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Integral Representation of Local Functionals (*)

Giovanni Alberti

Abstract. – We study conditions under which a functional F (u, B) admits an integral
representation of the form

F (u, B) =

∫

B

f
(

x, Dku(x)
)

dx .

0. – Introduction.

When we study the relaxation F (with respect to a prescribed topology τ) of an
integral functional F of the form

F (u) =

∫

Ω

f
(

x, Dku(x)
)

dx ,

the first question is whether F is an integral functional or not. The same question
arises when we consider the Γ–limit of a sequence of integral functionals of the same
form.

These problems have been successfully faced by considering relaxation and Γ–
convergence of integral functionals of the form

(0.1) F (u, B) =

∫

B

f
(

x, Dku(x)
)

dx

and this lead to the following general problem: let F : X ×
�

−→] −∞,∞] be given,
where X is a k-th order Sobolev space W k,p(Ω, RM ) and

�
is the σ–field of all Borel

subsets of Ω, under which conditions there exists a Borel function f which is lower
semicontinuous in the second variable and satisfies (0.1) for all u and B?

A good survey of the question and a complete bibliography may be found in But-
tazzo, chapters 2 and 4. In particular, this problem has been studied when k = 0
(i.e. when X = Lp(Ω) ) and k = 1 (i.e. when X is a first order Sobolev space) in
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Buttazzo and Dal Maso [1], [2] and Hiai. The result of the first paper is very
refined and general. It was shown that when X = Lp(Ω, RM ) (1 ≤ p < ∞), every
functional F admits an integral representation of the form

F (u, B) =

∫

B

f
(

x, u(x)
)

dx

provided the following conditions are fulfilled:

(i) F (u, ·) is a measure absolutely continuous with respect to Lebesgue measure
for all functions u,

(ii) F is local, i.e. F (u, B) = F (v, B) whenever u = v a.e. in B,

(iii) F (·, B) is lower semicontinuous in the strong topology of Lp for all Borel sets
B,

(iv) F (ū, Ω) < ∞ for at least one function ū.

In the second paper a similar result was achieved for functionals defined on first
order Sobolev space W 1,p(Ω, RM ) (1 ≤ p < ∞) which satisfy invariance condition

F (u, B) = F (u + c, B) for all u ∈ W 1,p, B ∈
�

and c ∈ R
M ,

provided some technical growth conditions are fulfilled.
In this paper we consider abstract functionals of the form F : X×

�
(Ω) −→]−∞,∞]

where X is k-th order Sobolev space of functions of the open set Ω and
�

(Ω) is the
σ–field of all Borel subsets of Ω. We want to point out that our technics are very
general and allow us to deal with functionals defined on Lp or on every order Sobolev
spaces as much.

In order to get a representation in the form (0.1), we consider functionals which
satisfy invariance condition (0.6) and are measures with respect to the second variable
(see Definition 0.3).

F is assumed to satisfy a suitable locality property (cf. Definition 0.3(ii)), i.e.
F (u, B) = F (v, B) whenever u, v ∈ X, B ∈

�
and Dku = Dkv a.e. in B, and a

suitable regularity property (cf. Definition 0.3(iii)) , i.e. F (·, B) is lower semicontinous
in the strong topology of W k,p for every Borel set B. We shall discuss apart when
these conditions may be replaced by milder ones.

Acknowledgements: I wish to thank Prof. Giuseppe Buttazzo for many useful
discussions and suggestions which helped a lot in preparing this paper. Special thanks
to Luigi Ambrosio and Sergio Venturini for their useful remarks.

Basic Notation and Statements of Main Results.

Before stating the main results, we give a short list of basic notations and definitions
that appear in this paper.

Unless differently stated, throughout this paper Ω is a nonempty bounded open
subset of R

N , k is a non negative integer and p is a real number in [1,∞[.

To begin with, we give a list of some symbols which will often occur: � (Ω) is the
collection of all open subsets of the open set Ω;

�
(Ω) is the σ–field of all Borel subsets

of Ω; �N denotes Lebesgue measure in R
N and |A| = �N (A) is the Lebesgue measure

of the Borel set A.

We refer to usual functional analysis notation (cf. Brezis and Rudin [2]); to avoid
any ambiguity, however, we recall that letters in boldface are integral multi–indices
a = (a1, . . . , aN ) with norm |a| = a1 + . . . + aN and Da is the partial derivative

Da =
( ∂

∂x1

)a1
. . .

( ∂

∂xN

)aN
.

We recall that a Borel function u belongs to Sobolev space W k,p(Ω, RM ) if Dau is
(represented by) a function in Lp(Ω, RM ) for every multi–index a with |a| ≤ k.

Let I(k) be the set of all multi–indexes a with |a| = k; we denote by Dku the
k-th derivative of u, i.e. the function of Ω into (RM )I(k) defined by Dku(x) =
(

Dau(x)
)

a∈I(k)
for all x ∈ Ω.

Unless differently stated, every space is endowed with its norm topology. Every
subspace of a space X is endowed with the topology inherited from X.

Given a Borel function u : Ω → [−∞,∞], we say that a point x ∈ Ω is a Lebesgue
point of u, and we write x ∈ � (u), when

(0.2) lim
r→0

∣

∣B(x, r) ∩ u−1(A)
∣

∣

|B(x, r)|
= 1 for each open neighbourhood A of u(x).

We say that a point x ∈ Ω is a p–Lebesgue point of u, and we write x ∈ � (p, u), when
u(x) ∈ R and

(0.3) lim
r→0

‖u − u(x)‖Lp(B(x,r))

|B(x, r)|1/p
= 0 .

It is well–known that both � (u) and � (u, p) are Borel sets, moreover
∣

∣Ω \� (u)
∣

∣ = 0

for all u and
∣

∣Ω \ � (u, p)
∣

∣ = 0 for all p–summable u with 1 ≤ p < ∞ (cf. Rudin
[1], chapter 9). The same holds if we consider functions which takes value in a finite
dimensional normed space.

By measure on Ω we mean any σ–additive set function defined on the σ–field
�

(Ω)
which takes values in ] −∞,∞]. If λ is a measure on Ω, |λ| denotes its total variation
and λ+, λ− denote its positive and negative variations respectively. We say that λ
is absolutely continuous with respect to Lebesgue measure (λ ¿ �N ) if λ(E) = 0
whenever |E| = 0 (cf. Rudin [1], chapter 6).

If λ is a measure which is absolutely continuous with respect to Lebesgue measure,
Radon–Nikodym theorem (cf. RAO, Proposition 1 of Section 5.4) states that there
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exists a Borel function f such that f− is summable and λ(E) =
∫

E
f dx for all Borel

sets E ⊂ Ω.
The supremum of a collection � of measures on Ω is defined by

(0.4)
∨

λ∈�
λ (E) = sup

{

∑

n

λn(E ∩ Bn)
}

for all E ∈
�

(Ω),

where the supremum is taken over all sequences {λn} ⊂ � and all Borel partitions
{Bn} of Ω. The infimum

∧

λ∈�
λ is defined in a similar way. It may be easily proved

that both
∨

λ∈�
λ and

∧

λ∈�
λ are measures.

We introduce a notion which may be very useful in dealing with infinite measures.
Let λ be a measure on Ω and let � (λ) be the set of all finite measures µ such that
λ(E) ≥ µ(E) for all Borel sets E. Define the lower envelope of λ by

(0.5) λ∗ =
∨

µ∈� (λ)

µ .

We say that λ is lower regular when λ = λ∗, i.e. when λ − λ∗ = 0.

Remark 0.1. – Let λ be a measure on Ω, then

(i) for every Borel set E, λ∗(E) = sup{µ(E) : µ is a finite measure and µ(B) ≤
λ(B) for all B ⊂ E},

(ii) λ∗∗ = λ∗,

(iii) λ − λ∗ is a positive measure and (λ − λ∗)∗ = 0. In particular λ − λ∗ never
takes finite values and for every positive finite measure µ such that λ−λ∗ ≥ µ we have
µ = 0.

(iv) λ is lower regular if and only if, for each Borel set E ⊂ Ω such that λ(E) = ∞
and λ(B) = 0 or λ(B) = ∞ for all B ⊂ E, there exists a positive finite measure µ such
that µ(E) > 0 and

µ(B) = 0 for all Borel sets B ⊂ E with λ(B) = 0,

In particular, a measure λ is lower regular provided one of the following condition
is fulfilled

(v) for every Borel set E ⊂ Ω with λ(E) = ∞ there exists a Borel set B ⊂ E
such that 0 < λ(B) < ∞,

(vi) λ is of the form λ(B) =
∫

B
fdµ where µ is a lower regular measure and f is

a positive Borel function,

(vii) λ is finite or σ–finite,

(viii) λ is an Hausdorff measure,

(ix) λ is outer regular or inner regular.

The proof of this statements is not difficult except for (iii) which is a corollary of
Theorem 48 of Rogers. Notice that the most measures we may usually deal with are
lower regular but not all (Example 4.7).

Let X be a subspace of some W k,p(Ω, RN ). Any function F : X×
�

(Ω) −→]−∞,∞]
is called a functional on X .

Definition 0.2. – Let X be a subspace of some W k,p(Ω, RN ). We say that X is a
local subspace if it contains all polynomial functions p : R

N → R
M with deg p < k and

is closed under multiplication by real functions of class C∞ with compact support in
Ω.

Our main extent is studying functionals the domains of which is W k,p. Nevertheless
it is important to point out that the most statements we prove hold even when X is
a local subspace of W k,p and that the idea of local subspace plays an essential role in
their proofs.

Definition 0.3. – Let F be a functional defined on a subspace X of W k,p(Ω, RM ).
According to Buttazzo and Dal Maso [1], [2] and [3], we say that F satisfies invari-
ance condition (0.6) if

(0.6) F (u, B) = F (u + p, B) for all polynomials p : R
N → R

M with deg p < k.

Moreover we use the following definitions.

(i) F is a measure if F (u, ·) is a measure on Ω for all u ∈ X. F is finite,
absolutely continuous (a.c.) or lower regular when every measure F (u, ·) is finite,
absolutely continuous with respect to Lebesgue measure or lower regular.

(ii) F is local on
�

if F (u, B) = F (v, B) whenever u = v almost everywhere in B
and is local on � if F (u, B) = F (v, B) whenever there exists an open set A ⊃ B such
that u = v almost everywhere in A. F is Dk–local on

�
if F (u, B) = F (v, B) whenever

Dku = Dkv almost everywhere in B and is Dk–local on � if F (u, B) = F (v, B)
whenever there exists an open set A ⊃ B such that Dku = Dkv almost everywhere in
A.

(iii) F is lower semicontinuous (l.s.c.) on
�

if F (·, B) is lower semicontinuous
(on X) with respect to the W k,p norm topology for all Borel sets B. F is lower
semicontinuous on � if F (·, A) is lower semicontinuous for all open sets A.

(iv) F is lower p–bounded when there exist a positive function a ∈ L1(Ω) and a
real number b ≥ 0 such that

F (u, B) ≥ −

∫

B

[

a(x) + b|Dku(x)|p
]

dx for all u ∈ X, B ∈
�

.

It is obvious what upper p–bounded and p–bounded mean.
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(v) F is weakly lower p–bounded when, for every r > 0, there exist a positive
constant Mr such that

F (u, B) ≥ −Mr for all u ∈ X, ‖u‖W k,p < r and all B ∈
�

.

It is obvious what weakly upper p–bounded and weakly p–bounded mean.

In (ii) we have given many different definition of locality. It is not difficult to prove
(see Proposition 1.1) that when F is a functional defined on a subspace X of W k,p

which is a measure and verifies (0.6), Dk–locality on
�

⇒ locality on
�

⇒ locality
on � ⇔ Dk–locality on � . In Theorem 0.4 we prove that all these definition are
equivalent provided X is a local subspace of W k,p, F is a lower regular measure and is
lower semicontinuous on

�
. Example 4.3 shows that in general lower semicontinuity

on
�

can neither be dropped nor replaced by lower semicontinuity on � .
A straightforward Corollary of this fact is that any functional of this kind is the

sum of a fixed measure which does not depends on u and of a functional which is an
absolutely continuous measure, Dk–local on

�
and lower semicontinuous on

�
. Hence,

when needed, functionals will be assumed to be absolutely continuous measures or Dk–
local on

�
.

Theorem 0.4 (Decomposition Result, see Section 1 for the proof). – Let X be a
local subspace of W k,p(Ω, RM ) and let F be a functional on X which is a lower regular
measure, local on � , satisfies (0.6) and is lower semicontinuous on

�
. Then F is

Dk–local on
�

. Moreover there exists a measure λ and a functional F ′, which is an
a.c. measure, Dk–local on

�
and lower semicontinuous on

�
, such that

F (u, B) = F ′(u, B) + λ(B) for all u ∈ X and all B ∈
�

(Ω).

A very important class of functionals on (a local subspace of) W k,p is the class of
p–bounded functionals (see Definition 0.3(iv)). We notice that a p–bounded functional
is Dk–local on B and lower semicontinuous on

�
if and only if (0.6) holds, it is local

on � and lower semicontinuous on � (see Corollary 0.6). p–boundedness also plays
a very important role in many question related to Relaxation and Γ–convergence of
integral functionals (see for instance Buttazzo and Dal Maso [2] and [4] ).

In Theorem 0.5 we give a characterization of p–bounded functionals. In particular
we show that when F is a functional on W k,p which satisfy (0.6), is an a.c. measure
and local on � , then F is p–bounded if and only if is finite. It is essential that F is
defined on W k,p, in example 4.3 we build a finite functional F which is defined on a
local subspace of W k,p and is not p–bounded.

Notice that this theorem does not need any regularity hypothesis on F , in particular
it holds even for functionals which cannot be represented as integral functionals in the
form (0.1). Moreover it may be stated in the following (weaker) form which is a
generalization of a well–known theorem about superposition operators on Lp (see for

instance Theorem 2.7.2 of Buttazzo: let f be a real Borel function of Ω × (RM )I(k)

and let Tf be the superposition operator defined by, for all u ∈ W k,p(Ω, RM ),

[

Tfu
]

(x) = f
(

x, Dku(x)
)

for all x ∈ Ω.

If Tfu ∈ L1(Ω) for all u ∈ W k,p, then there exists a function a ∈ L1(Ω) and a positive
real number b such that

|f(x, s)| ≤ a(x) + b|s|p for all x ∈ Ω and all s ∈ (RM )I(k).

Theorem 0.5 (Characterization of p–bounded Functionals, see Section 2 for the
proof). – Let X be a local subspace of W k,p(Ω, RM ) and let F be a functional on X
which is an a.c. measure, satisfies (0.6) and is local on � . Then

(i) if X = W k,p, F is lower p–bounded and it is upper p–bounded if and only if
it is finite,

(ii) in general, F is lower p–bounded if and only if it is weakly lower p–bounded
and it is upper p–bounded if and only if it is weakly upper p–bounded.

Corollary 0.6 (see Section 2 for the proof). – Let X be a local subspace of
W k,p(Ω, RM ) and let F be a functional on X which is an a.c. measure, local on � ,
satisfies (0.6) and is lower semicontinuous on � . If either X = W k,p and F is finite or
F is weakly p–bounded, then F is p–bounded, Dk–local on

�
and lower semicontinuous

on
�

.

Section 3 is devoted to the proof of Theorem 0.7. In particular we show that ev-
ery functional F which is defined on a local subspace X ⊂ W k,p, is an a.c. measure,
Dk–local on

�
and lower semicontinous on

�
(see Definition 0.3), is representable as

an integral functional in the form (0.1) with a Borel function f which is lower semi-
continuous with respect to second variable (statement (i) of Theorem 0.7). Examples
4.3 and 4.4 show that this statement is false in general if we weaken semicontinuity
hypothesis.

Using a rather surprising result (Theorem 5.12) we prove the uniqueness of the
integral representation (statement (ii) of Theorem 0.7) i.e. that if both f and f ′

represent F then f and f ′ agree everywhere but in a set S ⊂ Ω × (RM )I(k) the
projection of which on Ω is Lebesgue negligible. Example 4.6 shows that this is false
in general when X is a local subspace of W k,p.

Theorem 0.7 (Representation Result). – Let X be a local subspace of W k,p(Ω, RM )
and let F be a functional on X which is an a.c. measure, Dk–local on

�
and lower

semicontinuous on
�

. Then there exists a Borel function f : Ω×(RM )I(k) −→]−∞,∞]
which is lower semicontinuous with respect to second variable and

(i) f represents F in the form (0.1), i.e., for all u ∈ X and B ∈
�

(Ω),

F (u, B) =

∫

B

f
(

x, Dku(x)
)

dx .
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(ii) When X ⊃ Ck
0 (Ω, RN ), f is uniquely determined in the following sense: if f ′

is a Borel function which represents F , then there exists a negligible Borel set N ⊂ Ω
such that f(x, s) = f ′(x, s) for all x ∈ Ω \ N and all s ∈ (RM )I(k).

1. – Local Functionals.

To begin with, we state a very simple proposition.

Proposition 1.1. – Let X be a local subspace of W k,p(Ω, RM ) and let F be a
functional on X which a measure and fulfills invariance condition (0.6). Consider the
following statements:

(a) F is Dk–local on
�

.

(b) F is local on
�

.

(c) F is Dk–local on � .

(d) F is local on � .

Then (a) ⇒ (b) ⇒ (c) ⇔ (d). Notice that in general (c) 6⇒ (b) 6⇒ (a) (cf. example
4.3).

Proof. – It is obvious that (b) ⇒ (d).
(a) ⇒ (b) and (c) ⇒ (d) follow from this well–known fact: when u and v are

functions in W 1,1 and u = v a.e. in the Borel set B, then Du = Dv a.e. in B (this may
be proved taking into account that a function u in W 1,1 is approximately differentiable
in almost every points x with approximate gradient Du(x), see also Brezis, chapter
IX).

Let’s prove that (d) ⇒ (c). Let u, v be two functions in X such that Dku = Dkv
a.e. in the open set A. It is well–known that in each connected component of A, u− v
agrees with a polynomial function p : R

N → R
M with deg p < k. As F satisfies (0.6)

and is local on � , F (u, B) = F (v, B) for every Borel set B which is included in some
connected component of A and then F (u, B) = F (v, B) for every Borel set B ⊂ A
because F is a measure.

We shall prove that the implication (d) ⇒ (a) holds in general provided F satisfies
some regularity conditions. If X = Lp(Ω, RM ), we have the following optimal result.

Proposition 1.2. – Let F be functional on Lp(Ω, RM ) which is a measure, local
on � and lower semicontinuous on

�
. Then F is local on

�
, i.e. F (u, E) = F (u′, E)

for all functions u, u′ ∈ X and all Borel sets E ⊂ Ω such that u = u′ a.e. in E.

Proof. – Of course it is enough to prove the inequality F (u, E) ≤ F (u′, E).
For n = 1, 2, . . ., let An ⊂ Ω be open sets which include E and satisfy lim

n→∞
|An\E| =

0 and let

un(x) =

{

u′(x) if x ∈ An

u(x) if x /∈ An.

Hence, condition u = u′ a.e. in B implies that un converges to u in the Lp norm and
then, as F is local on � ,

F (u, E) ≤ lim inf
n→∞

F (un, E)

= lim inf
n→∞

F (u′, E) = F (u′, E) .

A similar results holds when F is defined on a local subspace of W k,p(Ω, RM )
(Theorem 1.4) with the additional assumption that F is lower regular. To begin with,
we need an approximation lemma.

Lemma 1.3. – Let X be a local subspace of W k,p(Ω, RM ). Suppose that u is a
function in X, λ is a finite positive measure on Ω and E ⊂ Ω is a Borel set such that
Dku = 0 a.e. on E. Then, for every ε > 0 there exists a function v ∈ X with compact
support in Ω and an open set A ⊂ Ω such that

(i) Dkv = Dku a.e. in A and λ(E \ A) ≤ ε.

(ii) ‖v‖W k,p ≤ ε.

Proof. – By Theorem 5.8, there exists a Borel set E′ ⊂ E such that λ(E \E′) = 0
and, for every x ∈ E′,

(1.1) lim sup
r→0

λ(B(x, ar))

λ(B(x, r))
≥ aN for all a with 0 < a < 1,

Let δ be a real number with 0 < δ < 1 and let P ⊂ Ω be an open set which includes
E.

Let � be the collection of all closed balls B = B(x, r) ⊂ P with x ∈ E′ and

(1.2)
λ
[

B
(

x, (1 − δ)r
)]

λ
[

B(x, r)
] ≥

λ
[

B
(

x, (1 − δ)r
)]

λ
[

B
(

x, (1 − δ)−1r
)] ≥ (1 − δ)3N .

(1.1) shows that for all x ∈ E′ there exist closed balls B with center x and arbitrary
small radius which belong to � and then we may apply Theorem 5.4 to obtain disjoint
closed balls Bi = B(xi, ri) in � for i = 1, . . . , n such that

λ
[

E′ \
⋃

i

B(xi, ri)
]

≤ δ .

Set A =
⋃

B
(

xi, (1 − δ)ri

)

. Taking into account (1.2), we obtain

λ(E \ A) = λ(E′ \ A) = λ
[

E′ \
⋃

i

B(xi, ri)
]

+
∑

i

λ
[

B(xi, ri) \ B
(

xi, (1 − δ)ri

)

]

≤ δ +
∑

i

[

1 − (1 − δ)3N
]

λ(Bi) ≤ δ +
∑

i

3Nδ λ(Bi)

≤
[

1 + 3N λ(Ω)
]

δ .(1.3)
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As B1, . . . , Bn are disjoint, we may apply the Glueing Lemma 5.10 to obtain a function
v ∈ X such that

(a) v = 0 out of the union of all Bi.

(b) Dkv = Dku a.e. in B
(

xi, (1 − δ)ri

)

for all i.

(c) ‖Dkv‖Lp(Bi) ≤ Cδ−k‖Dku‖Lp(Bi) for all i.

Then (a), (c) and Bi ⊂ P for all i yield

‖Dkv‖p ≤

[

∑

i

(

Cδ−k‖Dku‖Lp(Bi)

)p
]1/p

≤ Cδ−k ‖Dku‖Lp(P ) .

As every ball in � was chosen relatively compact in P , (a) implies that v has compact
support in Ω and we may apply Poincaré inequality (Brezis, chapter IX) to obtain

(1.4) ‖v‖W k,p ≤ C1‖D
kv‖p ≤ C1Cδ−k‖Dku‖Lp(P ) .

where C1 is a constant which depends on N , k and p only.
(b) yields Dkv = Dku a.e. in A and then, taking into account that Dku = 0 a.e.

in E and P is any open set which include E, we may choose δ and P small enough
to have that

[

1 + 3N λ(Ω)
]

δ < ε and C1Cδ−k‖Dku‖Lp(P ) < ε. Hence (1.3) and (1.4)
yield (i) and (ii).

Theorem 1.4. – Let X be a local subspace of W k,p(Ω, RM ) and let F be functional
on X which is a lower regular measure, Dk–local on � and lower semicontinuous on
�

. Then F is Dk–local on
�

.

Proof. – Notice that it is enough to prove that inequality F (u, E) ≤ F (u′, E)
holds whenever Dku = Dku′ a.e. in E. As F is lower regular, F (u, ·) is a lower regular
measure and then (cf. remark 0.1)

F (u, E) = sup
{

µ(E) : µ is finite and µ(B) ≤ F (u, B) for all Borel sets B ⊂ E
}

.

Hence it is enough to prove that for every finite measure µ such that µ(B) ≤ F (u, B)
for all Borel set B ⊂ E we have

(1.5) µ(E) ≤ F (u′, E) .

Let φ be the negative variation of F (u, ·), notice that φ is finite because F never
takes value −∞ and set λ = |µ| + φ. λ is a finite positive measure.

As Dku = Dku′ a.e. in E, we may apply Lemma 1.3 to find functions vn ∈ X and
open sets An ⊂ Ω for all integers n such that

(a) Dkvn = Dk(u′ − u) a.e. in An and λ(E \ An) ≤ 2−n,

(b) ‖vn‖W k,p ≤ 2−n.

As F is Dk–local on � , (a) yields F (u + vn, B) = F (u′, B) for all n and all Borel
sets B ⊂ An. As u + vn converge to u by (b), and F is lower semicontinous on

�
, we

have that

F (u, B) ≤ lim inf
n→∞

F (u + vn, B)

= lim inf
n→∞

F (u′, B) = F (u′, B)(1.6)

for all Borel sets B ⊂
⋂

n>m
An with m = 1, 2, . . .. Set

A =
⋃

m

(

⋂

n>m

An

)

and notice that inequality (1.6) holds for all Borel sets B ⊂ A because F is a measure.
In particular

(1.7) F (u, E ∩ A) ≤ F (u′, E ∩ A) .

By (a) we have

λ(E \ A) = inf
m

[

λ
(

E \
⋂

n>m

An

)

]

≤ inf
m

[

∑

n>m

λ(E \ An)
]

≤ inf
m

[

∑

n>m

2−n
]

= inf
m

[

2−m
]

= 0

and then, recalling that λ = |µ| + φ and φ is the negative variation of the measure
F (u′, ·), (1.7) and the fact that µ(B) ≤ F (u, B) for all Borel sets B ⊂ Ω yield

µ(E) = µ(E ∩ A)+µ(E \ A) = µ(E ∩ A) ≤ F (u, E ∩ A) ≤ F (u′, E ∩ A)

= F (u′, E) − F (u′, E \ A) ≤ F (u′, E) + φ(E \ A) = F (u′, E) ,

and (1.5) is proved.

Decomposition of Local Functionals and Proof of Theorem 0.4

In order to complete the proof of Theorem 0.4, we need the following decomposition
result.

Proposition 1.5 (Decomposition of positive local functionals). – Let X be a sub-
space of W k,p(Ω, RM ) and let F be a functional on X which is a positive measure,
(Dk–) local on

�
. Then there exist a positive measure λ on Ω and a functional F ′ on

X, which is a positive a.c. measure, (Dk–) local on
�

, such that

(1.8) F (u, B) = F ′(u, B) + λ(B) for all u ∈ X, B ∈
�

(Ω).
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Notice that λ is finite if F (ū, Ω) < ∞ for some ū ∈ X.

Proof. – Let λ be the lower envelope of all measures F (u, ·) with u ∈ X, i.e.

λ(·) =
∧

u∈X

F (u, ·) .

It is obvious that λ is a positive measure which satisfies λ(B) ≤ F (u, B) for all u ∈ X,
B ∈

�
(Ω). Moreover, if B is a Borel set such that |B| = 0 and u, u′ are functions in

X, then u = u′ and Dku = Dku′ a.e. in B and F (u, B′) = F (u′, B′) for all Borel sets
B′ ⊂ B because F is (Dk–) local on

�
. Hence

(1.9) λ(B) = F (u, B) for all u ∈ X and all B ∈
�

(Ω) with |B| = 0.

If λ is a finite measure, it is enough to take F ′(u, B) = F (u, B) − λ(B) for all u ∈ X
and all B ∈

�
(Ω).

In general, when λ is not finite, this definition does not make sense.
Let � be the collection of all Borel sets B which are of σ–finite measure with

respect to �N + λ; as � is closed under countable union, there exists a Borel set
E ∈ � such that

[

�N + λ
]

(B \ E) = 0 for all B ∈ � . Hence

(1.10) |B| + λ(B) = 0 or |B| + λ(B) = ∞ for all Borel sets B ⊂ Ω \ E

and moreover, as E belongs to � , we may find a sequence of pairwise disjoint Borel
sets En which have finite �N + λ measure and cover E. Set

(1.11) F ′(u, B) =
∑

n

F (u, B ∩ En) − λ(B ∩ En) for all B ∈
�

(Ω).

Notice that all terms of the series make sense because λ(B∩En) < ∞ and are positive
because λ is everywhere less than each measure F (u, ·) by definition. Hence F ′ is well–
defined, is a positive measure, and (1.9), (1.11) yield F ′(u, B) = 0 for all Borel sets B
with |B| = 0, i.e. F ′ is an a.c. measure.

The proof will be complete if we show that (1.8) holds, in fact it is a straightforward
corollary of (1.8) that F ′ is (Dk–) local on

�
when F is (Dk–) local on

�
. As F , F ′

and λ are measures, by (1.10) it is enough to show that, for all u ∈ X, (1.8) holds in
the following three cases:

(a) B ⊂ E,

(b) B ⊂ Ω \ E and |B| + λ(B) = 0,

(c) B ⊂ Ω \ E and |B| + λ(B) = ∞.

In the case (a), (1.8) follows from

λ(B) + F ′(u, B) =
∑

n

λ(B ∩ En) +
∑

n

F (u, B ∩ En) − λ(B ∩ En)

=
∑

n

F (u, B ∩ En) = F (u, B)

In the case (b), |B| = λ(B) = 0 and (1.9) yields F (u, B) = 0, then F ′(u, B) = 0 by
(1.11) and (1.8) holds.

In the case (c), λ(B) = ∞ yields F (u, B) = ∞ because λ(B) ≤ F (u, B), and then
(1.8) holds.

Corollary 1.6 (Decomposition of local functionals). – Let X be a subspace of
W k,p(Ω, RM ) and let F be a functional on X which is a measure, (Dk–) local on

�
.

Then there exists a measure λ on Ω and a functional F ′ on X which is an a.c. measure,
(Dk–) local on

�
, such that

(1.8) F (u, B) = F ′(u, B) + λ(B) for all u ∈ X, B ∈
�

(Ω).

Notice that λ is finite if F (ū, Ω) < ∞ for some ū ∈ X.

Proof. – Define F+ and F− (resp. the positive and negative variations of F ) by

F+(u, ·) =
(

F (u, ·)
)+

and F−(u, ·) =
(

F (u, ·)
)−

for all u ∈ X. F = F+−F− and then
it is enough to verify that both F+ and F− are positive measures (Dk–) local on

�
,

that F− is finite and then apply Proposition 1.5.

Proof of Theorem 0.4. – It is enough to apply Proposition 1.1, Theorem 1.4
and Corollary 1.6.

2. – Characterization of p–bounded Functionals.

Unless differently stated, throughout this section F will be a fixed functional defined
on a local subspace X of W k,p(Ω, RM ) which is a positive a.c. measure and Dk–local
on � .

Since for each u ∈ X, F (u, ·) is a positive measure which is absolutely continuous
with respect to Lebesgue measure, then it is represented by a positive Borel function
that we denote by fu. In other words we have

(2.1) F (u, B) =

∫

B

fudx for all B ∈
�

(Ω).

Definition 2.1. – Let g : Ω → [0,∞] be a positive Borel function and let � (g) be
the collection of all functions f ′

u given by

(2.2) f ′
u(x) =

{

fu(x) if |Dku(x)| ≤ g(x)
0 otherwise.

We denote by Sg the Borel essential supremum of the family � (g), that is, the positive
Borel function h which satisfies h ≥ f ′

u a.e. for every u ∈ X and h′ ≥ h a.e. for every
positive Borel function h′ such that h ≥ f ′

u a.e. for every u ∈ X (see for instance
Castaing and Valadier).
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Finally, for all x ∈ Ω and all n ∈ N, we set

(2.3) HF (x, n) = Sn(x)

The following two statements are straightforward corollaries of the definition above.

Proposition 2.2. – If g and g′ are two positive Borel functions of Ω and B ⊂ Ω
is a Borel set such that g = g′ a.e. in B, then Sg = Sg′.

Proposition 2.3. – If g is a Borel function which takes only integer values, then

(i) HF

(

x, g(x)
)

= Sg(x) a.e.,

(ii)
∫

B
HF

(

x, g(x)
)

dx ≥ F (u, B) for all u ∈ X such that |Dku| ≤ g almost
everywhere in B.

We shall prove that when either X = W k,p and F is finite or F is weakly (upper)
p–bounded,

∫

Sg dx < ∞ for all positive functions g ∈ Lp (Theorem 2.5). Hence
Proposition 2.3(i) yields

∫

Ω

HF

(

x, g(x)
)

dx < ∞ for all g ∈ Lp(Ω, N).

Then we prove that when H : Ω × N → [0,∞] is a Borel function which satisfies this
inequality, then

H(x, n) ≤ k(x) + mnp for all x ∈ Ω, n ∈ N,

for suitable k ∈ L1 and m ∈ N (Theorem 2.7), and then, by assertion (ii) of Proposition
of 2.3, we obtain that F is (upper) p–bounded (Theorem 2.8).

To begin with, we prove that the integral of Sg is finite for all positive functions
g ∈ Lp when either X = W k,p and F is finite or F is weakly (upper) p–bounded.

Lemma 2.4. – Let g be a positive function in Lp(Ω) and let r be a real number such
that r <

∫

Sg dx. Then there exist a function u ∈ X with compact support in Ω such
that

(i) ‖Dku‖p ≤ C2k+1‖g‖p and C is the same constant of Lemma 5.10.

(ii) F (u, Ω) ≥ 2−(N+1)r.

Proof. – Since r <
∫

Sg dx, we may find a positive function h ∈ L1 such that
r <

∫

h dx and h ≤ Sg a.e.. Set λ(B) =
∫

B
h dt for all Borel sets B ⊂ Ω and let ε be

a positive real number.
Since h ≤ Sg a.e., we may find a countable collection � ⊂ X Borel sets {Bu}u∈�

which cover almost all of Ω such that f ′
u ≥ h a.e. in Bu for every u ∈ � .

Let E be the set of those points x ∈ Ω which are p–Lebesgue points of g, p–Lebesgue
points of Dku for each u ∈ � , 1–Lebesgue point of h, Lebesgue point of fu for every

u ∈ � and h(x) > 0. E is a Borel set λ–equivalent to Ω and for all x ∈ E there exists
a function ux ∈ � such that

(2.4) g(x) ≥ |Dku(x)| and fux
(x) ≥ h(x).

and then we may find a positive real number rx such that, for all r with 0 < r < rx,
B(x, r) is relatively compact in Ω and (cf. (0.2) and (0.3) )

2‖g‖Lp(x,r)) > ‖Dku‖Lp(B(x,r))(2.5)
∫

B(x,r)

fux
dt ≥ |B(x, r)| ·

(

fux
(x) − ε

)

(2.6)

∫

B(x,r)

h dt ≤ |B(x, r)| ·
(

h(x) + ε
)

(2.7)

Set � =
{

B(x, r) : x ∈ E, r < rx

}

and apply Theorem 5.4 to obtain disjoint balls
B(x1, r1), . . . , B(xn, rn) in � such that

λ
[

E \
⋃

i

B(xi, ri)
]

≤ ε .

Let Bi = B(xi, ri) and ui = uxi
for all i and apply Glueing Lemma 5.10 to obtain a

function u ∈ X such that

(a) u = 0 a.e. out of the union of all Bi.

(b) Dku = Dkui a.e. in B(xi, ri/2) for all i.

(c) ‖Dku‖Lp(Bi) ≤ C2k‖Dkui‖Lp(Bi) for all i.

As every ball in � is relatively compact in Ω, (a) implies that u has compact
support in Ω. By (c) and (2.5) we get

‖Dku‖p ≤

[

∑

i

(

C2k‖Dkui‖Lp(Bi)

)p
]1/p

≤ C2k+1‖g‖p ,

so that u satisfies (i). Taking into account (b), (2.4), (2.6), (2.7) and the choice of
B1, . . . , Bn, and recalling that F is Dk–local on � and that λ(Ω) =

∫

h dx > r,

F (u, Ω) ≥
∑

i

F
(

ui, B(xi, ri/2)
)

=
∑

i

∫

B(xi,ri/2)

fui
dt

≥
∑

i

∣

∣B(xi, ri/2)
∣

∣ ·
(

fui
(xi) − ε

)

≥
∑

i

2−N |Bi|
(

h(xi) − ε)

≥ 2−N
∑

i

∫

Bi

(h − 2ε)dt = 2−Nλ(∪Bi) − 21−N
∣

∣ ∪ Bi

∣

∣ε

≥ 2−N
(

λ(Ω) − ε
)

− 21−N |Ω|ε ≥ 2−N
[

r −
(

2|Ω| + 1
)

ε
]

.
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Hence (ii) holds if we have chosen ε small enough to have
(

2|Ω| + 1
)

ε ≤ r/2.

Theorem 2.5. – Let g be a positive function in Lp(Ω) and suppose that either
X = W k,p and F is finite or F is weakly (upper) p–bounded. Then

∫

Sg dx < ∞.

Proof. – Assume by contradiction that
∫

Sg dx = ∞. By Lemma 5.2 we may find
a sequence of pairwise disjoint open sets Ωn such that

∫

Ωn

Sg dx > 1 for n = 1, 2, . . ..

By Lemma 2.4, for all n there exist functions un ∈ W k,p with compact support in Ωn

such that

(a) ‖Dkun‖Lp(Ωn) ≤ C2k+1‖g‖Lp(Ωn) where C is the same constant of Lemma
5.10.

(b) F (un,Ωn) ≥ 2−(N+1).

If X = W k,p and F is finite, set u =
∑∞

1 un. As the functions un have pairwise
disjoint compact supports included in Ωn and g belongs to Lp, Poincaré inequality
(Brezis, chapter IX) and (a) imply that the series

∑

un converges in the W k,p norm

and then u belongs to W k,p
0 . As the sets Ωn are pairwise disjoint for all n, u = un a.e.

in Ωn for n = 1, 2, . . .. Hence, if take into account Dk–locality of F on � and (b), we
obtain

F (u, Ω) ≥
∑

n

F (un,Ωn) ≥
∑

n

2−(N+1) = ∞ ,

and this contradicts the fact that F is finite.

If F is weakly (upper) p–bounded, set vm =
∑m

1 un for m = 1, 2, . . .. Applying (a)
and Poincaré inequality it may be proved that the functions vm are functions in X
with compact support in Ω and are uniformly bounded in the norm of W k,p and then
there exists a real number M such that M > F (vm,Ω) for all m because F is weakly
p–bounded. But Dk–locality of F on � and (b) lead to the contradiction

F (vm, Ω) ≥
m

∑

1

F (un,Ωn) ≥ m2−(N+1) for m = 1, 2, . . ..

Corollary 2.6. – If either X = W k,p and F is finite or F is weakly (upper)
p-bounded, then HF (see Definition 2.1) satisfies

(2.8)

∫

Ω

HF

(

x, g(x)
)

dx < ∞ for all g ∈ Lp(Ω, N).

Proof. – It is enough to apply Theorem 2.5 and Proposition 2.3(i).

Now we want to characterize those Borel functions H : Ω×N → [0,∞] which satisfy
(2.8).

Theorem 2.7. – Let H be a Borel function of Ω × N into [0,∞]. For all integers
m set

(2.9) gm(x) = sup
{

n : H(x, n) > m np
}

for all x ∈ Ω.

Each gm is a Borel function of Ω into N = N∪{∞} and the following three statements
are equivalent:

(i) H satisfies (2.8),

(ii) H satisfies (2.8) and there exists an integer m such that gm belongs to Lp,

(iii) there exist m ∈ N and k ∈ L1(Ω) such that H(x, n) ≤ k(x) + m np for all
x ∈ Ω, n ∈ N.

Proof. – We omit to verify that each gm is a Borel function.

(i) ⇒ (ii). By contradiction, suppose that
∫

(gm)pdx = ∞ for all integers m. By
Lemma 5.3 there exist pairwise disjoint Borel sets Am such that

∫

Am
(gm)pdx = ∞ for

m = 1, 2, . . ..
Hence, (2.9) provides, for all integers m, Borel functions fm : Ω → N such that

H
(

x, fm(x)
)

> m
(

fm(x)
)p

for all x ∈ Ω

and
∫

Am
(fm)pdx ≥ 1/m2. As Lebesgue measure is non–atomic, there exist Borel sets

Bm ⊂ Am such that

(2.11)

∫

Bm

(fm)pdx =
1

m2
.

Since the sets Am are pairwise disjoint, the sets Bm are pairwise disjoint too and then
we may find a Borel function f such that f = fm a.e. in each Bm and f = 0 a.e.
outside the union of all Bm. Then (2.11) yields

∫

Ω

fpdx =
∑

m

∫

Bm

(fm)pdx =
∑

m

1

m2
< ∞ ,

i.e. f belongs to Lp, (2.10) yields

∫

Ω

H
(

x, f(x)
)

dx >
∑

m

∫

Bm

m
(

fm(x)
)p

dx =
∑

m

1

m
= ∞

and this contradicts (i).



  

18 Giovanni Alberti: Integral representation of local functionals Giovanni Alberti: Integral representation of local functionals 19

(ii) ⇒ (iii). Let m be taken so that gm belongs to Lp: hence, by (2.9), H(x, n) ≤
m np for all x ∈ Ω and all integers n > gm(x). As gm < ∞ a.e., we may find a Borel
function g : Ω → N which is everywhere less than gm and

H
(

x, g(x)
)

= max{H(x, n) : n ≤ gm(x)} for a.a. x ∈ Ω.

Hence (iii) holds if we set k(x) = H
(

x, g(x)
)

. Infact, as gm is p–summable and g ≤ gm

everywhere, g belongs to Lp. This fact and (2.8) yield k ∈ L1.

(iii) ⇒ (i). Trivial.

With Corollary 2.6 and Theorem 2.7 we can state and prove the main result of this
section.

Theorem 2.8. – Let X be a local subspace of W k,p and let F be a functional on X
which is an a.c. positive measure and Dk–local on � . Then

(i) if X = W k,p, F is (upper) p–bounded if and only if is finite,

(ii) in general, F is (upper) p–bounded if and only if is weakly (upper) p–bounded.

Proof. – Being obvious that F is finite and weakly p–bounded when is p–bounded,
let’s prove the opposite implication.

If X = W k,p and F is finite, or F is (upper) p–bounded, then HF (cf. Definition
2.1) satisfies (2.8) by Corollary 2.6 and then Theorem 2.7 implies that there exist a
positive integer m and a positive function k ∈ L1(Ω) such that

(2.12) HF (x, n) ≤ k(x) + m np for all x ∈ Ω and all n ∈ N.

Suppose that u is a function in X, choose a function g ∈ Lp(Ω, N) such that |Dku| ≤
g ≤ |Dku|+1 everywhere and notice that, recalling Proposition 2.3(ii) and taking into
account (2.12), for all Borel sets B ⊂ Ω,

F (u, B) ≤

∫

B

HF

(

x, g(x)
)

dx

≤

∫

B

[

k(x) + m
(

g(x)
)p]

dx ≤

∫

B

[

k(x) + m
(

|Dku(x)| + 1
)p]

dx

≤

∫

B

[

k(x) + m2p−1 + m2p−1|Dku(x)|p
]

dx

(we have used inequality (a + 1)p ≤ 2p−1(ap + 1) ) and this prove that F is (upper)
p–bounded.

Proof of Theorem 0.5. – Suppose that F is a functional on a local subspace
X of W k,p(Ω, RM ) which is an a.c. measure and Dk–local on � (cf. Proposition
1.1) and define F+ and F− (resp. the positive and negative variations of F ) by

F+(u, ·) =
(

F (u, ·)
)+

and F−(u, ·) =
(

F (u, ·)
)−

for all u ∈ X. Verify that both F+

and F− are a.c. positive measures, Dk–local on � , and notice that F− is finite because
F never takes values −∞. Finally, apply Theorem 2.8.

Proposition 2.9. – Let X be a subspace of W k,p(Ω, RM ) and let F be a func-
tional on X which is p–bounded and lower semicontinuous on � . Then F is lower
semicontinuous on

�
.

Proof. – Suppose that {un} is a sequence of functions in X converging to a
function u ∈ X in the norm of W k,p, E is a Borel set and ε is a positive real number.
As F is p–bounded, there exists a positive function a ∈ L1(Ω) and a positive real
number b such that

(2.13) |F (u, B)| ≤
[

a(x) + b|Dku(x)|p
]

for all u ∈ X, B ∈
�

(Ω).

Notice that the functional G(u, B) =
∫

B

[

a(x) + b|Dku(x)|p
]

dx is a positive finite
measure and continuous on

�
. Hence there exists an open set A such that G(u, A\E) ≤

ε and then, taking into account (2.13) and the lower semicontinuity of F on � ,

lim inf
n→∞

F (un, E) ≥ lim inf
n→∞

[

F (un, A) − G(un, A \ E)
]

≥ lim inf
n→∞

F (un, A) − lim
n→∞

G(un, A \ E)

≥ F (u, A) − G(u, A \ E) ≥ F (u, E) − 2G(u, A \ E) ≥ F (u, E) − 2ε

and the proof is complete because ε may be chosen arbitrary small.

Proof of Corollary 0.6. – Let F be a functional on a local subspace X of
W k,p(Ω, RM ) which is an a.c. measure, Dk–local on � (cf. Proposition 1.1) and is
lower semicontinuous on � . Suppose that either X = W k,p and F is finite or F is
weakly p–bounded.

By Theorem 0.5 we have that F is p–bounded and then we may apply Proposition
2.9 to obtain that F is lower semicontinuous on

�
and Theorem 0.4 to obtain that F

Dk–local on
�

.

3. – Representation Theorem.

Unless differently stated, throughout this section F is a fixed functional defined on
a local subspace X of W k,p(Ω, RM ) which is an a.c. measure, Dk–local on

�
and lower

semicontinuous on
�

.

Since for all u ∈ X, F (u, ·) is a measure on
�

(Ω) which is absolutely continuous
with respect to Lebesgue measure, it may be represented by a Borel function that we
denote by fv. In other words we have

F (u, B) =

∫

B

fudx for all B ∈
�

(Ω).
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Definition 3.1. – Let S be a countable subset of X and let A be the set of all
x ∈ Ω such that fv(x) 6= fv′(x) and Dkv(x) = Dkv′(x) for some v, v′ in S. As F
is Dk–local on

�
, fv = fv′ a.e. in B for all v, v′ ∈ S and all B ∈

�
(Ω) such that

Dkv = Dkv′ a.e. in B and then we have that |A| = 0.
For all (x, s) in Ω × (RN )I(k) set

(3.1) f ′
S(x, s) =

{

fv(x) if x /∈ A and v ∈ S exists such that Dkv(x) = s

∞ otherwise .

By definition of A, f ′
S is well–defined. Thus, for all (x, s) in Ω× (RN )I(k), we may set

(3.2) fS(x, s) = lim inf
t→s

f ′
S(x, t) ,

i.e. fS is the relaxation of f ′
S with respect to second variable.

Remark 3.2. – An easy computation shows that both f ′
S and fS are Borel functions

of Ω× (RM )I(k), fS is l.s.c. in the second variable and fv(x) ≥ fS
(

x, v(x)
)

a.e. for all
v ∈ S.

We shall prove that fS represents F , i.e. fS
(

x, Dku(x)
)

= fu(x) a.e. for all u ∈ X,
when S is a suitable countable subset of X: in Theorem 3.4 we prove that for every
countable S ⊂ X we have

fS
(

x, Dku(x)
)

≥ fu(x) a.e. for all u ∈ X

and in Theorem 3.8 we prove that the opposite inequality holds for a suitable S.

To begin with, we prove the following approximation lemma.

Lemma 3.3. – Let S a countable subset of X and let u be a function in X. Define
g(x) = fS

(

x, Dku(x)
)

and let A be a Borel set in which g takes only finite values.
Then, for each ε > 0, there exist a function w ∈ X and a Borel set B such that

(i) g ≥ fu+w − ε a.e. on B and |A \ B| ≤ ε.

(ii) ‖w‖W 1,p ≤ ε.

Proof. – Let δ be a positive real number.
Let E be the set of all x ∈ A which are p–Lebesgue points of Dku, Dkv and

Lebesgue points of g, fv for all v ∈ S. E is a Borel set which is Lebesgue equivalent
to A (cf. (0.2) and (0.3) ).

For every x in E we have g(x) = fS
(

x, Dku(x)
)

< ∞ and by definition of fS and
f ′
S there exists vx ∈ S such that

∣

∣Dkvx(x) − Dku(x)
∣

∣ < δk+1 and g(x) ≥ fvx
(x) − δ

and then, taking into account that x is a p–Lebesgue point of Dku and Dkvx and a
Lebesgue point of g and fvx

, there exists a positive real number rx such that, for all r
with 0 < r < rx, B(x, r) is relatively compact in Ω and (cf. (0.2) and (0.3) )

‖Dkvx − Dku‖Lp(B(x,r)) < 2|B(x, r)|1/pδk+1 ,(3.3)
∣

∣

∣
B(x, r) ∩

{

t : g(t) ≥ fvx
(t) − 2δ

}

∣

∣

∣
≥ (1 − δ)|B(x, r)| .(3.4)

As usual, set � =
{

B(x, r) : x ∈ E, r < r(x)
}

and apply Theorem 5.4 to obtain
disjoint balls Bi = B(xi, ri) in � for i = 1, . . . , n such that

(3.5)
∣

∣E \ ∪Bi

∣

∣ ≤ δ .

Let vi = vxi
for all i and apply Glueing Lemma 5.10 to obtain a function w ∈ X such

that

(a) w = 0 a.e. out of the union of all Bi.

(b) Dkw = Dk(vi − u) a.e. in B
(

xi, (1 − δ)ri

)

for all i.

(c) ‖Dkw‖Lp(Bi) ≤ Cδ−k‖Dk(vi − u)‖Lp(Bi) for all i.

Taking into account (a), (c) and (3.3), and recalling that B1, . . . , Bn are disjoint
balls in Ω, we obtain

‖Dkw‖p ≤

[

∑

i

(

Cδ−k‖Dk(vi − u)‖Lp(Bi)

)p
]1/p

≤ 2Cδ
[

∑

i

|Bi|
]1/p

≤ 2C|Ω|1/pδ .

Since all balls in � are relatively compact in Ω, (a) implies that w has compact support
in Ω and by Poincaré inequality we obtain

(3.6) ‖w‖W k,p ≤ C1‖D
kw‖p ≤ 2C1C|Ω|1/pδ

where C1 is a constant which depends on N , k and p only.
Let B be the set of all t such that

(3.7) g(t) ≥ fu+w(t) − 2δ .

For all i, (b) yields Dk(u + w) = Dkvi a.e. in B
(

xi, (1− δ)ri

)

and, taking into account

that F is Dk–local on
�

, fu+w = fvi
a.e. in B

(

xi, (1 − δ)ri

)

. Hence (3.4) yields
∣

∣

∣
B

(

xi, (1 − δ)ri

)

\ B
∣

∣

∣
≤ δ

∣

∣

∣
B

(

xi, (1 − δ)ri

)

∣

∣

∣
for i = 1, . . . , n

and then, recalling (3.5),

|A \ B| = |E \ B| ≤
∣

∣

∣
E \

⋃

i

B(xi, ri)
∣

∣

∣
+

∑

i

∣

∣B(xi, ri) \ B
∣

∣

≤ δ +
∑

i

[

∣

∣

∣
B(xi, ri) \ B

(

xi, (1 − δ)ri

)

∣

∣

∣
+

∣

∣

∣
B

(

xi, (1 − δ)ri

)

\ B
∣

∣

∣

]

≤ δ +
∑

i

[

(

1 − (1 − δ)N
)

|Bi| + δ
∣

∣B
(

xi, (1 − δ)ri

)
∣

∣

]

≤ δ +
∑

i

(Nδ + δ) |Bi| =
[

1 + (N + 1)|Ω|
]

δ .(3.8)
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(3.6), (3.7) and (3.8) yields (i) and (ii) if we have chosen δ small enough to have that
2C1C|Ω|1/pδ ≤ ε, 2δ ≤ ε and

[

1 + (N + 1)|Ω|
]

δ ≤ ε.

Theorem 3.4. – Let S be a countable subset of X, then fS
(

x, Dku(x)
)

≥ fu(x)
a.e. for all u ∈ X.

Proof. – Let u be a fixed function in X. Define g(x) = fS
(

x, Dku(x)
)

and let A
be the set of all x ∈ Ω such that g(x) < ∞. It is enough to prove that

(3.9) g(x) = fS
(

x, Dku(x)
)

≥ fu(x) a.e. in A.

By Lemma 3.3, for every integer n we may find a function wn ∈ X and a Borel set Bn

such that

(a) g ≥ fu+wn
− 2−n a.e. on Bn and |A \ Bn| ≤ 2−n.

(b) ‖wn‖W 1,p ≤ 2−n.

For each integer m set Cm =
(

⋂

n>m
Bn

)

. By (a)

g ≥ fu+wn
− 2−m a.e in Cm for all n > m.

By (b), wn + u converge to u in the W k,p norm and then, taking into account the
definition of g and the lower semicontinuity of F on

�
, for all integers m and Borel

sets B ⊂ Cm we have
∫

B

fS
(

x, Dku(x)
)

dx =

∫

B

g(x)dx

≥ lim inf
n→∞

∫

B

[

fu+wn
(x) − 2−m

]

dx

= lim inf
n→∞

F (u + wn, B) − |B| 2−m ≥ F (v, B) − |Ω| 2−m .

Inequality (3.9) immediately follows since previous inequality holds for every integer
m, F is an a.c. measure and (a) yields

|A \ Cm| ≤
∑

n>m

|A \ Bm| ≤
∑

n>m

2−n = 2−m


y0 when m ↑ ∞.

Corollary 3.5. – Let S be a countable subset of X, then fS
(

x, Dkv(x)
)

= fv(x)
a.e. for all v ∈ S.

Proof. – It is enough to apply Theorem 3.4 and recall Remark 3.2.

Lemma 3.6. – Let f : Ω × R
M −→] − ∞,∞] be a Borel function which is lower

semicontinuous with respect to second variable. Suppose that there exist a positive
function a ∈ L1(Ω) and a positive real number b such that

f(x, s) ≥ −
[

a(x) + b|s|p
]

for all x ∈ Ω and all s ∈ R
M

and let Ff be the integral functional on Lp(Ω, RM ) which is associated to f by usual
formula

Ff (u, B) =

∫

B

f
(

x, u(x)
)

dx .

Then Ff is well defined and lower semicontinuous on
�

Proof. – notice that the functional G(u, B) =
∫

B

[

a(x)+b|u(x)|p
]

dx is continuous
on
�

and then Ff is l.s.c. on
�

if and only if Ff + G is. Hence we may suppose with
no loss in generality that f is a positive function.

Let {un} be a sequence of functions which converges to u almost everywhere and
in the Lp norm. As f is lower semicontinuous with respect to second variable we have
that

lim inf
n→∞

f
(

x, un(x)
)

≥ f
(

x, u(x)
)

a.e.

and then Fatou’s lemma yields, for all Borel sets B,

lim inf
n→∞

Ff (un, B) = lim inf
n→∞

∫

B

f
(

x, un(x)
)

dx ≥

∫

B

f
(

x, u(x)
)

dx = Ff (u, B) .

As for every sequence which converges in L1
loc we may find a subsequence which con-

verges almost everywhere, we have just proved that Ff is lower semicontinuous on
�

.

Corollary 3.7. – Let k be a positive integer and set

F k(u, ·) =
(

F (u, ·) ∨ −k�N (·)
)

∧ k�N (·) for all u ∈ X

(∨ and ∧ must be intended in the sense of measures). Then F k is lower semicontinuous
on
�

.

Proof. – Let {un} be a sequence which converges to u∞ in X and set S = {un :
n ∈ N}. Corollary 3.5 yields

F (un, B) =

∫

B

fS
(

x, Dkun(x)
)

dx

for all integers n ∈ N and all Borel sets B ⊂ Ω, and then

(3.10) F k(un, B) =

∫

B

[

fS
(

x, Dkun(x)
)

∨ −k
]

∧ k dx

for all integers n ∈ N and all Borel sets B ⊂ Ω. Notice that fS is a Borel function of
Ω × (RM )I(k) which is l.s.c. in the second variable and then (fS ∨ −k) ∧ k is a Borel
function which is l.s.c. in the second variable, everywhere greater than −k and less
than k. Hence, Lemma 3.6 yields

lim inf
n→∞

F k(un, B) ≥ F k(u∞, B) for all Borel sets B ⊂ Ω.
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Lemma 3.8. – If (T, d) is a separable metric space and f : T → [−∞,∞] is a
lower semicontinuous function, there exists a countable set S ⊂ T such that f is the
relaxation on X of its restriction within S, i.e.

f(x) = lim inf
y∈S, y→x

f(y) for all x ∈ T ,

Proof. – By semicontinuity it’s enough to find a countable set S such that

(3.11) f(x) ≥ lim inf
y∈S, y→x

f(y) for all x ∈ T .

Set Cq = {x : f(x) ≤ q}; for all rational q choose a countable set Sq ⊂ Cq which is
dense in Cq and finally set S =

⋃

{Sq : q ∈ Q}. Let x ∈ T ; by definition of Sq, for
all rational numbers q > f(x) and for all ε > 0 there exists y ∈ Sq ⊂ S such that
d(y, x) < ε and f(y) ≤ q. Thus inequality (3.11) immediately follows.

Theorem 3.9. – There exists a countable set S ⊂ X such that

(3.12) fu(x) ≥ fS
(

x, Dku(x)
)

a.e. for all u ∈ X.

Proof. – Consider
�

(Ω) as a subset of L1(Ω). As L1 is a separable metric space,
we may find a countable collection of Borel sets � which is dense in

�
(Ω). For

k = 1, 2, . . ., define F k as in Corollary 3.7; as each F k is lower semicontinuous on
�

and X is a separable metric space, by Lemma 3.8 we may find a countable set S ⊂ X
such that

F k(u, B) = lim inf
v∈S, v→u

F k(u, B)

for all k ∈ N, u ∈ X and B ∈ � .
Taking into account Corollary 3.5 and applying Lemma 3.6, for all k ∈ N and all

B ∈ � we get

F k(u, B) = lim inf
v∈S, v→u

F k(v, B) = lim inf
v∈S, v→u

∫

B

[

fS
(

x, Dkv(x)
)

∨ −k
]

∧ k dx

≥

∫

B

[

fS
(

x, Dku(x)
)

∨ −k
]

∧ k dx .

As � is dense in
�

(Ω), this inequality holds for all Borel sets B ⊂ Ω and all positive
integers k and yields

[

fu(x) ∨ −k
]

∧ k ≥
[

fS
(

x, Dku(x)
)

∨ −k
]

∧ k a.e. for all v ∈ X.

Now (3.12) follows immediately since k is arbitrary.

Theorem 3.10 (Representation Theorem). – Let X be a local subspace of
W k,p(Ω, RM ) and let F be a functional on X which is an a.c. measure, Dk–local
on
�

and l.s.c. on
�

. Then there exists a Borel function f of Ω × (RM )I(k) into
]−∞,∞] which is lower semicontinuous with respect to second variable and represents
F in the form (0.1), i.e.

F (u, B) =

∫

B

f
(

x, Dku(x)
)

dx

for all functions u ∈ X and all Borel sets B ⊂ Ω.

Proof. – By Theorem 3.9 there exists a countable S ⊂ X such that fu(x) ≥
fS

(

x, Dku(x)
)

a.e. for all u ∈ X. By Theorem 3.4 the opposite inequality holds and
then fS satisfies

fu(x) = fS
(

x, Dku(x)
)

a.e. for all u ∈ X,

and then fS represents F and is a Borel function lower semicontinuous with respect to
second variable (Remark 3.2).

In order to complete the proof of Theorem 0.7 we need another lemma.

Theorem 3.11. –(Uniqueness of Integral Representation) Let f, f ′ : Ω ×
(RM )I(k) −→ [−∞,∞] be two Borel functions such that, for all u ∈ Ck

0 (Ω, RM ),

(3.13) f
(

x, Dku(x)
)

= f ′
(

x, Dku(x)
)

a.e. in Ω.

Then there exists a negligible Borel set N ⊂ Ω such that f(x, s) = f ′(x, s) for all
x ∈ Ω \ N and all s ∈ (RM )I(k).

In particular, if F is a functional on a space X ⊂ W k,p(Ω, RM ) which contains Ck
0

and f , f ′ are two Borel functions which represents F as an integral functional in the
form (0.1), then there exists a negligible Borel set N such that f(x, s) = f ′(x, s) for
all x ∈ Ω \ N and all s ∈ (RM )I(k).

Proof. – Let S be the set of all (x, s) such that f(x, s) 6= f ′(x, s) and let π be
the projection of Ω × (RM )I(k) into Ω. Aumann measurable selection theorem (cf.
Castaing and Valadier, Theorems III.22 and III.23) states that

(a) π(S) is a Lebesgue measurable set,

(b) there exists a Lebesgue measurable function w : π(S) −→ (RM )I(k) the graph
of which is a subset of S.

Since π(S) is Lebesgue measurable, it is enough to show that |π(S)| = 0. Assume
by contradiction that |π(S)| > 0; (b) and Lusin theorem yields a continuous function
v : Ω −→ (RM )I(k) with compact support in Ω and a compact set B ⊂ π(S) such that
|B| > 0 and v = w in B and then

(

x, v(x)
)

=
(

x, w(x)
)

∈ S for all x ∈ B.
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If k = 0 this contradicts hypothesis (3.13) and the proof is complete. If k > 0,
we may apply Theorem 5.12 to obtain a function u ∈ Ck

0 (Ω, RM ) and a compact set
K ⊂ Ω such that |Ω \ K| ≤ |B|/2 and Dku = v in K. Hence

(

x, Dku(x)
)

=
(

x, v(x)
)

=
(

x, w(x)
)

∈ E for all x ∈ K ∩ B

and this contradicts hypothesis (3.13) because |K ∩B| ≥ |B| − |Ω \K| ≥ |B|/2 > 0.

Proof of Theorem 0.7. – Let F be a functional on X which is an a.c. measure,
Dk–local on

�
and l.s.c. on

�
. By Theorem 3.10 there exists a Borel function

f : Ω × (RM )I(k) −→ [−∞,∞] which is lower semicontinuous in the second variable
and represents F in the form (0.1) and (i) is proved. (ii) is a straightforward corollary
of Theorem 3.11.

4. – Some Examples.

Given a Borel function f : Ω × (RM )I(k) −→ [−∞,∞], in the following we denote
by Ff the integral functional which is associated to f by usual formula (0.1) (of course,
when it makes sense, cf. Lemma 3.6).

To begin with, we notice a simple property of integral functional (Proposition 4.1)
and then we apply it to obtain a useful criterion of non–representability (Corollary
4.2).

Proposition 4.1. – Let f, f ′ : Ω × (RM )I(k) −→ [−∞,∞] be two Borel functions
and suppose that a function v ∈ Ck+1 exists so that, for every homogeneous polynomial
function p : R

N → R
M with deg p = k,

f
(

x, Dkv(x) + Dkp(x)
)

= f ′
(

x, Dkv(x) + Dkp(x)
)

for almost all x ∈ Ω.

Then f = f ′ for almost all (x, s) in Ω × (RM )I(k).

Proof. – Let P be the (finite dimensional) vector space of all homogeneous poly-
nomial functions p : R

N → R
M with deg p = k and consider the following map of Ω×P

into Ω × (RM )I(k):

Ψv : (x, p) 7−→
(

x, Dkv(x) + Dkp(x)
)

.

An easy computation shows that Ψv is a diffeomorphism of class C1 and by hypothesis
, for all p ∈ P,

[

f ◦ Ψv

]

(x, p) =
[

f ′ ◦ Ψv

]

(x, p) for almost all x ∈ Ω.

Hence f ◦Ψv = f ′◦Ψv a.e. in Ω×P by Fubini’s theorem and f = f ′ a.e. in Ω×(RM )I(k)

because Ψv is a diffeomorphism.

Corollary 4.2. – Let F be a functional on a subspace X of W k,p(Ω, RN ). Suppose
that functions v, v′ ∈ X ∩ Ck+1 and Borel functions f, f ′ : Ω × (RN )I(k) −→ [−∞,∞]
exist so that, for every homogeneous polynomial function p : R

N → R
M with deg p = k,

F (v+p, B) = Ff (v+p, B) , F (v′+p, B) = Ff ′(v′+p, B) for all Borel sets B ⊂ Ω

but f and f ′ do not agree almost everywhere in Ω × (RN )I(k). Then F cannot be
represented as an integral functional in the form (0.1) by any Borel function.

Proof. – If F can be represented as an integral functional in the form (0.1) by
a Borel function g, then we should have that f , f ′ and g agree almost everywhere in
Ω × (RN )I(k) by Proposition 4.1.

Example 4.3. – Let X ⊂ W k,p(Ω, RM ) be the local subspace of all functions which
belong to W k+1,p and set

F (u, B) =

∫

B

|Dk+1u|pdx for all u ∈ X, B ∈
�

(Ω).

It is obvious that F is a finite a.c. measure and is lower semicontinuous on
�

.
It is well known that if u and u′ are two functions in W 1,1

loc (Ω, RM ) and B is a Borel
set such that u = u′ a.e. in B then Du = Du′ a.e. in B (cf. the proof of Proposition
1.1 or Brezis, chapter IX). It follows immediately that F is Dk–local on

�
.

Now we apply Corollary 4.2 to prove that F is not representable as an integral
functional in the form (0.1) by any Borel function. Let v = 0 and notice that F (v +
p, B) = 0 for all Borel sets B ⊂ Ω and all polynomial functions p : R

N → R
M with

deg p ≤ k. Let v′ ∈ X be any function of class Ck+1 such that |Dk+1v| = 1 everywhere
in Ω and notice that F (v′ + p, B) = |B| for all Borel sets B ⊂ Ω and all polynomial
functions p : R

N → R
M with deg p ≤ k. Apply Corollary 4.2 with f = 0 and f ′ = 1.

F is not lower semicontinuous on
�

, otherwise we could apply Theorem 0.7 and
obtain that F is representable as an integral functional by a Borel function f .

F is not p–bounded, otherwise it would be lower semicontinuous on
�

by Proposi-
tion 2.9.

We have considered a very particular functional defined on a local subspace of W k,p.
We may ask whether this functional may be extended to the whole of W k,p and what
happens in this case.

Let u be a function in W k,p(Ω, RM ) and let � be the collection of all open sets

A ⊂ Ω such that u belongs to W k+1,p
loc (A, RM ). It may be proved that � is closed under

countable union and then Lindeloff theorem yields a maximal element of � which we
denote by Au. For all u ∈ W k,p and all B ∈

�
(Ω), set

G(u, B) =











∞ if |B \ Au| > 0,

∫

B∩Au

|Dk+1u|pdx otherwise.
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One may easily verify that G is an a.c. measure, Dk–local on � and lower semicon-
tinuous on � . Moreover, for all functions u ∈ W k+1,p and all Borel sets B ⊂ Ω,
G(u, B) = F (u, B) where F is the previously described functional.

G is not Dk–local on
�

, otherwise F would be Dk–local on
�

and we have just
proved this impossible.

G is not lower semicontinuous on
�

, otherwise it would be Dk–local on
�

by
Theorem 0.4.

Example 4.4 (cf. Buttazzo and Dal Maso, [1] and [3]). – Let u be a function
in W k,p(Ω, RM ) and let � be the collection of all Borel sets E such that Dku agrees
with a constant a.e. in E. It may be proved that there exists a Borel set Eu which is
covered by countably many elements of � and |Eu \ E| = 0 for all E ∈ � . Set

F (u, B) = |B ∩ Eu| for all u ∈ W k,p, B ∈
�

(Ω).

It is obvious that F is a finite a.c. measure, Dk–local on
�

.
Let v = 0 and v′ be any function of class Ck+1 such that Dk+1v′ 6= 0 for all

x ∈ Ω. Notice that, for all Borel sets B and all polynomial functions p with deg p ≤ k,
F (v + p, B) = |B| and F (v′ + p, B) = 0. Apply Corollary 4.2 with f = 1 and f ′ = 0
and obtain that F is not representable as an integral functional in the form (0.1) by
any Borel function.

We want to point out that that the functionals F described in examples 4.3 and 4.4
may be represented as integral functionals by functions which are not Borel measurable,
infact the following representation theorem holds (see for instance Appell).

Theorem 4.5. – Let X be a subset of W k,1
loc (Ω, RM ). Suppose that F is a functional

on X which is an a.c. measure and Dk–local on
�

, and that Continuum Hypothesis
holds. Then there exists a function f : Ω× (RM )I(k) −→]−∞,∞] such that f

(

x, u(x)
)

is a Borel function for all u ∈ X and

F (u, B) =

∫

B

f
(

x, Dku(x)
)

dx for all u ∈ X and B ∈
�

.

Proof. – We prove the case k = 0 only (the proof of the general case is slight
generalization of this).

As Continuum Hypothesis holds and the set of all Borel functions of Ω into R
M

has the same cardinality of 2N, card(X) ≤ ℵ1 and then we may find a well order (≺)
of X such that each element of X is preceded by a countable lot of elements only (cf.
Halmos).

For all u ∈ X, let fu be a Borel function which represents the measure F (u, ·) and
set

f(x, s) =







0 if u(x) 6= s for every u,

fv(x) otherwise, with v = min{u : u(x) = s}.

Let u be a fixed function in X and, for all v ¹ u, set

Av =
{

x ∈ Ω : v(x) = u(x) and w(x) 6= u(x) for all w ≺ v
}

.

An easy computation shows that
{

Av : v ¹ u
}

is a countable Borel partition of Ω and

f
(

x, u(x)
)

= fv(x) for all v ¹ u and all x ∈ Av: hence f
(

x, u(x)
)

is a Borel function

and f
(

x, u(x)
)

= fu(x) a.e. because fv = fu a.e. in Av for all v ¹ u by the locality of
F on

�
.

Example 4.6. – Let v be a Borel real function of R whose graph Γv is purely
�1–unrectifiable, i.e. �1(M ∩ Γv) = 0 for all 1–dimensional manifold M of class C1

(see, for instance, Federer and Morgan). For example take

v(t) =
∞
∑

0

4−nw(4nt) for all t ∈ R

where w is the periodic function

w(t) =

{

0 if 2h − 1 ≤ t < 2h for some h ∈ Z,
4 if 2h ≤ t < 2h + 1 for some h ∈ Z.

Let N = 1, M = 1. Suppose that Ω is an nonempty open subset of R and set
S = Γv ∩ Ω × R.

S is a Borel set of Ω × R the projection of which on Ω is Ω. Notice that for all
functions u of class Ck+1 on Ω,

∣

∣ {t : Dku(t) = v(t)}
∣

∣ = 0 and then, if f and f ′ are
two Borel functions of Ω × R into [−∞,∞] which agree everywhere but in S,

f
(

t, Dku(t)
)

= f ′
(

t, Dku(t)
)

a.e. in Ω

for all functions u of class Ck+1. This shows that Theorem 3.11 does not hold in
general when X does not contain Ck

0 and in particular we may find functions f and
f ′ which do not agree in a set S with non negligible projection but represent the same
functional on X.

Example 4.8. – For all Borel sets E ⊂ Ω, define

λ(E) =

{

0 if E is of first category,

∞ otherwise.

(we recall that a set E ⊂ Ω is of first category if it is covered by countably many closed
sets with empty interiors).

It is obvious that λ is a measure.
λ(Ω) = ∞ because Ω is not of first category (Baire’s theorem).



  

30 Giovanni Alberti: Integral representation of local functionals Giovanni Alberti: Integral representation of local functionals 31

We want to prove that λ is not lower regular. Notice that, for every positive finite
Borel measure µ on Ω and every Borel set E ⊂ Ω,

µ(E) = sup
{

µ(K) : K is compact with empty interior and K ⊂ E
}

,

infact, for every ε > 0 we may find a dense open set A with µ(A) ≤ ε and, for every
Borel set E, a compact set C ⊂ E such that µ(E \ C) ≤ ε. Then K = C \ A is a
compact set with empty interior and µ(E \ K) ≤ 2ε.

Suppose that µ is a positive finite measure on Ω such that µ(E) = 0 whenever
λ(E) = 0, then µ(E) = 0 for all Borel sets E of first category and in particular
µ(K) = 0 for all compact sets K with empty interior. Hence previous remark yields
µ(E) = 0 for all Borel sets E. Then λ is not lower regular (cf. Remark 0.1).

5. – Appendix on Measure Theory.

Some Lemmas in Integration Theory

In the following, we say that a sequence of sets {An} is strictly increasing if An ⊂
An+1 for all n.

Lemma 5.1. – Let λ be a positive non–atomic infinite measure on Ω. Then there
exists a strictly increasing sequence of open sets {Bn} such that λ

(

Ω \ ∪Bn

)

= 0 and
λ(Ω \ Bn) = ∞ for all integers n.

Proof. – Let {An} be a strictly increasing sequence of open sets which cover Ω.
Set

A =
{

x : λ
(

B(x, r)
)

= ∞ for all r > 0
}

.

First case: A = ø. Each compact sets K ⊂ Ω can be covered by a finite collection of
open balls with finite measure, and then K has finite measure too. Hence it is enough
to take Bn = An for all integers n.

Second case: A 6= ø. There exists x ∈ Ω such that λ
(

B(x, r)
)

= ∞ for all r > 0.

Hence it is enough to take Bn = An \ B(x, 1/n) for all integers n.

Lemma 5.2. – Let λ be a positive non–atomic infinite measure on Ω. Then there
exists a countable disjoint collection � of open sets such that λ(A) > 1 for all A ∈ � .

Proof. – By Lemma 5.1 there exists a strictly increasing sequence of open sets
{Bn} such that λ

(

Ω \ ∪Bn

)

= 0 and λ(Ω \ Bn) = ∞ for all n. We may suppose that
B0 = ø.

By induction on n, we choose integers mn so that m0 = 0 and λ
(

Bmn+1
\Bmn+1

)

> 1
for all n ≥ 0. Let n be a fixed integer and let mn be chosen. By the choice of the sets
Bn we have that

lim
m→∞

λ
(

Bm \ Bmn+1

)

= λ
(

Ω \ Bmn+1

)

= ∞

and then there exists an integer mn+1 such that λ
(

Bmn+1

∖

Bmn+1

)

> 1.

Set An = Bmn+1

∖

Bmn
for all n ∈ N. Recalling that Bm−1 is relatively compact in

Bm for all m, it may easily be proved that the collection � = {An : n ∈ N} satisfies
our thesis.

Lemma 5.3. – For all integers n > 0, let Borel functions fn : Ω → [0,∞] be
given so that

∫

Ω
fndt = ∞. Then there exist pairwise disjoint Borel sets An such that

∫

An
fndt = ∞ for n = 1, 2, . . ..

Proof. – In this proof we omit to check that any considered set is a Borel set. n
and m are always positive integers while k and h always belong to N = N ∪ {∞}.

For every couple n, k, set

(5.1) Dn,k = {x : k ≤ fn(x) < k + 1} if k < ∞, and Dn,∞ = {x : fn(x) = ∞} .

First step. For all n, k, we find a set Cn,k ⊂ Dn,k such that

|Cn,k| = 2−n|Dn,k|(5.2)
∣

∣

∣
Cn,k

⋂

(

⋃

m>n; h∈N

Cm,h

)
∣

∣

∣
≤ 2−n|Cn,k| .(5.3)

We act by induction on n: let n be fixed and let Cm,k ⊂ Dm,k be chosen for all m < n
and k ∈ N. For each m < n set

�m =
{

Cm,k : k ∈ N

}

⋃

{

Ω
∖

⋃

k∈N

Cm,k

}

.

�m is a countable partition of Ω because the sets
{

Cm,k : k ∈ N
}

are pairwise disjoint.
Hence, also

G =
{

⋂

m<n

Em : Em ∈ �m for m = 1, . . . , n − 1
}

.

is a countable partition of Ω and recalling that Lebesgue measure is non-atomic, for
each k we may find Cn,k ⊂ Dn,k such that for every E ∈ G

(5.4) |Cn,k ∩ E| = 2−n|Dn,k ∩ E| .

Let n and k be fixed, (5.4) implies that Cn,k satisfies (5.2) and that for all m with
m > n and all h ∈ N,

|Cm,h ∩ Cn,k| = 2−m|Dm,h ∩ Cn,k| .

Hence, taking into account that for every m the collection
{

Dm,h : h ∈ N
}

is a partition
of Ω,

∣

∣

∣
Cn,k

⋂

(

⋃

m>n, h∈N

Cm,h

)∣

∣

∣
≤

∑

m>n, h∈N

|Cm,h ∩ Cn,k|

≤
∑

m>n

2−m
(

∑

h∈N

|Dm,h ∩ Cn,k|
)

=
∑

m>n

2−m|Cn,k| = 2−n|Cn,k|
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and Cn,k satisfies (5.3).

Second step. For all n and k, set

Bn,k = Cn,k

∖

(

⋃

m>n, h∈N

Cm,h

)

.

As Bn,k ⊂ Cn,k ⊂ Dn,k for all n, k, and taking into account that for every n the
collection

{

Dn,k : k ∈ N
}

is a partition of Ω, we obtain that Bn,k ∩ Bn′,k′ = ø

whenever (n, k) 6= (n′, k′). (5.2), (5.3) yield

|Bn,k| ≥ (1 − 2−n)|Cn,k| ≥
1

2
|Cn,k| = 2−(n+1)|Dn,k| ,

and then, recalling (5.1) and
∫

Ω
fndx = ∞, we obtain that for all n

∑

k

∫

Bn,k

fndt ≥
∑

0<k≤∞

(k − 1) |Bn,k|

≥ 2−(n+1)
∑

0<k≤∞

(k − 1) |Dn,k| ≥ 2−(n+1)

∫

Ω

(fn − 1)dt = ∞ .

Hence it is enough to set An =
⋃

0<k≤∞

Bn,k for all n.

Covering Lemma and Applications

To begin with, we recall two corollaries of the the well–known Besicovitch covering
lemma (see for instance Simon, Federer or Morgan).

Theorem 5.4 (cf. Morgan, Theorem 2.7). – Suppose λ is a finite positive measure
on R

N , E is a Borel subset of Ω and � is a collection of non trivial closed balls such
that inf

{

r : B(x, r) ∈ �
}

= 0 for all x ∈ E. Then for every ε > 0 there exists a finite
disjoint collection � ′ ⊂ � such that

λ
(

E \
⋃

B∈� ′

B
)

< ε .

Remark 5.5. – Notice that Theorem 5.4 holds even if � is a collection of non trivial
open balls B such that λ(∂B) = 0. In particular this happens when λ is (absolutely
continuous with respect to) Lebesgue measure and in this case we often apply Theorem
5.4 to collections of open balls.

Theorem 5.6 (cf. Simon, Theorem 4.7). – Suppose that λ1, λ2 are (locally) finite
positive measures on R

N . Then

dλ2

dλ1
(x) = lim

r→0

λ2(B(x, r))

λ1(B(x, r))

exists except for a λ1-negligible Borel set of points and is a Borel function of x which
represents the component of λ2 which is absolutely continuous with respect to λ1 in the
Lebesgue decomposition of λ2 relative to λ1.

This theorem has a straightforward corollary.

Corollary 5.7. – If λ is a finite measure on R
N , then we have that the limit

lim
r→0

rN

λ(B(x, r))

exists and is finite except a λ–negligible Borel set of points x, in particular it is λ–a.e.
0 when λ and �N are mutually singular.

Theorem 5.8. – Let λ be a positive finite measure on R
N . Then there exists a

Borel set E such that λ(RN \ E) = 0 and, for all x ∈ E,

(5.5) lim sup
r→0

λ(B(x, ar))

λ(B(x, r))
≥ aN for all a with 0 < a < 1.

Proof. – Let x be a point such that (5.5) does not hold for some a with 0 < a < 1,
then there exist positive real numbers b < aN and r̄ > 0 such that

λ(B(x, ar))

λ(B(x, r))
≤ b < aN for all r with 0 < r ≤ r̄.

Hence, for all integers m > 0,

λ
(

B(x, amr̄)
)

λ
(

B(x, r̄)
) =

m
∏

i=1

λ
(

B(x, air̄)
)

λ
(

B(x, ai−1r̄)
) ≤ bm

and then, if we set r = amr̄, we have

(5.6) λ(B(x, r)) ≤ λ(B(x, r̄))bm ≤ λ(B(x, r̄))b
log(r/r̄)

log a = M r
log b
log a

where M = λ(B(x, r̄))r̄
−

log b
log a . Notice that b < aN and a < 1 yield log b

log a > N and then,

by (5.6),

lim sup
r→0

rN

λ(B(x, r))
≥ lim

r→0

rN

M r
log b
log a

= ∞

and Corollary 5.7 shows that this may happen for a λ–negligible (Borel) set of points
x only.
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Glueing Lemma and Applications

Proposition 5.9 (Poincaré–Wirtinger Inequality). – Let B be an open ball in R
N

with radius r and let u be a function in W k,p(B, RM ) such that the mean value of Dhu
on B is 0 for h = 0, . . . , N − 1. Then

(5.7) ‖Dhu‖LP (B) ≤ (Cr)k−h‖Duk‖LP (B) for h = 0, . . . , k − 1

where C is a constant which depends on N and p only.

Proof. – The case k = 1, h = 0 is well–known and the general case follows by
iteration.

Lemma 5.10 (Glueing Lemma). – Let X be a local subspace of W k,p(Ω, RM ), 1 ≤
p ≤ ∞. For i = 1, . . . , n, let be given pairwise disjoint open balls Bi = B(xi, ri) and
functions ui ∈ X. Then, for every ε > 0 there exists u ∈ X such that

(i) u = 0 a.e. out of the union of all Bi.

(ii) Dku = Dkui a.e. in B
(

xi, (1 − ε)ri

)

for all i.

(iii) ‖Dku‖Lp(Bi) ≤ Cε−k‖Dkui‖Lp(Bi) for all i, where C is a constant which
depends on N , k and p only.

Proof. – We may suppose that ε < 1. It is well–known that for all i we may find
a polynomial function pi : R

N → R
M with deg pi < k, such that Dh(ui − pi) has mean

value 0 on Bi for h = 0, . . . , k − 1. Hence, possibly replacing each ui with ui − pi (cf.
Definition 0.2), we may assume that Dhui has mean value 0 on Bi for h = 0, . . . , k−1.

An easy computation shows that for all i there exist functions φi : R
N → R of class

C∞ such that φi = 1 in B
(

xi, (1 − ε)ri

)

, φi = 0 out of B(xi, ri) and

(5.8) ‖Dhφi‖∞ ≤ C ′(riε)
−h for h = 0, . . . , k

where C ′ is a constant which depends on N and k only. Set

(5.9) u =
∑

i

φiui .

u belong to X because X is a local subspace (cf. Definition 0.2); the choice of φi and
the fact that the balls Bi are mutually disjoint yield (i) and (ii). By definition (5.9),
for all a with |a| = k,

Dau =
∑

b+c=a

Dbφi Dcui in each Bi

and then, taking into account (5.7), (5.8) and ε < 1,

‖Dau‖Lp(Bi) ≤
∑

b+c=a

‖Dbφi‖∞‖Dcvi‖Lp(Bi)

≤
[

∑

b+c=a

C ′(riε)
−|b|(Cri)

|b|
]

‖Dkui‖Lp(Bi)

≤
[

∑

b+c=a

C ′C |b|
]

ε−k‖Dkui‖Lp(Bi) .

and this proves (iii) with a suitably chosen constant.

We apply Glueing Lemma in Theorem 5.12 to prove a generalization of a Lusin
type theorem which may be found in Alberti. The proof is a slight modification of
the argument used in that paper.

Lemma 5.11. – Let k be a positive integer and λ be a positive finite measure on the
open set Ω ⊂ R

N . Suppose that v : Ω → (RM )I(k) is a continuous function and η and
ε are positive real numbers. Then there exists a compact set K ⊂ Ω and a function
u ∈ Ck

0 (Ω) such that

(i) |Dku − v| ≤ η in K and λ(Ω \ K) ≤ λ(Ω) ε

(ii) ‖Dku‖∞ ≤ Cε−k‖v‖∞ where C is a constant which depends on N and k
only.

Proof. – For all x ∈ Ω, there exists a a positive real number rx such that for all
r, 0 < r < rx, B(x, r) is relatively compact in Ω and

(5.10) |v(t) − v(x)| ≤ η for all t ∈ B(x, r).

By Theorem 5.8, for λ–almost all x,

(5.11) lim sup
r→0

λ(B(x, ar))

λ(B(x, r))
≥ aN for all a with 0 < a < 1.

Let � be the collection of all closed balls B with center x ∈ Ω and radius r, 0 < r < rx,
such that

(5.12)
λ
[

B
(

x, (1 − δ)r
)]

λ
[

B(x, r)
] ≥

λ
[

B
(

x, (1 − δ)r
)]

λ
[

B
(

x, (1 − δ)−1r
)] ≥ (1 − δ)3N .

Let δ = ε/(1 + 3N), notice that, for almost all x, (5.11) yields closed balls B ∈ �
with center x and arbitrary small radius. Hence we may apply Theorem 5.4 to obtain
closed balls B(xi, ri) ∈ � for i = 1, . . . , n such that

λ
(

Ω \ ∪Bi

)

≤ λ(Ω) δ .

For all i let vi ∈ (RM )I(k) be the mean value of v in Bi and let ui : R
N → R

M be the
polynomial function

ui(t) =
∑

a∈I(k)

(vi)a(t − xi)
a .

Let X = W k,∞(Ω, RM )
⋂

Ck(Ω, RM ). As X is a local subspace of W k,∞, we may
apply Glueing Lemma 5.10 to obtain a function u ∈ X such that

(a) u = 0 out of the union of all Bi.

(b) Dku = Dkui = vi in B
(

xi, (1 − δ)ri

)

for all i.
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(c) ‖Dku‖L∞(Bi) ≤ Cδ−k‖Dkui‖L∞(Bi) for all i.

(a) and the fact that every ball Bi is relatively compact in Ω implies that u has
compact support in Ω and then u ∈ Ck

0 (Ω, RM ). Set

K =
⋃

i

B
(

xi, (1 − δ)ri

)

.

Taking into account definition of vi, (b) and (5.10) yield

|Dku(t) − v(t)| ≤ |vi − v(t)| ≤ η for all i and all t ∈ B
(

xi, (1 − δ)ri

)

,

moreover, taking into account (5.12) and the choice of Bi and recalling that ε =
(1 + 3N)δ,

λ(Ω \ K) ≤ λ
[

Ω
∖

⋃

i

B(xi, ri)
]

+
∑

i

λ
[

B(xi, ri)
∖

B
(

xi, (1 − δ)ri

)

]

≤ λ(Ω) δ +
[

1 − (1 − δ)3N
]

∑

i

λ(Bi) ≤ (1 + 3N)δ λ(Ω) = ε λ(Ω)

and then (i) holds. Applying (c) and (a) and taking into account definition of vi, we
obtain

‖Dku‖∞ = sup
i

‖Dku‖L∞(Bi) ≤ sup
i

Cδ−k‖Dkui‖∞

≤ C(1 + 3N)kε−k sup
i

|vi| ≤ C(1 + 3N)kε−k‖v‖∞

and (ii) holds with a suitably chosen constant.

Theorem 5.12. – Let k be a positive integer and let λ be a positive finite measure
on Ω. Suppose that v : Ω → (RM )I(k) is a continuous function and let ε be a positive
real number. Then there exists a compact set K ⊂ Ω and a function u ∈ Ck

0 (Ω, RM )
such that

(i) Dku = v everywhere in K and λ(Ω \ K) ≤ λ(Ω)ε

(ii) ‖Dku‖∞ ≤ Cε−k‖v‖∞ where C is a constant which depends on N and k
only.

Proof. – by induction on n we build a sequence
{

Kn, un, vn

}

as follows: set
K0 = Ω, u0 = 0 and v0 = v.

Let n > 0 and let Kn−1, un−1 and vn−1 be given. Apply Lemma 5.11 to obtain a
compact set Kn ⊂ Ω and a function un ∈ Ck

0 (Ω) such that

(a) |vn−1 − Dkun| ≤ ‖v‖∞4−nk in Kn and λ(Ω \ Kn) ≤ λ(Ω)2−nε,

(b) ‖Dkun‖∞ ≤ C2nkε−k‖vn−1‖∞.

Define vn(x) = vn−1(x) − Dkun(x) for all x ∈ Kn and apply Titze’s lemma to
extend vn to the whole Ω so that

(5.13) sup
x ∈ Ω

|vn(x)| = sup
x ∈ Kn

|vn(x)| ≤ ‖v‖∞4−nk .

We set K = ∩Kn, u =
∑

un and then we show that these definitions make sense and
satisfy (i) and (ii).

Taking into account (a), (b) and (5.13),

∞
∑

1

‖Dkun‖∞ ≤
∞
∑

1

C2nkε−k‖vn−1‖∞

≤ C2kε−k
[

‖v‖∞ +
∞
∑

1

2nk‖v‖∞4−nk
]

≤ C2k+1ε−k‖v‖∞

Poincaré inequality (cf. Brezis, ch.IX) shows that the series
∑

n un converges in the
norm of Ck

0 (Ω, RM ) to a function u which satisfies (ii) with a suitably chosen constant.
(a) yields

λ(Ω \ K) ≤
∞
∑

1

λ(Ω \ Kn) ≤
∞
∑

1

λ(Ω)2−nε = |Ω| ε ,

By the definition of vn we have that, for all x ∈ K and all integer m > 1, v(x) −
∑m−1

1 Dkun(x) = vm(x) and then (b) yields

|v(x) − Dku(x)| ≤ |vm(x)| +
∞
∑

m

|Dkun(x)| ≤ ‖v‖∞4−mk +
∞
∑

m

‖Dkun‖∞ .

Hence (i) immediately follows because the sequence m 7→
∑∞

m ‖Dkun‖∞ converge to
0 .
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