The Topology of Two-Dimensional Real Algebraic Varieties (*).

R. BengprTII - M. DEDO (Pisa) (**)

Sunto. — B noto che ogni spazio analitico reale & localmente omeomorfo al cono su un poliedro
con caratteristica di Eulero-Poincaré pori. St dimostra che questa condizione é anche suffi-
ciente affinché un poliedro (compatio) di dimensione due P sia omeomorfo ad una varietd
algebrica reale affine P. Segue inolire dalla costruzione che la P ottenuta ha, in un certo senso,
un insteme di singolaritd algebriche minimale, compatibilmente con la fopologia di P.

Introduction.

The topological resolution of singularities is often a suitable tool for studying
different kind of questions (see [5] or [4] for an application to the representation
of homology classes). In [1] it is given a complete topological characterization of
real algebraic affine varieties with isolated singularities, by means of both algebraic
approximations of differentiable objects and the construction of a good resolution
of singularities (see also [3]).

It seems natural that one can generalize this technique. It is known that every
real analytic space is locally homeomorphic to the cone over a polyhedron with
even Euler characteristic (see [7]; we shall call this property condition (B)). In
this paper we show that every two-dimensional (compact) stratified space P is
homeomorphic to a real algebraic affine variety P if and only if P satisfies ().

The main tool ig again the construction of a good topological resolution of the
gingularities (similar, in some sense, to the algebraic one), whose existence is essenti-
ally equivalent to condition (). Using the one point compactification, we give at
the end a complete topological characterisation of two-dimensional real algebraic
varieties.

Many proofs are elementary; moreover the details of the constructions allow us
to get precise informations about the algebraic singularities of P: we thus obtain a
subset {4 — B} of the set of spaces satisfying (¥), such that any Pe {4 — B} is
homeomorphic to a P whose algebraic and topological singularities are the salne.
This is not possible in general: however, we give a standard way to add a « minimal »
(with respect to the topology of P) set of singularities in P (see 2.11 b) for the precise
statement).

(*) Entrata in Redazione il 2 maggio 1980.
(**) The authors are members of the G.N.S.A.G.A.
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The definition of {4 — B} and the proofs in this case seem to be more imme-
diately generalizable to higher dimensional spaces. We have just learned that a
gimilar result is announced in a later version of {1].

1. — Preliminaries.

‘We shall first make some remarks. By the word «smooth» we shall always
mean differentiable of class C°; due to the low dimension of the spaces considered,
many constructions are clear: thus, for example, for the sake of simplicity, all
topological constructions are meant up to smoothing, or else we shall assume some
notions like attaching a handle to a manifold.

We shall work in the eategory of two-dimensional compact stratified spaces
(see TmoM [8], [9] and MATHER [6]), eventually with (not empty collared) boundary.
We recall here some known facts.

Let P be such a space, where we assume that every 0-dimensional stratum is
exactly one point; if X, and X, are strata of P, X,< X, means that X,c Xy; P is
the boundary of P. We can assume that P is realized in an euclidean space RY,
where N is big enough.

For each e P, there exists a fundamental system of neighbourhoods of the
kind #Q, (that is, the cone on @, with vertex ), where @, is a 1-dimensional stratified
space isomorphic to @, ¥i; @ is called the link of # in P, and we write ¢ = 1k (», P).

1.1 REMARK. — If # = X, is a stratum of P, then Ik (x, P) is isomorphic to the
boundary of a tubular neighbourhood of X, in P (see TaoMm [8], [9] and MATHER [6]).
Let p be the greatest integer such that lk (x, P) is homeomorphic to 87T,
where S is the unit sphere in R (p>dim X,, if # belongs to the stratum X,)
and % is the join operation defined by
X% Y =XxYx[0,1]/(z, 9, 0)~ (2,%,0); (@y,1)~(@,51).
1.2 DEFINITION, — The intrinsic codimension of # in P is

OIl{(s,P)=d&im7T=2—(p-+1).

1.3 DEFINITION. — Let ¢ be the length of a maximal chain of strata o e X,<
< X,;<..< X;. The coheight of # in P is

CA(x, PY=1.
1.4 DEFINITION. — A stratified space P is good if

CI(x, P)>CA (z,P) {for each weP.
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1.5 DEFINITION. — XP = {# € P: CI (#, P) 4 CA (%, P) % 0}; x € P is regular if
CI (@, P) = CA (s, P) = 0. ~

1.6 REMARK. — Let P be a good stratified space; this means that its stratifica-
tion describes exactly the topological regularity of a point in P and in XP. In par-
ticular,

= {x € P: Ik (», P) i3 not homeomorphic to §}.

As in dimension two there are no smoothing problems, we shall only consider, wit-
hout loss of generality, good stratified spaces. '

1.7 DrFINITION. —~ Let P be a good stratified space. We define
={xeP: CA(w,P)=2} and ZXZ,P {meP CA (#, P)=1}.

1.8 REMARK. - a) 2P =X PU X Py if meZP\(ZOPUZ.’lP), then or # is an
isolated point, or it belongs to a 1-dimensional stratum which is not incident to
any 2-dimensional stratum;

b) 2,.P consists of a finite number of points (as P is compact and, if x € X, P,
then 2 is a stratum);

¢) Z(ZP) = Z,P U {isolated points of P}.
Using the tubular neighbourhoods of P (see THoM [8], [9] and MATHER [6]),
we can find a closed neighbourhood N of XP in P such that:
a) the boundary N of N is a closed manifold;

b) there exists a (piecewise smooth) projection p: N — 2P which is a de-
formation retraction;

¢) (N, p) is unique, up to isotopy;
d) N is the mapping cylinder of p = p|;: N - ZXP.

In the following we shall refer to (¥, p) as the regular neighbourhood of 2P in P.

1.9 DEFINITION. — Let f, ¢ be two loops in X, f(0) = f(1) = g(1). We
say that f and g are specially homotopic if they only differ for eonstant intervals;
that is, if there exists a finite number of loops f = f,, fa, ..., fa =g, such that f,,
can be obtained from f, (or vice-versa) in the following way:

fz( wo/to ) ’ 0<t<t0
fz‘+1(t) = fil@o) , fo<<t<y
(@ — )/ A—t)-(t—t) + @), h<i<l

with 0<t,<t, <1 and 0<®,<1.
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1.10 REMARK. - a) if f and g are specially homotopic, then their mapping
cylinders are homeomorphic;

b) N consists of a finite number of circles embedded in P\ZP and the homeo-
morphism type of N depends only on the class of special homotopy of p: N — ZP;
it is thus possible to change the map p, up to special homotopy, without changing
the homeomorphism class of the stratified space P;

¢) moreover, it is clear that, if we change p in p', specially homotopic to p
and piecewise smooth (according to the strata of P), then we don’t change the iso-
morphism class of P, as a stratified space.

Let P be a good stratified space. We call (N, p,) the regular neighbourhood
of 2P in P. The regular neighbourhood of X(XP) in XP is the union of a neigh-
bourhood N, of 2, P in 2P and a finite number of isolated points in P. N,,, with
the natural projection py: Ny — 2, P, will be called the regular neighbourhood of
2P in ZP. Moreover, we can choose a tubular neighbourhood (N, p,) of Z,P
in P such that:

a) if ZoP = {»,,..., x,}, then N, is isomorphic to the digjoint union I #:1k(x,, P);

i=1,...,n

b) N01: _Non ZP;

¢) Polw,on,™ Po1°Pily,aw,s
d) ?II(NM) = -2\70m N1-

From now on, if no statement is made to the contrary, all stratified spaces will
be without boundary.

1.11 DErrNyTION, — Let P be a good stratified space. We say that P satisfies
condition (4) if Vo € X2, P such that 1k (w, P) = S°% M, M consists of an even num-
ber of points.

Let Nyy= N, ZP = {ry, ooy 7} and Ik (r;, P) = 8% M,, with M,= lk(r,, N,) =
= {n; points}, n,>0.

1.12 DErFINITION. — Let P be a good stratified space. We say that P satisfies
condition (B) if, Vne N, Yo e 2o P, # {i: n,=n and Pyu(r;) = o} is even.

1.13 REMARK. ~ a) If P satisfies (4) and (B), then it also satisfies Sullivan’s
condition (B): y(lk (z, P)) is even, for each # € P. To see this, note that if » e X, P
(otherwise the statement is obvious), then 1k (z, P) is a graph I' with 2k vertices
iy ey 7oy (for (B)) and (n, - ... - ny,)/2 edges; from (A) it follows that each n, is
even, and from (B) that they are equal in pairs; therefore y(I") is even;

b) the contrary of a) is no longer true: for example the suspension of the
wedge of three circles P = S*V 8!V St satisfies (F) and doesn’s satisfy (B).
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2. — Topological resolution of singularities.

‘We shall give polynomial equations for a (compact) stratified space satisfying (E)
by means of a topological resolution of singularities of a special kind, whose ex-
istence we shall prove in this paragraph.

We shall first give the construction for a good stratified space P satisfying (4)
and (B), and then we generalize it to a space P satisfying (E); we do this for many
reasons: first, the (4 — B) case is much simpler, and it is easier then to understand
the modifications which must be given in the () case; the existence of the (4 — B)
special resolution of singularities characterizes the spaces satisfying conditions (A4)
and (B) and it seems easier to generalize this construction to higher dimensional
spaces (see remark 2.7); the (4 — B) case is the most general one such that we can
make the construction without changing the stratification of P: in the (X) case it
will be necessary to add some 1-dimensional strata to the topological singularities
of P (thus P, in particular, will no more be a good stratified space).

We first give a construction which will be useful later:

2.1 REMARK. — Let M, be a two-dimensional compact orientable manifold of
genus # and with boundary oM,= §;U...U §8,,,. We shall give a standard way
to find a family {y,} of circles embedded in 3,, in general position and such that
M N\{y:} is a collar of 8, in M,. We say also that M, is a normal neighbourhood
of U Vi

?

The proof is by induction on n; M, is the cylinder S'x[0,1] and M, can be
obtained from M, by attaching a «handle with a hole ».

On M,, the family is the only circle y = §'x{}}; suppose now we have given
the family {y,} on M, and consider

M= MXN(8°x D% U (([0, 11x8)\D) .
§'x 8

D is a 2-disk embedded in [0, 1] x S and we can suppose there exists z,€ §* such
that D c 1%, 3 X (8™\{2}).

8°x D* are two disks D, and D, embedded in M,, which we choose to be in dif-
ferent connected components V, and V, of M\ {y, }, such that V,N V, is a circle y,
of the given family.

Let %, = (x,,0) € 0D, and x,= (%,, 1) € 0D,; there exists a path « in M,, with
endpoints «, and x,, which intersects y, transversally in one point and” doesn’t
intersect any other circle of the family {y,}. Put

h= “{ U }([07 x{we});  7o=8%{t}; 7= 8 x{E}.

Then the required family on M, is {y:, 71, 2, 75}: to see this, it is enough to
note that the connected component of M, \((U y;) U (U ;) containing 9D is homeo-
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morphic to a cylinder, while the others, when different from a connected component
of M (Y y,), may be obtained from one of these by adding a hole and a cutting
from the boundary of the hole to the previous boundary (and thus they are still
homeomorphic to a eylinder).

2.2 REMARK. — M,\ (U y,) has » 4 2 connected components V,, ..., V,,,, where
we denote by V,; the one containing §,c ¢M,. In the following, we shall need that
the closure of one of these components, say v, intersects each V;, j = 2, vy W F 2,
in a circle of the family {y,}. To achieve this, it is enough to choose one of the two
disks D, and D, of the last remark to be always in the connected component of
M \(Y y,) containing 8;. Nobe that, in this case, we can choose paths «;, with
endpoints a peint of 8; and a point of §; (j =2, ..., » + 2), such that each «; in-
tersects in exactly one point and transversally just one circle of the family {y.},
and different paths intersect different circles (see fig. 1).

Figure 1

We want to prove the following theorem, whose statement makes clear what
we mean by a special resolution of singularities.

2.3 TuEOREM. — Let P be a good stratified space, satisfying (4) and (B); then
there exists an (4 — B) special resolution of the singularities of P, that is a chain
P15 P' L P such that:

1) P’ is a good stratified space, satisfying (4) and (B) and such that X, P’ = §;
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2) f-YZ,P)= F = UPF,, where

a) for each r, F, is or a circle or a wedge of circles (where we !agree that a
wedge of 0 circles is a single point); _

b) if F, is a circle, then ¥, is embedded in P\2P’;

¢) if F, is a wedge of m, circles, then the center . of F, is a point of 2P’
such that lk (@, P') = 8%% (2m, points); »,= F,N ZP’;

d) the F,’s intersect transversally in P\ J2P’;

3) f' is a continuous epimorphism such that f'[pn &: PNF —P\Z,P is an
isomorphism and f'|pn g-1y,y? PNF7UNo) = PN\, is the identity;

4) P" is a good stratified space such that X, P'= X, P"= @; that is, P’ is a
manifold, maybe not equidimensional;

B) f'-YZP") = §'= U F, is a family of circles in general position embedded
in P"; k

6) f” is a continuous epimorphism such that f'[pn g : P"™\F'— P\21 P’ is an
isomorphism and | pm goaynt PN THN) = PN\N, is the identity;

7 §"4F) = F'= U F, is a family of circles embedded in P’ and such that
h
F'O F" is a family in general position;

8) putting f = f'of”, we have that f|: P'\(F'U F") - P \XP is an isomor-
phism; moreover, for each F;c 57, f] 7, is the constant map on a point of
X, P, while, for each F,e 5, f"lw; or is the constant map on a point of
2P, or it is an n-covering of a circle of 2 P'.

We shall prove this theorem in three steps:

2.4 Step 1: construction of P'. — Let P be a good stratified space satisfying (A4)
and (B) and assume first 2, P = {x,}. I'= Ik (%,, P) is a graph with an even num-
ber of vertices ri, ..., 7o = Ny and such that, for each ¢+ =1, ..., 2k, a neighbour-
hood U, of r, in I'" is a cone with vertex r; on an even number of points P,
(§ =1, ..., 20,5 n;>0); as P satisfies (B), we may assume also #, = n,, ..., fgp_y = Ny

One can prove easily (by induction on %) that there exist s cireles I, ..., I, in I"
such that I is the quotient of the disjoint union( 11 ]“t) 11 ( -1 ri) by an equiv-
alence relation such that: b=1,....8 i=l....,2k

a) if r; is isolated in I, then [r,] = {r.};

b) if r; is not isolated in I, then [r,]= {r,, P;,..., P,}, where P;el; and
jFh=> =1 7

¢) if p ¢[r;] for some ¢, then [p] = {p}.
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Let us choose once for all I3, ..., I';; reorder then the points P, 20U, so that
P, sy and P, ,; belong to the same circle I}, for any j =1, ..., 2n, (this construc-
tion is clearly empty if n,= 0).

Attach now n,-- ... | m, edges to ]_[ U, so that the boundary of each edge

i=1,...,2k

are two points of the kind P;,, ; and P,,;, and let I be the resulting graph.

I is the disjoint union of 2% wedges of cireles, with centers in #;, such that each
circle meets the boundary of U, in two points belonging to the same I,.

Put

P=P~W, U Ux[0o,11Ur

U; x {0} Uix {1}

and consider one of the circles I, say Iy; let #, ..., », be the vertices of I belonging
to I'y; for each i =1, ..., {, choose in the wedge of circles with center in (r;, 1) e I
that one containing the two points (P, 1) such that P, I}; we thus get ¢ circles
8, 8.

Consider now the manifold MY, and identity aM{Y, with ITU 8 U ...US8,;
choose a family {y.} of circles in general position embedded in M, as in 2.1 and 2.2,
where I3 is now the circle playing the role of 8; in 2.2. Choose then ¢ paths «;, ..., ;
a8 in 2.2, such that the endpoints of «; are (r,,0) eI} and (r,,1)e 8;; let N, be a
tubular neighbourhood of «, in M™, such that

N.nD=(U;x{) NI, and N.NS,= (U, x{q}HNS;.

We can then attach M, to P by identifying N, with (U,N I3) x[0,1] in the
natural way (in particular, «, is identified with {r,}x[0,1]).

Do this for each circle Iy, ..., I", and call P the resulting space; P is a good
stratified space, with boundary I:

P=PUmWMyU..uM)=P\NUHOU..U M=),

o0 1\;0 {&:}

We denote by O, the wedge of n,; circles; let P’ be the quotient of the disjoint
union P[] ((0,V ...u €,)x[0,1]) by the identification of C,x {0} with the wedge
of Mg,y = My, circles with center in (ry_;, 1) € I’ and C,x {1} with the wedge of .,
circles with center in (r,;, 1) e I, for each i =1, ..., k.

P, with the natural stratification, is a good stratified space and

2P =TVl ( 1T fmdx00,10)~,

i=1,...,k

where the equivalence relation ~ is defined by

(7'21;7 0) ~ Te; 1€ NOI &nd (7'21'7 1) ~ 7'2q;e N(u .
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Thus 2,P’= @ and condition (B) is empty with respect to P’; moreover, for
each € IP\(ZP N XP'), Ik (w, P') = 8° % {2n; points} for some i: therefore P’
satisfies condition (4).

Observe finally that, if Z, P consists of more than one point, we can make the
same construction on disjoint neighbourhoods of the points belonging to X, P
Therefore we have constructed a space P’ satisfying property 1) of 2.3.

2.5 Step 2: construction of f'. — We always assume, for the sake of simplicity,

P = {x,}.
= P\N, UQ; Qi:QZI_[ Qz/"’i@l—‘: (MMU...U Mm)/"’? Qz—_— (CLV...V Ck) x[0,1],

N,

where ~ denotes the identifications previously described.
N, is a cone with vertex #, on N,; thus, in order to define a map f: P' — P
satisfying properties 2) and 3) of theorem 2.3, it is enough to find a family 5 = ur,,

satisfying properties a), b), ¢), ) of 2) and such that g\ U F, is a collar on Ny = 3Q.

First of all, for each ¢ =1, ..., s, we choose a famlly of circles {y{"} embedded
in the manifold M, as in the remark 2.2 with respect to I';. Note that, for each
§=1,...,s, there are ¢, paths &, ..., af) in M (the ones where we make the
identifications to get {J,), such that the endpoints of «{” are the two points (r,, 0) € I';
and (r;,1) € 8; as we saw, we can choose the circles {y”} so that one and only
one (which we call y{") meets the path «” transversally.

Let us fix then a point ;€ ), for example @,= (r,, }), and choose y{” so that
z;€ yD. Note also that y{” is the only circle of the family {y{"} which is contained in
the closures of the two conmected components of M\ {4} meeting 87 and I
respectively.

Therefore, if we choose the families {y{"} as described, after the identifications
we shall get a family §F' = {F} satisfying properties a), b), ¢), d), and such that
gN\g' is a collar on N,uU I".

Let us now attach to G, a «handle» C, x[0, 1]; if C, is & wedge of n,, = 0 circles,
that is the single point r,,, it is enough to add to the family F' the point (s, 3).

Suppose then n,,> 0 and let 8 be a circle belonging to the wedge C,: we shall
describe how to make some modifications to the family &' in order to get a family
satisfying the same properties with respect to the space g,u (8 x[o0, 1]).

8 % {0} is identified with a circle 8 c aM® and Sx{1} is identified with a
circle S@c 9M'® (maybe p = ).

As we saw, we can associate to S (vesp. 8) a well-defined circle i (vesp. );
we shall use the simpler notation §'= 8", §"= 89, y' = y»), 9= »{®». Let V’
(resp. V@) be the connected component of M(”’\ Uy‘”) which meets 8’ (resp. I,);
V" and V@ are defined similarly.

There exists a projection p’': M@ —Jy® (resp. p": M@ - »{?) such that V'

s 2
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is the mapping cylinder of p'= p'ly, and y'c p'(V’); moreover, as y'c 7® and
V@£ V', there exists an are §'cy’, with endpoints 2, and z,, such that z e g,
p'-1(f") is homeomorphic to a disk and p'~*(f’) is an are o'c 8’ with endpoints y;
and y,; in a similar way we choose 8, with endpoints 2y and z;, and ¢’, with end-
points %, and y,. Choose now two ares g, and g, in §X[0,1] such that: iy §x
x [0, 1N\ (¢: VY @,) is the disjoint union of two disks D; and D,; ii) ¢D,= ¢'U g, U
U (8"\0") U gs; iil) 8Dy= 0"U g, U (8'\&") U gu iV) (rap, 1) € 0.
Congider the circle

y =\ U oo, 25} U (0,0 00) U ™2y, @} U '\ g")

b
2158 Y1 Y1,Ys T1sBg

and the family of circles 5 = F NS 7O v} (see fig. 2).

Figure 2
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This family satisfies the required properties with respect to the space g,u (8%
%[0,1]); observe that the only connected components of @,U (8x[0,1]) — &
which are not connected components of @\ F' are the union of V® (resp. V9) and
three disks:

pr_l(ﬁr) (resp. p//_l(ﬁ”)) ,
D, (resp. D,) and

P (p"(8™\")  (resp. pp/(8\o)
such that

V(p)ﬂp'"l(ﬁ’) — ﬁr , [V(i’) Up’_l(ﬁ’)] ND, = o",
B8’
[V(@)’gl)pl__l(ﬁ/) L'J Dl] f\p”‘l(p”(ﬂg”\o‘”)) — «S”\G'”

and similarly for V@; thus the resulting connected component is homeomorphie
to V® (resp. V9). The same holds if p = ¢, as the intersections of V®» = V@ with
the first two disks are two digjoint ares f'c o’ and g'cy’s= 4 .

Note finally that the only properties of the family F' which we used are:

1) ¥ satisfies the required conditions with respect to §,;
q }

2) to any circle 89c ' = 80\, we can associate a circle y"e 5’ with the
described properties.

Ag these two properties hold for the new family F' with respect to the space
Q,U 8 x[0, 1], we can repeat the same construction until there are no handles left.
We shall get at the end the required family ¥ = {F,}: note that the property iv) of
the arcs g, ensures that F satisfies condition ¢).

As before, we can remove the first assumption X, P = {z,} by working in disjoint
neighbourhoods of the poiuts belonging to 2, P, so that we have proved the ex-
istence of a map f': P'— P satisfying conditions 2) and 3) of the theorem 2.3.

2.6 Step 3: construction of P" and f’. — Consider the stratified space P’, satisfy-
ing (4) and (B) and such that X, P'= §; XP' is the disjoint union of a finite
number of circles Sy, ..., 8, and a finite number of points =, ..., x,. Without loss
of generality we can assume XP' = X\ P’ (a§ 2P\ 2, P’ consists of connected com-
ponents of P’). k

Let (N',p') be the regular neighbourhood of P’ in P/, N, = p'~(z,),

Ni=p-Yx;) (for each i =1,...,5), N,=pY(8;)
and
N,=p-48,) (for each j=1,...,7).

N; and N, are both disjoint unions of circles embedded in P\ZP'; note that
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we could obviously get a space P” as required by putting P'= P\ N "U (disjoint
ZQu

union of a finite number of disks); however, we shall give a different construction
of P’, which makes clear the existence of the map f': P'— P'.

As P' satisfies condition (4), if N,= 8;U ..U S, , there are exactly an even
number of indices k& such that the map ¢'|: 8;, — §; has odd degree; as X, P'= §,
we can also assume that, if 5'[: §; — 8, has degree n, then it is in fact an n-covering.

These remarks show that it is enough to prove the theorem in the three follow-
ing particular cases:

a) TP = x;
b) ZP' =8, p~(8) = N'= 8, and §'[: 8, 8 is a 2Zm-covering;
0) ZP'= 8, p'~1(8) = N'= 8, U 8, p'|: 8, —~ 8 is a 2m -+ 1-covering and p'|:
8,— 8 is a 2n 4 1-covering.
Case a): let N'= p'~Y(a) = 8, U ...U 8, (k>2, as P’ is good).

Consider the manifold M,_, described in 2.1, and the family {y,} of circles em-
bedded in M, , in general position; there is a natural map ¢: M;_,— N’ such that
o @) = Uy: and ¢ 0.0 v~ N'= 8;U ... U 8, is a homeomorphism, according to

the mapping cylinder structure of M, , and the cone structure of N'.
Put then P'= P \N' U M,_, and {": P"— P’ defined by extending ¢ with the

N

identity on P'\N'. It is clear that P" is a manifold and f” satisfies conditions 5), 6)
and 8); condition 7) is empty.

Case b): let M be a Moebius band and y c M a circle such that M is the mapping
cylinder of a 2-covering sz: 0M — y.

Put P'= P \N'U M, identifying N'= 8, with dM.
There exists a map g: y — 8 (which is an m-covering) such that gom: oM — 8
is the same map as p'|: 8;— 8, up to the given identification. As

M= 0Mx[0,1])] (®, 1)~ (z',1) iff #n(z) == (o)
and
N'= 8, x[0,1]] (,1)~(¥,1) iff p'(y) = p'(¥"),

we can define f': M — N’ by extending the given identification between ¢.M and 8,
according to the mapping eylinder structures.

Tt is clear that P’ is a manifold and f” satisfies conditions 5), 6) and 8) (f'~*(XP’) =
= ). As for property 7), let F,e F; if F, is a circle, there is nothing to check,
because F,N N'= @, so that f"{(F)yNny=F,Nny=40. If F, is a wedge of m
circles, with center z € 8, f/"~(#) = {#1, ..., Zn} €y and, if U = F;N N'= cone with
vertex « on 2m points, {"~1(U) consists of m arcs embedded in M, meeting y trans-
versally in the points @y, ..., #,,. Thus {f""}(F,)} U y is a family of circles in general
position.
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Case ¢): it m = n, put V= §x[0,1],y = 8x{i} and do the same construc-
tion as in the previous case.

Suppose now m << #. Let V be the union of a manifold M, (as described in 2.1)
and a Moebius band M, where o.M is identified with

Sy 0M, = 8 U 8, U 8; .
Put P'= P \N'U V, where the union is made by an identification of N'=
= 8, U 8, and 0V = 8§V 8;.
In order to define f’, consider the circles y,, y,, ¥, y. embedded in M, (as in the

remark 2.2) and let «y, o, o; be the ares of y, such that, if 7z: M; -y, Uy Uy U s
is the refraction,

m(8y) = V%7105 (8, =y a0ty A8 = ppoayien
Change now y, into a new circle y, as follows: let §cy, be an arc, with end-
points »; and #,, such that N y,= 8; 6 = () N oM is an arc with endpoints ¥,
and y,.
Let o c M be a path with endponts y, and y, such that M\ e is connected. Define
o=y B U (mma} 0 Vi) U

®1,%2 Y1, V2

where V, is the connected component of M\ {y.} such that oM c V, (see fig. 3).

S, ~oM

S,
oM
AN Moo 44
! ® ayp). K ?
AV
Y1 Y2
oM
8,

Figure 3
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Then V is a regular neighbourhood of y, U y,U y, Uy, and, if ¢: V —»,U »,U
U 95U ¥, is the retraction such that V is the mapping cylinder of ¢ = g|,,,, then

Q(Si) = yy0yy 0y - and Q(S;) = Va%?é“s%“s_lyé‘xfl .

Define now ¢: y, Uy, Uy Uy, — S such that

®l,,0y, 18 the constant map on a point z,€ 8,
?l,, is a (2m - 1)-covering ,
@l I8 a (»n— m)-covering.

It follows that the map gog: 8V -> 8§ is specially homotopic to a (2m - 1)-
covering when restricted to 8;, while it is specially homotopie to a (2n -+ 1)-covering
when restricted to S;. Therefore, one can assume that gogq is the same map as
P': 8,V 8;— 8, up to the given identification between S,U 8, and §;U S;, and
we can define f': P’ P’ as in the previous case.

As before, properties 5), 6) and 8) are obvious from the constructions; property 7)
is proved similarly to the previous case: the only difference is that we must take
care to choose the point w,e § such that f~1(x)) =9, Uy, so that it is not the
center of a wedge of circles F;e ¥.

It is clear how the general case follows from these three particular cases, so that
theorem 2.3 is now completely proved.

2.7 REMARKS AND EXAMPLES.

1) It is easy to check that, if P is a good stratified space which has an (4 — B)
special resolution of singularities, in the sense of theorem 2.3, then P satisfies condi-
tions (4) and (B).

2) (A) is equivalent to the following condition:

(K): the (smooth unoriented) bordism class [p: N ~ XP] is zero which is a
necegsary and sufficient condition to the existence of a blow-up f: P — P of IP
in P (in the sense of Karo [5]).

3) (K) does not imply the existence of an (4 — B) special resolution: for ex-
ample, let (81 81),, i =1, 2,3, be three copies of S*V8* and z, be the center of
the wedge (8*v8Y),. Put

K;= 8(8'V 8%, = (8*V8),x[0,1)/(x, 0) ~ (x;,0) for each z

(@, 1)~ (w;,1) for each @
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and.

P = K,U K,U K(#, 0) ~ (21, 1) ~ (2,, 0)
(%, 1) ~ (5, 0) ~ (25, 1)
with the natural good stratification.
P satisfies (K) and does not satisfy (B).

4) The stratified space P of the last example does not even satisfy the fol-
lowing condition:

(K'): the (smooth unoriented) bordism class [Po;: Ny — Zy P] is zero which
is a necessary and sufficient condition to the existence of a blow-up of 2, P in XP.
In fact, (K’) is strictly weaker than (B) and not even (K) and (K') together imply
the existence of an (4 — B) special resolution of singularities, as we can see from the
following example.

5) Let H,= S(8'V8') and K,= S(8*V8'VA8Y) and (x,,j) be defined as in
example 3) (i =1,2;4j=0,1).

Put

P = K,V K;/(#,, 0) ~ (22, 0); (01, 1) ~ (@2, 1)

with the natural good stratification. P satisfies (K) and (K') and does not satisfy (B).
P does not even satisfy condition ().

6) Let P = S8(8*Vv 81V 8%), which is a stratified space satisfying () and not (B)
(see remark 1.13b)). P is the example of a space which can’t be homeomorphic
to a real algebraic affine variety whose algebraic and topological singularities are
the same.

7) It is clear enough how the notion of an (A — B) special resolution can be
generalized to higher dimensional stratified spaces.

We have seen that conditions (A) and (B) are strictly stronger than condition
(E); we want now to give a construction, similar to the (4 — B) special resolution,
for spaces satisfying only (). More precisely, we want to prove the following theo-
rem, which is the analogue of 2.3: '

2.8 THEOREM. — Let P be a good stratified space satisfying (¥). Then there
exists an (F) special resolution of the singularities of P, that is a chain P75 P/ 1L P
such that:

1) P’ is a good stratified space, satisfying (E) and such that X, P’ = {z,, ..., &n}
and, for each ¢ =1, ...,n, Ik (2, P') or is a wedge of an odd number of circles, or
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is a graph with two vertices y, and 2;, 4n; edges with endpoints y, and #; and a wedge
of 2m, circles with center z;, (m;> 0);

2) f'YZ,P) = F = U F,, where § satisfies conditions a), b) and d) of theo-
rem 2.3, 2) and the follov;ing
¢} if F, is a wedge of m, circles with center #,, then or x,€ 2, P, or #,€ X, P’
and 1k (2,, P') = 8° * (2m, points); x,= F,N 2P’
3) as in 2.3;
4) as in 2.3;

5) we can define a (not good) stratification of P’ by adding some 1-dimen-
sional strata so that, it SP'= XP'U {new strata}, then 1 EP) = F'= UF, is a
family of circles in general position embedded in P’; k

6) as in 2.3, putting SP' instead of 2P,
7) as in 2.3;

8) let f = f'of’; then f|: P\(F' U §F") - P 2P is an isomorphism; for each
Fje 5", fly; is the constant map; for each Fje 5, f'|p or is the constant map. or
it is an n-covering of a circle of SP', or it is a double eovering, branched in two
points, of an arc of TP’

As for 2.3, we shall prove this theorem in three steps.

2.9 Step 1: construction of P'. — Let us always suppose, for the sake of simplicity,
2o P = {w,}.

We can first make the same construction as in 2.4, until we get the stratified
space P = P\N,U [M™VU ...U M@]/~ with boundary I ' is the disjoint union
= 0,V ...u C, , where O, is the wedge of n; circles. It is no longer true that
the n,’s are equal in pairs; however, as P satisfies (&) (so that x(f’) = 4(I") =
= y(Ik (,, P)) is even), there are exactly an even number of indices ¢ such that n;
is even. Make then the following constructions:

1) if there exist n; and n, such that », = n, = %, we attach to P the « handle »
0, x [0, 1], identifying C,x{0} with C,, and O, x{1} with 0, (as in 2.4). Do this
until there are no pairs of equal n,'s left;

2) if m, is odd, consider the space B, = D?/~, where ~ is the equivalence
relation which identifies », distinet points of 2D*% to a single point (which we call
the vertex of B,). Then attach B, to P, identifying Bni with O, ;

3) if n, is even, then there exists another wedge C, left, with »; even; let
W= 2k, n; = 2k and %k > h.
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Consider the space
Tni,nj: (Ozn x[0, 1]) v (Gz(lc_h) x[0, %]) U By~

where ~ is the equivalence relation which identifies By, _» with Oy » X {1} and
{w} x [0, 1] with {y} x [0, 1] (where x is the center of Uy, and y is the center of Oy;_p).
We can then attach Tni,nj to 13, identifying its boundary with Ongu (Jnj.

After all these constructions, we shall get a stratified space P’ which satisfies
condition 1) of 2.8; to see this, note that X, P’ consists exactly of the vertices z,
of the spaces B,: in the case 2), 1k (2, P’) is the wedge of an odd number of
circles, while, in the case 3), it is a graph of the required kind.

2.10 Step 2: construction of f'.

P:Kﬁou( U MU))U(!;EJ e x[0, 1])u(£JBn{)u(UTni,nj)/~=f\—NoU o

i=1,...,8

we have to find a family § = {F,} in ¢ which satisfies properties a), ), ¢'), d) and
such that O\ U F, is a collar on IV,.

We first consider the families {(°} in M ¥ and the family 5’ obtained from these
by the given identifications; proceed then as in 2.5 whenever we add a handle
8x[0,1] with 8c I and 8x[0,1]c C;x[0,1] or 8X[0,1]C Ty .

We thus get a family F*= {F} satisfying conditions a), b), ¢), d) and such
that @'\ U F" is a collar of 2Q’, where

Q= Q\( U Bm)\( U Bm,m) and B, .= (Gm—m x [0, %]) U By nl~C Ty

As we have done in 2.5 with respect to the handles, we shall give now a stand-
ard way to change the family §*, whenever we add a space B, (or B, ., which
will be the same). ;

Let B,= Dfe;~ ...~z, with 2, ...,2,€ 0D (n is odd if B,= B, and it is even
if B, .= B,U B,x[0, 1]). )

Let 8y, ..., S, be the circles of /" belonging to the wedge which is identified with
C,=B, and y,, ..., y, be the circles associated to S, ..., S, as in 2.5. Note that
v.€ F*, as these circles have never been changed by the previous modifications.

Let @; be the retraction z;: ¥;— Uy, where §;c oM™ and V, is the con-

h
nected component of M\ U y{? containing ;.
h

Choose, as in 2.5, an are f,C y, (for each j = 1, ..., n) intersecting 2P and such
that z;7'(8;) is homeomorphic to a disk.

Let o;=#"'(8;) c §; and 7,= 8 \g;.

11 ~ Adnnali di Matematica
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We make now the following modifications of the family F*:
A) take off the circles yq, ..., yn;

B) add s circles #,,...,7,, s =[n/2]—1; for each k<s, §, is the quotient
of an arc in D with endpoints 2, and 2,,, and 7,N §, = {vertex of B,} if j+ k;

C) add s + 1 circles 9,,...,9,.; obtained by «connecting» two or three of

W
S ~—

[

Figure 4

Figure 5
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the cireles p.’s. More precisely, ; is obtained by « connecting » y, and y,, 9, by « con-
necting » ¥, and y, and finally 9., is obtained by « connecting » y,, y._y (and y,_,,
if » is odd) (see fig. 4). The connecting operation is made as in 2.5: for example,
in order to construct $,, we choose two ares in the connected component of D\(U 7))
containing 8, U 8, 8o as to divide it in (four) disks such that, if the bonndary of one
of these disks contains 7,, then its intersection with z, is empty (see fig. 5). We can
make a similar construction in the case of three circles, as we can see in fig. 6.

T E

o1

Figare 8

Note that, if # is the vertex-of B,, then z€ §,, for each k=1, ..., s -+ 1, as one
of the ares chosen in D necessarily contains 2, for some 4. After all the operations
just described, we shall get a new family F *: with the same kind of arguments as
in 2.5, one can easily prove that the family &* satisfies the required conditions with
respect to the space Q'U B,.



160 R. BENEDETTI - M. DEDO: The topology of two-dimensional, etc.

Moreover, we didn’t change the y.’s associated to the ecircles of I” different from
84, ---s Sn; this ensures that we can repeat the construction until there are no
more B, or Bni,nj left, We thus get the required family & = {F,} in Q and, as a
consequence, the map f': P'— P satisfying properties 2) and 3) of 2.8.

Note finally that, if # is the vertex of B,, the number of circles F, such that
ze F. is exactly s + (s -+ 1), that is » — 1 if » is even and n — 2 if » is odd.

2.11 Step 3: consiruciion of P' and f’. — Consider now the stratified space P’;
as P’ satisfies property 1) of 2.8, its singularities may be of the following three kinds:

a) circles or isolated points in XP’, which do not intersect X, P’;

b) arcs whose endpoints are two points @y, ,€ X, P’, such that Ik (z,, P') =
= 1k (#,, P') = wedge of an odd number of circles;

¢} ecireles intersecting X, P’ in points whose links are graphs with two vertices
of the kind described in 1).

The case a) is dealt with exactly as in 2.6.

b) assume XP'= a, where « is an arc with endpoints x, and @, and 1k (#,, P') =
= Ik (2, P’) = wedge of (2n 4 1) circles.

Let (N',p') be a regular neighbourhood of XP' in P'; N, (i =1,2) a regular
neighbourhood of #, in P'; y,e N'N Ny = {(4n - 2) points} and «' be the unique
are of N'\(N'N (N,U N;}) containing ,.

Let y, be the other endpoint of o, y,e N'N N, and & be the arc with end-
points 2, and z, obtained by extending «’ according to the cone structures of N 4
and N,.

Put SP' = {e L @} and let (N, #) be a regular neighbourhood of 5P in P
(remark: we shall define ZP as f’(f‘P’)). N is the disjoint union of a finite number
of circles 8y, ..., S;.

Notation: let us fix an orientation of § and SP'; by 8§ =o' ...af' we shall
mean that we can divide § into % arcs such that the map 7|: 8 —>§P’, when
restricted to the j-th are, is an homeomorphism with the arc «; C fP’, consgerving
(resp. inverting) the orientation if the exponent is 1 (resp. — 1).

By construction we have then, np to a permutation of the circles §;,

S]_ = O, Sz = (x&(d“_l)hz

8= (¥, for each ¢ =3,..., %k

and hy+ hs-+ ... + By = ((4n -+ 2) — 2)/2 = 2n.
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For each i =1, ..., k, consider a manifold M = M, where
j=0, i ¢=1 or¢>2 and k; is even;
j=1, i ¢i=2 and h,is even or if ¢>2 and h,; is odd;
j=2, i ¢=2 and h,is odd.

Let oM® = 8;U 8PV ..U 8P, and identify 8; with §;; let 7 = {3} be the
family of mrcles in general position in M constructed as in 2.2 with respect to S;;
V=UM® and §: V — & be the retraction such that ¥V is the mapping cylinder

i

of §=qls-
It is clear then that, following 2.6, we can define a map §: § — P’ such that:

a) qaoqls'i is specially homotopic to g, up to the given identification;

. e if h; is even, ¢>2
b) Foqlsyp = b1 : .
(™YY=t if h; is odd, i>2;

¢) Foilsty = o=t if hy is o0dd, i>2;

d) (poq{s(l) = Gof|s» = ad, where r = 2 if h, is even and r = 3 if h is odd.
Note that, as ky-t ... 4 k; is even, the number of circles 8 such that (poq[su) =
= qo! I8 even.

We shall outline now the modifications to make on ¥, &, § to get a manifold V, a
family &' of circles in general position in V and a map ¢: F' — SP' satisfying the
required properties:

) if (poglsm = (ax~*)?, add a Moebius band M to V, identifying its boundary
with S”” ; change then the circle 7€ F «associated » to §; " to get a new circle y a8
in 2.6, case b), and define @|, = (xa')*;

2) i <P°le‘”~ qpoq[su = axt, add a cylinder §x[0,1] to V identifying its
boundary with S“ U 89; take off then the two circles «associated» to 8" and
89, add a new circle y as in 2.5 and define ¢, = aa;

3) do the same as in 2) for 8{” and 8, putting ¢|, = «&.

We thus get a manifold V with 8V = 8, U ...U 8;, a family &' of circles in
general position and a map g: F — 2P’ such that, if ¢: V — F' is the usual re-
traction, then gogjs: is specially homotopic to jﬁ[sl, up to the given identification
(see fig. 7). "

Put P'= P’ \N U V and define f’: P’ P' according to the mapping cylinder

structures, as in 2.6. It is clear that P’ and f” satisfy properties 4), 5), 6) and 8)
of 2.8,
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(e (ao=1) 42 (ocat)2m

(0(06—1) 2n+1

Figure 7

Ag for property 7), let us consider a wedge of circles F e F with center in
p,€ 2P’y -1, is the disjoint union of a finite number of points belonging to the
cireles yi, ..., Vi1, y¢ and of a finite number of the ecircles y, (j5 1, ..., k— 1).

Let U= F A N; U consists of an even number of points belonging to §;, ..., S;:
It is elear then that (eventually changing V or ¢, and with the same kind of argu-
ments as those up to now used), we can achieve that f~*(F) U {y,} is a family of
circles in general position.

¢) assume now XP'=§, and SN Z,P' = {w,, ..., T }.

Let «; (1 < m) be the arc of § with endpoints z, and »,,, and «,, the arc with end-
points @, and x; let n; be such that y,e ;= Ik (y,, P') = §°# {4n; points} (note
that »,s% n,,).

Let (N',p’) be a regular neighbourhood of XP' in P’ and N'= 8,U...U §,:

We saw that 1k (x;,, P') is a graph with two vertices ¥, , and y,, 4n, ; edges
with endpoints y,_, and ¥, and a wedge of 2(n,— n,_;) circles with center y,. This
ensures that the map ¢': 8, U ... U 8, — § is described as follows (using the same
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notation as before):

R (o A L O (At

(1 =1,..., k), where «, denotes a suitable arc of § (not necessarily «; = «,) and,
for each j =1, ..., 8, hy;+ by + ... + hy; is an even number (because it is equal
to the sum, or the difference, of some of the 4n/s).

For each ¢ =1, ..., k, consider a manifold M”, where

j=w# {rihy= 0} - # {r: by is 0dd} — 1

and proceed then exactly as in the previous case.

Note only that, if n;= 0 (as in this case we can’t suppose, as in the (4 — B)
case, that XP'= X, P') V is the disjoint union of a circle § and a two-dimensional
manifold V' and the map f’|; is a homeomorphism between S and 8 (otherwise 7"
wouldn’t be an epimorphism).

2.12 REMARKS AND EXAMPLES.

a) it is clear that in special cases one can give a simpler construction than
the general one here described:

b) we finish this paragraph with some figures explaining all the steps of the
constructions of 2.3 and 2.8:

44>

Figure 8



164 R. BenepETTI - M. Dun0: The topology of two-dimensional, ete.

Pl!

Figure 9

Figure 10
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3. — Polynomial equations.

We first recall some facts (see [2] and [3] for precise deﬁm'tions). We say that V
is an algebraic variety iff

V= {xeR": P(x) = Pyx) = ... = Py(x) = 0, P,e Rw,, ..., w,], 1 =1, ..., k}

I(V)c Rz, ..., x,] is the ideal of polynomials vanigshing on V. ,

Let Wc R™ be an other algebraic variety; a map ¢: V —> W is regular iff it is
locally given (in the Zariski topology) by non singular rational functions. It is
known that for such a ¢ there exists a regular extension @: R» - Rm.

V is regular iff for every x e V. there exist @,,..., @, I{V) such that ¢ = n —
— dim V' and 4@, ..., dQ, are linearly indipendent.

Let M be a smooth compact submanifold of R", d the usual metric on R*, G, ,
the Grassmann manifold of r-linear spaces in R” and d’ a metric on @, , which induces
the usual topology. Then, for every & > 0, a submanifold M’ of R” is an s-approx-
imsation of M in R~ iff there exists a diffeomorphism h: M — M’ such that:

(i) (e, h(x)) < &
(i) @ (TM,, TMy) <e,

where TM, and TM,'M) are the linear tangent varieties to M in # and to M’ in
h(z) respectively. If ¢ is small enough, there exists a (small) isotopy H,: R* -+ R~
such that H,==14d, H,|;,= h and H, is the identity outside a fixed compact neigh-
bourhood K of M, K> M' (see[2]). The set of differentiable maps between
manifolds is endowed with the Whitney topology.

Let XcV and Y be topological spaces and ¢: X — ¥ be a map. We denote
by Q(V, ¢, Y) the quotient space V]_I Y/~, where x~y iff: (i) v = y; (i) z,ye X
and o(z) = @(y); (i) ¥y = ¢(=). ’

We can now state the main results of this paper:

3.1 TeEOREM. — Let P be a good compact two-dimensional stratified space
satisfying (4) and (B). Then there exists a homeomorphism g: P — P, where P
is real algebraic and the real algebraic singularities of P are equal to g(ZP).

3.2 THEOREM. — Let P be as before, satisfying (Z) instead of (4) and (B). Then
there exists a homeomorphism g: P — P, where P is real algebraic and the algebraic
singularities of P are equal to g(Z'P) (see 2.8, 5)).

PROOFS OF 3.1 AND 3.2. — We can suppose there are no isolated points in P (ac-
tually, the theorems hold for P if and only if they hold for P\ {isolated points}).
Fix an (A — B) (or (E)) special resolution of the singularities of P: priopliop;



166 R. BENEDETTI - M. DEDO: The topology of two-dimensional, ete.

we shall always write fP, fP’, meaning that in the first case SP=2P and
Sp=2zxp.

Let 5 = {F,} = f'~4(2,P); then P = f(P') is naturally homeomorphic to Q(P,
flg, ZoP) and P to Q(EP, f|gnzp, Z,P).

P” consists of the disjoint union of one- and two-dimensional manifolds N =
= {Ny, ..., N,} and M = {M,, ..., M,} respectively.

&Py = (- EP)Nn M)UN ={8,)UN,
where § = {8,} is a finite family of circles in general position in M.

F=UF) = (I4F) N M) U (1 F) N N) = {8} U {13},

where § = {8} is a finite family of circles in M such that § U S is in general posi-
tion and @ = {g;} consists of a finite number of points.
There exists a natural relative homeomorphism between

(P, F) = ((P"), (S @)

and
(@', f"lsows ZP), QB U @, 'lsomnony F N EPY)).

We can assume that P’, P’ and P are realized in three copies of an R4, for a
big A. 5P’ consists of a finite number of smooth circles of R*: $P'= (= {Cay .y Oi}s
0N & is a finite number of points.

Let us approximate every C; with a regular algebraic curve C; such that, if
hi: O;— C; is the related diffeomorphism, then: &, , = id; there exist isotopies H!
of R* such that H{= id, Hi|, = h,;, and Hi|, 4= id, for each ?; every H; has a
compact support K, which is a nelghbourhood of ¢; and K,NK,=0if i
(see [3]). Then the H”s define a global isotopy H of R*.

We can construct a special resolution P"-2> P’ %L P of P such that P'= H,(P');
SP= 0= {0}

FEP) N O =14 5P)N0; ¢'=Hol'; ¢=foH.

Letg’—{[?'}—_—{ W)}

Clearly ( ,f): (g (PN, ”(S UQ)) is homeomorphic to (P, F) and to
(Q(~ " 9" lsuws ZP), @SV Q, ¢'lsumnisuay F N EP)); P is homeomorphic to
QP g'|3, Z,P).

3.3 REMARK. — The unoriented smooth bordism of (', 54(C') is generated by
algebraic elements (5,(C’) = 0 if j = 0, 1; 5,(C") is generated by the classes [point —
— C']; mi(C") is generated by the classes [C < 0']).
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If A is big enough, the following facts hold:

1) There exist approximations h,: M — M', hy,: N - N' of M and N in R4
such that:

(a) M'" and N’ are regular algebraic varieties;

(b) for each p, b, == hyls : 8,—Z, is an approximation of 8, in R*, where Z,

is regular algebraic and hylg 5= d; b,lg a5, 0np = 0. Let Z = {Z,}.

(¢) For each g, k= hyls : §,— Z, is an approximation of S, in R4, where

Z,is regular algebraic and b fs .= id, k5 5, g = id. Let Z = {Z}.

(d) For each 4, k;, = hyly,: N;— N, ; is an approximation of N, in R4, where
N, is regular algebraic and ki|y, .= id.

2) There exists a regular map @: ZU N'— (' such that:

(@) foreach p, if ¢, = (DIZP, then: (i) ¢, ok, approaches g fsp; (ii) ?’m‘syné: 7'l;
Polsniz, weny = g"l; (ili) g,oh, is specially hometopic to ¢"|s ; (iv) if ¢"{5
is the constant map, then ¢,= g'[g is the constant map;

(b) for each i, if g;= ®ly:, then: (i) gok, approaches’ly; (i) gilyne= 9’
(iii) g;ok; is specially homotopic to ¢'|y.. :

By means of remark 3.3, all these claims follow almost immediately from theo-
rem 3 and proposition 1 (with its related lemma) of [3] (the same results and the
same proofs are again in paragraph e) of [10]).

The only one which is not immediate to prove is the following: if ¢"|¢ : §,— C;
is a 2-covering of an arc A c C; with y, and ¥, as endpoints, which is branched on ,
and g, in @,, ;€ 8;, then ¢,: Z, — O; has the same property (as @, and o€ Sﬁ,'r‘m
N (Su 8,) N {8,, ¢ p}, they also belong to Z,; therefore, the above statement is
equivalent to the property 2 (iii) for g,oh,).

We give here a sketch of the proof (using standard arguments: see [2], [3]
and [11]).

Let U;, V, be neighbourhoods of #; and y; in R* (i = 0, 1) such that U, N U, =
= V,N V;= @ and there exist diffeomorphisms b,: U, B,, d;: V,— D;, where B;
and D, are balls in R* with the origin as center and:

b8, N U) ={B:N{w,= ... = 2, = 0}};

40N TVY)={D:Nn{m=..=w,=0}}; biz)=0=4dsy,).

We can assume that:
(1) diog’ob sy = (@, 0y ooy 0);

2) ¢'| s, 18 the restriction to 8, of a differentiable map G = (G4, ..., G,) defined
on a neighbourhood W of 8, in R* such that dG,(z,) = 0,¢= 0,1, j =1, ..., 4.
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By (1), every map near to ¢ ]Sp has only two critical points lying in two fixed
disjoint neighbourhoods W, of #; (¢ = 0, 1); then it is a 2-covering of another arc A’
of (], branched at the endpoints.

Let P = (Py, ..., Ps) be polynomials of R[w,,...,x,] such that P,(z,) = G,(x,)
and dP,(x;) = 0, for each 4 and j. Then, by (2), for each j, if H(z) = G,(») — P;(»),
then H(z,) = 0 and dH,(z,) = 0.

Fix a compact neighbourhood K of §,, K c W; there exists a finite open covering
{U,} of K and polynomials @y, ..., ¢, such that @,(v;) = 0, d@,(x;) = 0 for each r

[

H,@») = Y Fi»)Q,(w), v € U,, where every F; is smooth on U,.
r=1

Using a partition of unity (as in [11]) and the usual Weierstrass approximation
theorem, we can approximate H = (Hy, ..., H,) with P = (P,, ..., P,) where every
P, is a polynomial and P,(»,) = 0, dP(z,) = 0, for each ¢ and j.

Then P = (P, -+ Py, ..., P, + P,) approaches @ and P;(z,) = &,(z,), d P,(w,) = 0.
Now (see [3], lemma 2) Z, (and ¢,) is obtained by generic projection on R* of a

regular algebraic copy Z, of §, in

{(x,y) e KXR*: y = n(P(w)) — P(x)},

where  is the projection of a tubular neighbourhood of C; in R*; (2, 0)€ Z,,
i = 0,1; @, is given by the restriction to I, of P(z) -+ y, which is defined on K x R*.,

By means of our choice of P, it is clear that the only critical points of @0l
are x, and z,, which is what we had to prove.

Let us return now to M’', satisfying properties 1) and 2); it is not hard to prove
that there exists a natural relative homeomorphism ¢ between (P', ) and (P, 7) =
= (QM'V N, D, P, Q(Zug, Plrorynzoay= 9 lsomnGuays & N SP')) and there
exists a homeomorphism between ¢'(P') = P and P = Q(P, g'og~|5, Z,P); therefore,
the theorems 3.1 and 3.2 are proved by using twice the following proposition.

3.4 PROPOSITION. ~ Let Z, Xc VcR* Tc Y cR™ be algebraic varieties and
p: X — ¥ a regular map such that ¢(Z N X)c Z. Suppose that V is compact.
Then. there exist an algebraic variety W c R*xR™ and a regular map @: V — W
such that:

1) W=@(V)U{0xY}=HTV)uU ¥;

2) (V) NY = §(X);

3) @|: \X — ®(V)\ T is an algebraic isomorphism;

4) D[z = (0, 9);

5) W= ®(Z)U {0xT} = ®(Z)U T is an algebraic subvariety of W.

PrROOF. — Let s: 8™\ p — R» be the stereographic projection from the north pole
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and let ¢ be its inverse. Put ¥V =i(V), Z =i(Z), X =i(X) and ¢ = gos|;. Let
@: V — R™ be a regular map which extends ¢ and put 6 = Bosl..
Choose a set of generators ¥, ..., v, of I(X) and let

YI: (1/’1’ erey TPT)OSI;: ]7 - R".
I'.={(#,9,2) e 8"XR"XR": v € V,y = ¥(@), 2= 6}

is isomorphic to ¥ and contains the subvarieties I', and I'; which are isomorphic
to Z and X respectively. Clearly, it is enough to prove the proposition for r., I,
I, mw|r, where @: §»x R-x R™— R~ is the natural projection.

Let Y ={0xY}cR' xR T = {0xT}cY and R(y,2), 8(y,2) be polynomials
such that ¥ = {R = 0}, T = {§ = 0}. ;

Let F: R*1 xR xR — R*' x R* x R be defined by F(z, 4, 2) = (R(y, 2) @, y, 2).

Claim: W = F(I,)UY, W= F(I;) U T and @ = F|r; satisfy the required con-
ditions:

1) Flz=(0,0,¢): I'.2 %,= (2, 0, §(»)); therefore R(0, §(x)) =0 and F(z,) =
= (0, 0, (ﬁ(x))

2) I wye I', and F(a,) € ¥, then mye I'y: P(m,) = 0 implies w,e Iy.

3) From 2) it follows that I';\I5 = I';\{(«, 9, 2): R(y, ) = 0} and the inverse
of the isomorphism F: I')\I% — WY is (@,9',2) — (#'|Ry', ),y ).

It is now enough to prove that W is algebraie.
Since I';c §»xR*xXR™, we can suppose that I',= {P(»,y, ) = 0} where

Pz, y,2) = (!xlz_ l)t‘lf_lz Py, 1y, 2)

and each P, is an homogeneous polynomial of degree #,< 2¢ with respect to z.
Using the isomorphism of 3), it is easy to see that

W\Y={P:07R(yaz)7é0},

where

B(w,y, 2) = (lo]*— R(y, 2)*)t -+ X Bly, &) " P, 9, 2) .

K2

But, if P(z,y,2) =0 and R(y, 2) = 0, then z = 0 and therefore W = {13 = 0}.
We can do the same for W', using S(y, 2), thus proving the proposition.

3.0 REMARK. — It is known that a topological space V has an algebraic strue-
ture if and only if its one point compactification, 7= ¥ U {cc}, has one; more-
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over, for every structure on V, it is possible to get ¥ such that V and 7\{00} are
isomorphic. It follows that the previous proposition is true with the weaker hypo-
thesis that only X is compact (see [1], [3]).

Furthermore, it is easy to prove the following

3.6 COROLLARY. — A two-dimensional (non compact) stratified space P is home-
omorphic to an algebraic variety if and only if it is homeomorphic to P\ulk (z, P),
where P is a compact two-dimensional stratified space satisfying ().

Proor. - It follows from theorems 3.1 and 3.2 and remark 3.5.

3.7 FINAL REMARKS.

a) The remark 3.3, which is obvious in this case, has been essentially used
to apply the results of [3]. In order to generalize these results to higher dimensional
spaces, we may need a theorem saying, roughly speaking, that every compact closed
smooth manifold M in R¥ (where N is big enough) can be approximated by a regular
algebraic variety M’ such that #.(M’') has algebraic generators.

b) Every compact two-dimensional real analytic space is homeomorphic to
an algebraic variety.

¢) From the details of the proofs of the theorems 3.1 and 3.2 we can get infor-
mations about the irreducible algebraic components of P (besides informations about
the singularities of P); moreover, this points out that, « up to little modifications »,
every two-dimensional (compact) stratified space is homeomorphic to an algebraic
variety.

d) It seems interesting to study the relations between the topological prop-
erties (4 — B) and the (coberence of the) analytic structure of P.

¢) Let @ be an algebraic variety and Sing ) be the algebraic singularities
of @; if Sing® @ is defined inductively by Sing® @ = Sing Singt-V ¢, then the al-
gebraic structure P has the property that the index j such that Sing® P = 0 is
the least possible with respect to the topology of P.
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