By means of an isometric embedding of M into R
N and of the induced isometric

embedding of T �M into R
N � R

N Š C
N , we can consider the map

v W Œ0;C1/ � Œ0; 1� ! C
N ; v D �u1 C .1� �/u2:

Then by (18), the quantity

“

Œ0;C1/�Œ0;1�

j@svj2 dsdt � �

“

Œ0;C1/�Œ0;1�

j@su1j2 dsdt

C .1 � �/

“

Œ0;C1/�Œ0;1�

j@su2j2 dsdt



On Product Structures in Floer Homology of Cotangent Bundles 507

D �
�AH1

.u1.0; �//� AH1
.x1/

� C .1 � �/�AH2
.u2.0; �//� AH2

.x2/
�

� AH0
.x0/C kV0k1 C max

˚kV1k1; kV2k1
�

C ˇ
ˇAH1

.x1/
ˇ
ˇ C ˇ

ˇAH2
.x2/

ˇ
ˇ

has a uniform bound. Since also k@su0k2 is uniformly bounded, because of (18) and
(19), the L2 norm of the s-derivative of the map

w W Œ0;C1/ � Œ0; 1� ! C
N � C

N ; w.s; t/ D �
u0.�s; t/; v.s; t/

�
;

has a uniform bound. Since kJ � J0k1 is small, w solves a Cauchy-Riemann type
equation, and w.0; t/ belongs to the totally real space given by the conormal of the
diagonal in R

N � R
N , the argument of [2, Sect. 1.5] shows that w is uniformly

bounded in C1. In particular, u0 and

q.t/ WD 	 ı u0.0; t/ D 	 ı u1.0; t/ D 	 ı u2.0; t/

are uniformly bounded in C1, and we get uniform upper bounds for

AH1
.u1.0; �// � SL1

.q/ and AH2
.u2.0; �// � SL2

.q/:

Together with the lower bounds of (19), we conclude that k@su1k2 and k@su2k2 are
both uniformly bounded. By [2, Theorem 1.14 (iii)] and the usual elliptic bootstrap
argument, we conclude that also u1 and u2 have uniform C1 bounds. ut

Let now, for given � 2 Œ0; 1�, W �
x0Ix1;x2

denote the set of solutions of (16) with
generically chosen Ji for each ui , i D 0; 1; 2, as well as generically chosen triple
.V0; V1; V2/ of perturbing potentials. Then, we can define a chain level operation

u�WF R� .H0/ !
M

iCj D�
F R

i .H1/˝ FR
j .H2/;

from counting #algW
�

x0Ix1;x2
. Using the full solution space Wx0Ix1;x2

of (16) with
variable � 2 Œ0; 1� and accordingly generically chosen structures Ji and Vi and
index relation �R.x0/ D �R.x1/C �R.x2/ � 1 we obtain easily the following:

Proposition 3.3. The induced coproducts .u�/�WHF R� .H0/ ! HF R� .H1/ ˝
HF R� .H2/ do not depend on � 2 Œ0; 1�, and they are equal to the cup-coproduct u.

In fact, the cup-coproduct (15) is essentially given by u 1
2

.
As a consequence, in dual cohomological formulation, we can apply the above

action estimates to the notion of cohomologically critical values

c�.˛;H/ WD sup
˚
a 2 R j ˛ 2 Im

�
HF ��a.H/ ! HF �.H/

� �
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for given ˛ 2 HF �.H/, where HF ��a is the cohomology of the subcochain

complex F ��a.H/ D Z

˚
x2PR.H/ jAH .x/�a g, and we are omitting the superscriptR.

We have in this cohomological formulation, with [ dual to u:

Corollary 3.4 Given Hi .t; q; p/ D 1
2
jpj2 C Vi .t; q/ as above, we have for ˛i 2

HF �.Hi /, i D 1; 2 with ˛1 [ ˛2 2 HF �.H0/

c 	 .˛1 [ ˛2;H0/ � max
˚
c�.˛1;H1/; c

�.˛2;H2/
�

� kV0k1 � max
˚kV1k1; kV2k1

�
:

We now complete the proof of Theorem 3.1. At first, we give a Morse-
homological definition of the cup-product.

Suppose we have three non-degenerate Lagrangians Li , i D 0; 1; 2, such that
S

R
L1

and S
R
L2

have no common critical points. Then we define

[WM�.SR
L0
/ ! M�.SR

L1
/˝M�.SR

L2
/;

[ a D
X

.b;c/2Crit SR
L1

�Crit SR
L2

haI b; ci b ˝ c ; (20)

where haI b; ci is the oriented count of

W u.SR
L0

I a/ \W s.SR
L1

I b/\W s.SR
L2

I c/;

provided that we have chosen three generic pseudogradient fields so that the triple
intersection is transverse. The dimensions of this intersection is i.a/� i.b/� i.c/,
and the intersection is oriented if the unstable manifolds (which are all finite-
dimensional) are oriented.

The usual splitting-off argument for boundary trajectories proves the Leibniz rule
for [, and it is well-known see e.g. [8] that [� defines the cup-coproduct. One
can also show Morse homologically that the cohomological product [� satisfies
[� D 4� ı�, where � is the exterior product and 4� the pull-back by the diagonal
embedding 4W�RQ ,! �RQ��RQ, for which we also have Morse homological
functoriality.

We now want to show that the isomorphism

‰R� WHF R� .H/ ! HM�.SR
L/

intertwines the coproducts u and [�, i.e.

[ ı‰R ' �
‰R ˝‰R

� ı u

are chain homotopic on F R� .
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Clearly, [ ı‰R is chain homotopic to the operation

w1WFR� .H/ ! M�.SR
L1
/˝M�.SR

L2
/;

w1.x/ D
X

.b; c/

i.b/C i.c/ D �R.x/

�
#algfM.1/.xI b; c/� � b ˝ c ; (21)

with

fM.1/.xI b; c/ D ˚
u 2 M�

x

ˇ
ˇ .	 ı u/.0; �/ 2 W s.SR

L1
I b/\W s.SR

L2
I c/ �

:

Then we find generic J for M�
x and pseudo-gradient vector fields for SR

Li
, i D 1; 2,

such that fM.1/.xI b; c/ satisfies transversality for all x; b; c.
Next, we use Proposition 3.3, which allows us to replace u by u� for � D 1. We

obtain �
‰R ˝‰R

� ı u1 ' w2;

with w2 given by the oriented count of

fM.2/
� .xI b; c/ D ˚

.u; v/
ˇ
ˇ u 2 M�

x ; .	 ı u/.0; �/ 2 W s.SR
L1

I c/;
vW Œ0; 
� � Œ0; 1� ! T �Q;

�
v.s; 0/;Cv.s; 1/

� 2 N �R;

.	 ı v/.0; �/ D .	 ı u/.�
; �/;
v.
; �/ � 0Q; .	 ı v/.
; �/ 2 W s.SR

L2
I b/ �

(22)

for any fixed 
 > 0 (Figs. 4 and 5). Moreover, w2 is clearly chain homotopic to
w3WF R� ! M� ˝M� given by

c

b

u

0Q

ΩRQ

Fig. 4 eM.1/

 .xI b; c/
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u

c
b

v

v(0, ·)

u(−σ, ·)

Fig. 5 eM.2/

 .xI b; c/

u

cb

v

Fig. 6 eM.3/

 .xI b; c/

fM.3/
� .xI b; c/ D ˚

.u; v/
ˇ
ˇ u 2 M�

x ; .	 ı u/.0; �/ 2 W s.SR
L1

I c/;
vW Œ0; 
� � Œ0; 1� ! T �Q;

�
v.s; 0/;Cv.s; 1/

� 2 N �R;

.	 ı v/.0; �/ D .	 ı u/.�
; �/;
v.
; �/ � 0Q; .	 ı v/.0; �/ 2 W s.SR

L2
I b/ �

; (23)

which differs from the previous space only for the value of s for which 	 ı v.s; �/
belongs to the stable manifold of b. Finally, w3 is chain homotopic to w4 given by
(Fig. 6)

fM.4/
� .xI b; c/ D ˚

.u; v/
ˇ
ˇ u 2 M�

x ; .	 ı u/.0; �/ 2 W s.SR
L1

I c/;
vW Œ0; 
� � Œ0; 1� ! T �Q;

�
v.s; 0/;Cv.s; 1/

� 2 N �R;

.	 ı v/.0; �/ D .	 ı u/.0; �/ 2 W s.SR
L2

I b/;
v.
; �/ � 0Q

�
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u

c

b

v

Fig. 7 eM.4/

 .xI b; c/

D ˚
.u; v/

ˇ
ˇ u 2 fM.1/.xI b; c/;
vW Œ0; 
� � Œ0; 1� ! T �Q;

�
v.s; 0/;Cv.s; 1/

� 2 N �R;

.	 ı v/.0; �/ D .	 ı u/.0; �/ ;
v.
; �/ � 0Q

�
;

D ˚
.u; v/

ˇ
ˇ u 2 fM.1/.xI b; c/; v 2 M�

�ıu.0/

�
; (24)

with M�
�ıu.0/

as in (11). The chain homotopy w4 ' w1 then follows from Lemma
2.2 if we choose 
 > 0 small enough. This finishes the proof of Theorem 3.1
(Fig. 7). ut

4 The Proof of the Hopf Algebra Property

Let us now analyze the compatibility of the coproduct u�WHF R� .H0/ !
HF R� .H1/ ˝ HF R� .H2/ with the product mRWHF R� .H/ ˝ HF R� .H/ !
HF R

��d.R;R/
.H .2// where R ıR D R. In fact, we are interested in the relation

u ım D .m˝m/ ı � ı .u ˝ u/; (25)

where

� WHF R.H1/˝HF R.H2/˝HF R.H1/˝HF R.H2/

! HF R.H1/˝HF R.H1/˝HF R.H2/˝HF R.H2/
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commutes the second and third factor. Obviously, a necessary condition for (8) to
hold besides R ı R D R is that the degree d.R;R/ vanishes. Since this degree
equals the codimension of .R � R/\ .Q �� �Q/ in R � R, d.R;R/ vanishes if
and only if R � R � Q � � � Q, that is if and only if R D f.q0; q0/g for some
q0 2 Q. Therefore, the only case to be considered is the classical case of based loop
homology, that is we want to verify the Hopf-algebra property (8) for

�
HF R� ; mR; u�

� Š �
H�.�Q/; #;[

�

by Floer-theoretical arguments via chain level operations on FR� .Hi /. We replace
the superscript R D f.qo; qo/g by� and we prove the following:

Theorem 4.1. The chain maps ui WF�� .H
.i/
0 / ! F�� .H

.i/
1 / ˝ F�� .H

.i/
2 /, i D

1; 2, and mj WF�� .Hj / ˝ F�� .Hj / ! F�� .H
.2/
j /, j D 0; 1; 2, satisfy the chain

homotopy property

u2 ım0 ' .m1 ˝m2/ ı � ı .u1 ˝ u1/ :

Proof. We recall from [5] that mj WF�� .Hj / ˝ F�� .Hj / ! F�� .H
.2/
j / is defined

by counting

.u1; u2/WR � Œ0; 1� ! .T �Q/2; @J;Hj
ui D 0; i D 1; 2;

�
u1.s; 0/;Cu1.s; 1/; u2.s; 0/;Cu2.s; 1/

� 2
(
.T �

qo
Q/4 D N �.fqog4/; s � 0;

T �
qo
Q �N �423 � T �

qo
Q; s � 0 :

Hence, using the definition of ui via (12) and Hj D 1
2
jpj2 C Vj .t; q/, with Vj

1-periodic in time, for j D 0; 1; 2, we obtain via the usual gluing argument that for
every � > 0 the chain map u2 ım0 is chain homotopic to the operator

A�WF�� .H0/˝ F�� .H0/ ! F�� .H
.2/
1 /˝ F�� .H

.2/
2 /;

which is defined by counting

wW .�1; 0� � Œ0; 1� ! .T �Q/6 with;

w.s; t/ D �
u10.s; t/;Cu20.s; 1 � t/;Cu11.�s; t/; u21.�s; 1 � t/;

Cu12.�s; t/; u22.�s; 1 � t/
�

@J;Hj
uij D 0; i D 1; 2; j D 0; 1; 2;

w.s; 0/ 2 .T �
qo
Q/6; for � 1 < s � 0;

w.0; t/ 2 N ��4.3/ � 4.3/
�
; 0 � t � 1; (26)
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u10

u20 Aρ � Bρ
u20
u10

u11

u21
u11

u21

u12

u22
u12

u22

Fig. 8 The Hopf algebra argument

w.s; 1/ 2 N ��fqog2 � 4 � 4�
; �1 < s � ��; and

w.s; 1/ 2 N ��4 � 4 � 4�
; �� � s � 0: (27)

Likewise, we have that for every � > 0 the chain map .m1 ˝m2/ ı � ı .u1 ˝ u1/ is
chain homotopic to the operator

B�WF�� .H0/˝ F�� .H0/ ! F�� .H
.2/
1 /˝ F�� .H

.2/
2 /;

which is defined by counting wW .�1; 0� � Œ0; 1� ! .T �Q/6 as above satisfying
instead of the last equation of (26) the condition

w.s; 1/ 2 N �.fqog6/ for � � � s � 0 : (28)

We now need to show that A� and B� are chain homotopic. Instead of identifying
the limit operators A0 and B0 as � ! 0, we apply a different argument from [5]
(Fig. 8).

Note that it is not possible to homotope the last line of (26) into (28) through
conormal boundary conditionsN �R for s 2 Œ��; 0� since fqog6 and 4 � 4 � 4 are
not isotopic inQ6 already by dimensional reasons. However, we have the following:

Lemma 4.2. The chain maps A� ˝ B� and B� ˝ A� are chain homotopic.

The proof is completely analogous to that of Proposition 4.7 in [5]. In order to
deduce from the above lemma that A� is chain homotopic to B�, we can use the
following algebraic fact, which is proven as Lemma 4.6 in [5]:

Lemma 4.3. Let .C; @/ and .C 0; @/ be chain complexes, bounded from below. Let
'; W C ! C 0 be chain maps. Assume that there is an element  2 C0 with @ D 0

and a chain map ı W C 0 ! .Z; 0/ such that

ı.'.// D ı. .// D 1:

If ' ˝  is homotopic to  ˝ ' then ' is homotopic to  .
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Here .Z; 0/ denotes the trivial chain complex all of whose groups vanish, except
for the one in degree zero which is Z.

It remains to find a cycle  2 .F�.H0/ ˝ F�.H0//0 and a chain map
ıWF�.H

.2/
1 /˝ F�.H

.2/
2 / ! .Z; 0/ such that

ı.A�.// D ı.A�.// D 1: (29)

Without loss of generality, we can assume that the potentials Vj are time-
independent Morse functions and that they have a common unique maximum at
q0. The constant orbit x0 D .q0; 0/ is an element of F�

0 .H
.i/
j / for every i D 1; 2

and j D 0; 1; 2 and it defines a cycle

 D .x0; x0/ 2 .F�.H0/˝ F�.H0//0:

Since x0 is the critical point with minimal action A
H

.i/

j

, for every i D 1; 2 and

j D 0; 1; 2, we have
A�./ D B�./ D : (30)

Let L.2/
1 and L.2/

2 be the Lagrangians on TQ which are Fenchel dual to H .2/
1 and

H
.2/
2 . Let

Qı W M �
S

L
.2/
1

� ˝M
�
S

L
.2/
2

� D M
�
S

L
.2/
1

˚ S
L

.2/
2

� ! .Z; 0/

be the standard augmentation on the Morse complex of the functional

S
L

.2/
1

˚ S
L

.2/
2

W �q0
Q ��q0

Q ! R; .�1; �2/ 7! S
L

.2/
1

.�1/C S
L

.2/
2

.�2/;

that is the homomorphism which maps each critical point of Morse index zero into 1.
The homomorphism Qı is a chain map because the boundary of every critical point �
of Morse index one has the form �1 � �2, where �1 and �2 are the critical points of
Morse index zero to which the two sides of the one-dimensional unstable manifold
of � converge. We can now use the isomorphism ˆ� between the Morse complex
and the Floer complex to read the chain map Qı on the Floer complex, thus defining
the chain map

ı W F�.H
.2/
1 /˝ F�.H

.2/
2 / ! .Z; 0/:

Since ˆ� is the identity mapping on global minimizers, we have

ı./ D 1:

Together with (30), this proves (29) and concludes the proof of the theorem. ut



On Product Structures in Floer Homology of Cotangent Bundles 515

5 The Goresky-Hingston Coproduct

Throughout this section, we deal only with periodic boundary conditions, i.e. to the
case R D 4. In order to simplify the notation, we omit the superscript 4 from all
the objects which would require it (such as F4� , S4

L , �4, and so on).
Let us consider the coproduct of degree �n, wWF�.H0/ ! �

F�.H1/ ˝
F�.H2/

�
��n

defined by counting

u D .u1; u2/WR � Œ0; 1� ! T �.Q �Q/; solving

@J;H0
ui D 0 for s � 0; i D 1; 2;

@J;H1
u1 D @J;H2

u2 D 0 for s � 0 ;

�
u1.s; 0/;Cu1.s; 1/; u2.s; 0/;Cu2.s; 1/

� 2
(
N �.414 � 423/; s � 0;

N �.412 � 434/; s � 0 ;

(30)

with asymptotics x 2 P2.H0/ for s ! �1 and .y; z/ 2 P1.H1/ � P1.H2/ for
s ! 1.

Then, completely analogous to the ring isomorphism ˆ�W �
H�.ƒQ/; ı

� Š�!�
HF�.T �Q/;m

�
, one can show that ˆ� identifies the coproduct w on HF� with

the comultiplication

� WD �
top
0;3WH�.ƒQ/ ! �

H�.ƒQ/˝H�.ƒQ/
�
��n

;

of degree �n from [11] (see Theorem 3).
We now give a short argument which explains why this coproduct is essentially

trivial, i.e. 0 to large extents. Let us assume for simplicity thatQ is simply connected
and hence H0.ƒQ/ Š Z generated by 1, where this class 1 is represented by any
constant loop qo 2 Q � ƒQ as a 0-cycle. Moreover, we denote by e D ŒQ� 2
Hn.ƒQ/ the neutral element for the Chas-Sullivan loop product, which is given by
the fundamental class of Q, as an n-cycle of constant loops. In Floer homology,
ˆ�.e/ is given by the Floer cycle

X

	.x/Dn

�
#algMC

x

� � x 2 Fn.H/;

MC
x D ˚

uW Œ0;1/ � T ! T �Q
ˇ
ˇ @J;H u D 0; u.C1/ D x;

@

@t
.	 ı u/.0; �/ D 0

�

(31)

for a generic J . We have eıa D aıe D a for all a 2 H�.ƒQ/ and �.e/ D ˛ �1˝1
for some ˛ 2 Z by dimensional reasons. In fact, it is not hard to show that

�.e/ D �.Q/ � 1˝ 1 : (32)
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Lemma 5.1. For any a 2 Hk.ƒQ/, we have

�.a/ D
(
0; if k 6D n;

ˇ � 1˝ 1; if k D n;

with ˇ � 1 D �.Q/ � .a ı 1/ 2 H0.ƒQ/.

Proof. From [11] or the property of HF� to be a (noncompact) 2-dimensional
topological field theory (see also [12]) it follows that

.id ˝m/ ı .�˝ id/ D .m˝ id/ ı .id ˝�/
D � ımWH�.ƒQ/˝H�.ƒQ/ ! �

H�.ƒQ/˝H�.ƒQ/
�
��2n

(33)

where for notational clarity we writem for the loop product ı. Applying this identity
on a˝ e and e ˝ a for the given a 2 Hk.ƒQ/ gives

�.a/ D .� ım/.a˝ e/ D .m � id/ ı .id ˝�/.a ˝ e/

D �.Q/ � .m˝ id/.a˝ 1˝ 1/;

D �.Q/ �m.a; 1/˝ 1; as well as

D �.Q/ � 1˝m.a; 1/; (34)

which leaves only the possibility �.Q/ �m.a; 1/ D 0 in the case k 6D n and �.a/ D
ˇ � 1˝ 1, b � 1 D �.Q/ �m.a; 1/ if k D n. ut

Hence, apart from degree n classes, the coproduct has to be trivial. This, however,
can be seen as a possibility to define a secondary structure, namely a coproduct on
relative homologyH�.ƒQ;Q/, or equivalently a cohomological product

�WH�.ƒQ;Q/˝H�.ƒQ;Q/ ! H�Cn�1.ƒQ;Q/ :

This cohomological product has been explicitly constructed and carefully ana-
lyzed in [19]. It gives an interesting nontrivial operation in particular for spheres
Q D Sn.

Here, we now want to give an explicit chain-level construction for the Floer-
homological counterpart of �. Let us consider a special Hamiltonian of physical
type H D 1

2
jpj2 C V.t; q/, where V.t; q/ is only a small potential perturbation

in order to achieve Morse-nondegeneracy for the action AH . Let us pick V.t; q/
generically with kV k1 small enough compared to the smallest length of a closed
geodesic, so that the orbits x 2 P1.H/with AH .x/ >  for some  > kV k1 can be
seen as the generators of the quotient chain complexF�.H/=F�
� .H/which defines
the homologyHF 
>0� .H/. Then,HF�.H/
>0 becomes isomorphic toH�.ƒQ;Q/
under ˆ� for  > 0 small enough. Let us denote
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HF >0� .T �Q/ WD lim

>kV k1!0

HF 
>0� .H/ :

We will now construct a coproduct

QwWHF >0� .T �Q/ ! �
HF >0� .T �Q/˝HF >0� .T �Q/

�
��nC1

: (35)

Given 0 < � < 1 we consider the disjoint union of strips

†� D .�1; 0� � Œ0; �� P[ .�1; 0� � Œ�; 1� :

Given 1-periodic solutions xi 2 P1.Hi /, i D 0; 1; 2 withHi D 1
2
jpj2 CVi .t; q/

for a generic triple of small perturbations as above .V0; V1; V2/, we consider
fMx0Ix1;x2

as the space of solutions .u; v;w; �/ of

� 2 .0; 1/; uW†� ! T �Q; .v;w/W Œ0;1/ � T ! T �Q � T �Q;
�
v.C1/;w.C1/

� D .x1; x2/; u.�1; t/ D x1.t/ for 0 � t � 1;

@J;H1
v D @J;H2

w D 0;

@J;H0
u.s; t/ D 0 for all 0 � t � 1; s � �1;

@J; 1
2 jpj2 u.s; t/ D 0 for all 0 � t � 1; �1 � s � 0;

�
u.s; 0/; u.s; �C/� D

( �
u.s; ��/; u.s; 1/�; �1 � s � 0;

�
u.s; 1/; u.s; ��/�; s � �1;

v.0; t/ D u.0; �t/; w.0; t/ D u.0; �C .1 � �/t/ for all 0 � t � 1 :

(36)

Note that the variation of � 2 .0; 1/ can be equivalently regarded as a particular
variation of the conformal structure on a pair-of-pants surface N† with boundary
(Fig. 9), given by † 1

2
sewed along .s; 0/ D .s; 1

2
�/ and .s; 1

2
C/ D .s; 1/ for

�1 � s � 0 and .s; 0/ D .s; 1/ and .s; 1
2
�/ D .s; 1

2
C/ for s � �1. In fact, N†

relative to @ N† has a topologically nontrivial Riemann moduli space and in order to
define Qw we are using a particular 1-cycle in its homology relative to its Deligne-
Mumford compactification (Fig. 9).

Again, it is not hard to show that for generic choices of J and .V0; V1; V2/,
fMx0Ix1;x2

is a smooth manifold of dimension

dim fMx0Ix1;x2
D �.x0/ � �.x1/� �.x2/ � nC 1 : (37)

In order to obtain the important compactness modulo splitting-off of Floer trajec-
tories, let us compute the energy estimate. We clearly have �jpj2, .1��/jpj2 � jpj2
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u

w

v

s = 1
s = 0

s = 0

x1

x2

x0

Fig. 9 The coproduct construction. eMx1Ix2;x3

for all � 2 Œ0; 1�. Hence we have for any solution .u; v;w; �/ 2 fMx0Ix1;x2

A 1
2

jpj2 .v.0// � A� 1
2

jpj2.v.0// D A 1
2

jpj2
�
u.0; �/jŒ0;��

�
and

A 1
2 jpj2.w.0// � A.1��/ 1

2 jpj2 .w.0// D A 1
2 jpj2

�
u.0; �/jŒ�;1�

�
:

Using  � kVi k1, we have

A 1
2

jpj2 .u.�1; �// D AH1
.u.�1; �// C

Z 1

0

V0.t; .	 ı u/.�1; t//dt

� AH1
.x1/ �

Z �1

�1

Z 1

0

j@suj2dsdt C 

and

A 1
2 jpj2 .u.0; �// D A 1

2 jpj2
�
u.0; �/jŒ0;��

� C A 1
2 jpj2

�
u.0; �/jŒ�;1�

�

� A 1
2 jpj2.u.�1; �// �

Z 0

�1

Z 1

0

j@suj2dsdt :

Assembling all this gives

AH1
.x1/ � A 1

2 jpj2 .v.0; �// �
“ 1

0

j@svj2dsdt C 

AH2
.x2/ � A 1

2
jpj2 .w.0; �// �

“ 1

0

j@swj2dsdt C 



On Product Structures in Floer Homology of Cotangent Bundles 519

and

AH1
.x1/ C AH2

.x2/ � A 1
2

jpj2 .u.0; �//

�
“

j@svj2dsdt �
“

j@swj2dsdt C 2

� AH0
.x0/ � E.u; v;w/ C 3;

that is
0 � E.u; v;w/ � AH0

.x0/ � AH1
.x1/ � AH2

.x2/ C 3; (38)

with

E.u; v;w/ D
Z 0

�1

Z 1

0

j@suj2dsdt C
Z 1

0

Z 1

0

�j@svj2 C j@swj2�
dsdt :

With the usual arguments from the compactness theory for Floer trajectories in
T �Q for Hamiltonians of quadratic type, we see that fMx0Ix1;x2

is C1
loc-precompact.

The only new case here concerns sequences .un; vn;wn; �n/ 2 fMx0Ix1;x2
with

�n ! 0 or �n ! 1. Assume without loss of generality �n ! 0. After choosing a
C1

loc-convergent subsequence we view the restriction unjŒ�1; 0� � Œ0; �n� as

unW Œ�1; 0� � R ! T �Q; @J; 1
2

jpj2 un D 0 and

un.s; t C �n/ D un.s; t/ for all .s; t/ 2 Œ�1; 0� � R :

We have un ! u1 in C1
loc ,

u1W Œ�1; 0� � R ! T �Q; @t u1 � 0;

that is, u1.0/ 2 T �Q is a point. On the other side

vn.0; t/ D un.0; �nt/ f.a. t 2 R; n 2 N; and vn

C 1

loc! v1 :

It follows that v1.0; t/ D u1.0/ for all t 2 R. Hence

A 1
2

jpj2
�
vn.0/

� ! A 1
2

jpj2
�
u1.0/

� D �1
2

jw1.0/j2 � 0;

and thus

AH1
.x1/ �  � 1

2
ju1.0/j2 �  :
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This proves

Proposition 5.2. If AH1
.x1/, AH2

.x2/ >  � maxfkV1k1; kV2k1g, then for all
x0 2 P1.H0/, the solution space fMx0Ix1;x2

is compact modulo splitting of Floer
trajectories.

By counting the 0-dimensional solutions of fMx0Ix1;x2
we obtain a well-defined

cochain operation on the Floer cochain complexes from the ascending AH -flow,

Qw�WF k�a.H1/˝ F l
�b.H2/ ! F kClCn�1

�aCb�3

.H0/

Qw�.x; y/ D
X

z

#algfMzIx;y z ;

for all a; b > .
After using the usual continuation isomorphism of Floer theory in order to

eliminate the perturbation Vi ofH D 1
2
jpj2, we obtain the product

QwWHF k�a.H/˝HF l
�b.H/ ! HF kClCn�1

�aCb
.H/

for all positive a; b > 0 and a ring
�
HF �

>0.H/; Qw�
.

The proof that this product on cohomology is isomorphic to � from [19] will
appear elsewhere.
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