
The Topology of Two-Dimensional Real Algebraic Varieties (*). 

t~. BENEDETTI - IV[. DED~) (Pisa)(**) 

S u n t o .  - ~ note che ogni spazio analitico reate ~ localmente omeomor]o al cone su un l~oliedro 
con caratteristica di Eulero.Poincard 19ari. Si  dimostra the questa vondizione ~ anche su]]i- 
ciente a]]inch~ un 19oliedro (compatto) di dimensione due 1 ) sia omeomor]o ad una varieth 
algebrica reale a]]ine 15. Segue inoltre dalta costruzione che ta 15 ottenuta ha, in un certo sense, 
r insieme di singolarith algebriche minimale, comloatibilmente con la topologia di P. 

I n t r o d u c t i o n .  

The topological resolution of singularities is often a suitable tool for studying 
different kin4 of questions (see [5] or [4] for an application to the representation 
of homology classes). In [1] it is given a complete topological characterization of 
real algebraic affine varieties with isolated singularities, by means of both algebraic 
approximations of differentiable objects and the construction of a good resolution 
of singularities (see also [3]). 

I t  seems natural that  one can generalize this technique. I t  is known that  every 
real analytic space is locally homeomorphic to the cone over a polyhedron with 
even Euler characteristic (see [7]; we shall call this property condition (E)). In 
this paper we show that  every two-dimensionM (compact) stratified space _P is 
homeomorphie to a real algebraic affine var ie ty /5  if and only i l ,P  satisfies (E). 

The main tool is again the construction of a good topological resolution el the 
singularities (similar, in some sense, to the algebraic one), whose existence is essenti- 
ally eqnivMent to condition (E). Using the one point compaetification, we give at 
the end a complete topological eharacterisatioa el two-dimensionM real algebraic 
varieties. 

Many proofs are elementary; moreover the details of the constructions allow us 
to get precise informations about the algebraic singularities of/5:  we thus obtain a 
subset { A -  B} of the se t  of spaces satisfying (E), such that  any P e { A -  B} is 
homeomorphic to a 15 whose algebraic and topological singularities are the same. 
This is not possible in general: however, we give a standard way to add a <( minimal ~) 
(with respect to the topology of P) set of singularities in 15 (see 2.11 b) for the precise 
statement). 

(*) Entrata in Redazione il 2 maggie 1980. 
(**) The authors are members of the G.N.S.A.G.A. 
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The definition of { A -  B} and the proofs in this case seem to be more imme- 
distely generalizable to higher dimensional spaces. We have just learned the% a 

similar result  is announced in a later  version of [1]. 

1 .  - Preliminaries. 

=We shall first make  some remarks.  :By the  word (~ smooth ~ we shall always 

mean differentiable of class C~; due to the low dimension of the  spaces considered, 

m a n y  constructions are clear: thus,  for example,  for ~he sake of simplicity, all 
topological constructions are meant  up to  smoothing~ or else we shall assume some 

notions like at taching a handle to  a manifold. 
We  shah work in the  c~tegory of two-dimensionM compact  s t rat i~ed sp~ces 

(see T ~ o ~  [8]~ [9] and M a ~ m ~  [6])~ eventuMly with (not empty  collared) boundary .  

We recall here some known facts. 
Le~ 2 be such a space~ where we ~ssume tha t  every 0-dimensional s t ra tum is 

exact ly  one point ;  if Xo and X~ are s t ra ta  of P,  X o <  X~ means tha t  XocX~;  P is 
the  boundary  of P.  We  c~n assume t h a t  P is realized ia ~n euclidean space R ~, 

where ~ is big enough. 
l~or each x e _P, there  exists a fundamenta l  system of neighbourhoods of the  

kind xQ~ ( that  is, the  cone on Q~ with ver tex  x), where Q~ is a 1-dimensionM stratified 

space isomorphic to Q, Vi; Q is called the link of x in P,  and we write Q = lk (x,/~). 

1.1 t~E~A~ .  - I f  x = X0 is a s t ra tum of P, then  lk (x, P) is isomorphic to the 

boundary  of a tubu]ar  neighbourhood of Xo in P (see THo~ [8], [9] and M&~n~n [6]). 
Le t  p be the  greatest  integer such tha t  lk (x, P)  is homeomorphic  to S~.T~ 

where S ~ is the unit  sphere in R ~+~ ( p ~  dim Xo, if x belongs to the s t ra tum Xo) 

and . is the  join operat ion defined by  

X * Y = X • Y • [0, 1]/@, y, O) ~ (x, y', 0); (x, y, 1) --~ @% y, 1 ) .  

1.2 D~.FI~I~IO~. - The intrinsic codimension of x in _P is 

c i  (x, 1 ~) = d i m  T = 2 - -  (p + t ) .  

1.3 DEFI~ITIO]N. - ]Jet i be the length of a maximal  chain of s t ra ta  x ~ X o <  
< X I < . . . < X ~ .  The eoheight of x in P is 

CA (x, P )  = i .  

1A: DEFINITION. -- A stratified space P is good if 

CI (x, P)  ~> CA (x, P) for each x e P .  
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1.5 DEFIXlTI0X. - XP = (x ~ P :  CI (x, P) + CA (x, P) r 0}; x ~ P is regular if 
c I  (x, P)  = CA (x, ~ )  = 0. 

1.6 I~E~A~K. - Let  P be a good stratified space; *his means tha t  its stratifica- 
t ion describes exactly the *opological regulari ty of a point in P and ii~ Z P .  In  par- 

ticular, 

Z P  = {x E P :  lk (x, P) is not homeomorphic to $1}. 

As in dimension two there are no smoothing problems, we shM1 only consider, wit- 
hout  loss of gelmrMity, good stratified spaces. 

1.7 DEFI~ITIOX. - Let  P be a good stratified space. We define 

2 o P  = {x e ~': c A  (x, P)  = 2} and  2 , ~ '  = {x e P :  C a  (x, t') = 1 } .  

1.8 I~E~AlCK. - a) Z P  r SoP (J X~P; if x c Z l o \ ( X o P  U S1P), then  or x is an 
isolated point, or it belongs to a 1-dimensional s t ra tum which is not  incident to 
any 2-dimensionM stra tum; 

b) S o P  consists of a finite number  el points (as P is compact and, if x ~ XoP, 
then  x is a s t ratum);  

e) Z ( Z P )  = Z o P  w {isolated poiats of P}, 

Using the tubular  neighbourhoods of P (see TItO~ [8], [9] and MATI~EI~ [6]), 
We caI~ fin4 a closed neighbourhood 27 of ZiP in P such t h a t :  

a) the boundary ~ of 27 is a closed manifold; 

b) there exists a (piecewise smooth) projection /9 :27-~ XP which is a de- 
formation retraction; 

c) (27,/9) is unique, up to isotopy; 

d) 27 is the mapping cylinder of 75----/91~: ~7 ~ ZP.  

In  the following we shall refer to (2V,/9) as the regular neighbourhood of XP in 19. 

1.9 DE~II~ITIO~. - Let  ], g be two loops in X, ] ( 0 ) =  ] ( 1 ) =  g ( 0 ) =  g(1). We 
say tha t  ] and g are specially homotopic if they  only differ ior constant intervals; 
tha t  is, if there exists a finite number of loops ] = ]1, ]3, . . . , /~  = g, such tha t  /~+1 
can be obtained from ]4 (or vice-versa) in the following way:  

]i+~(t) = 

t , ( (xo l to ) ' t )  , 

i , (Xo) , 

t , ( (O  - Xo)/(1 - t,)). ( t -  t~) + ~o) , 

0 <t<to  

to<t<t~ 

t ~ < t < l  

with 0 < t o < t l < l  and 0 < X o < l .  
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1.10 REthinK. - a) if ] and g are specially homotopic, then their mapping 
cylinders are homeomorphic; 

b) _~ consists of u finite number  of circles embedded in P \ X P  and the homeo- 
morphism type  of N depends only on the class of special homotopy of 15: _~ -~ ZP; 
it  is thus possible to change the  map 15, up to special homotopy,  without  changing 
the homeomorphism class of the stratified space P ;  

c) moreover, it is clear that ,  if we change ib in p', specially homotopic to 15 
and piecewise smooth (~ccording to the s trata  of P),  then  we don' t  change the iso- 
morphism class of P,  as a stratified space. 

Let  P be ~ good stratified space. We call (N~, p~) the regular neighbourhood 
of `FP in 2 .  The regular neighbourhood of ,F,(ZP) in XP is the union of a neigh- 
bourhood ~Vo~ of `FoP in `FP and a finite number of isolated points in P.  No~, with 
the natural  projection Po~: No1 ~ XoP, will be called the regular neighbourhood of 
,FoP in ZP.  Moreover, we can choose a tubular  neighbourhoo4 (No, Po) of 27oP 
in 2 such tha t :  

a) if XoP --= {x~,..., x.}, then No is isomorphic to the disjoint union L[ x~ lk(x~, P) ; 
i=l,...,n 

b) No1= N o n  Z2~; 

e) Po]~v~v.= Pol~ o~Vo; 

d) pT (iVo ) = n 

From now on, if no s ta tement  is made to the contrary, all stratified spaces will 
be without  boundary.  

1.11 :DEFINITION. - I~et P be a good stratified space. We say tha t  P satisfies 
condition (A) if Vx e `F1P such tha t  lk (x, P) ---- S~  M, M consists of an even num- 
ber of points. 

Let /V01~/~o(~ X_P = {rl, ..., r~} and lk (r~, P) ~- S~ Mi,  with M ~ :  lk(ri ,  No) ---- 
-= {hi points}, ni>O. 

1.12 DE~I~ImlO~. - Let  P be a good stratified space. We say tha t  P satisfies 
condition (B) if, Vn E N, V x  ~ XoP, # {i: n~ = n and p0x(r,) = x} is even. 

1.13 RE~AI~K. - a) I f  P satisfies (A) and (B), then it also satisfies Sullivan's 
condition (E) : z(lk (x, P)) is even, for each x ~ P. To see this, note tha t  if x ~ ZoP 
(otherwise the s ta tement  is obvious), then  lk (x, P) is a graph F with 2k vertices 
rx, ..., r~ (for (B)) and (n~+ ... + n2~)/2 edges; from (A) it follows tha t  each n, is 
even, and from (B) tha t  they  are equal in pairs; therefore Z(/~) is even; 

b) the contrary of a) is no longer true:  for example the suspension of the 
wedge of three circles _P = S1V~9~/S~ satisfies (E) an4 doesn't  s~tisfy (B). 
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2. - Topolog ica l  reso lut ion  o f  s ingularit ies .  

We shall give polynomial equations for a (compsct) stratified space satisfying (E) 
by  means of a topological resolution of singularities of s special Mud, whose ex- 
istence we shall prove in this paragraph. 

We shall first give the construction for a good stratified space P satisfying (A) 
and (B), and then  we generalize it  to a space P satisfying (E); we do this for many  
reasons: first, the (A -- B) case is much simpler, and it is easier then to understand 
the modifications which must  be given in the (E) case; the existence of the ( A -  B) 
special resolution oi singularities characterizes the spaces sutisfyiug conditions (A) 
and (B) and it seems easier to generalize this construction to higher dimensional 
spaces (see remark 2.7); the (A -- B) case is the most general one such tha t  we can 
make the construction without  changing the stratification of P :  in the (E) case it 
will be necessary to add some 1-dimensional strata to the topologicsl singularities 
of _P (thus / ' ,  ia particular, will no more be a good stratified space). 

We first give a construction which will be useful later: 

2.1 l ~ s ~ K .  - Let  M~ be a two-dimensional compact orientable manifold of 
genus n and with boundary ~M~ = S1u ... u 2~+~. We shall give a standard way 
to find a family {~) of circles embedded in M~, in general position and such tha t  
M~\{7~} is a collar of 8M~ in M~. We say also tha t  M~ is a normal neighbourhood 
of Urn .  

i 

The proof is by  induction on n; M0 is the cylinder SiX [0, 1] and MI:+1 can be 
obtained from M~ by attaching a ~( handle with a hole ~). 

On Me, the family is t he  only circle 7 = S i x  {�89 suppose now we have given 
the family {7~} on M~ and consider 

= xD ) U (([0, 1] x 
SOxS~ 

D is a 2-disk embedded in [0, 1] x S 1 and we can suppose there exists Xo ~ 21 such 
tha t  D c ]~, a[~ x (Sl\{xo}). 

S ~ x D 2 are two disks D1 and D~ embedded in M~, which we choose to be in dif- 
ferent connected components V1 and V2 of M~\{r~}, such tha t  F~ ~ F2 is a circle 7~o 
of the given family. 

Let  x ~ :  (Xo, 0) e 3D~ and x 2 :  (Xo, 1) e ~D2; there exists a path ~ in M~, with 
endpoints xl and x2, which intersects 7~~ transversally in one point a n d  doesn't 
intersect any other circle of the family {7~}. Pu t  

U ([o, 1]X{Xo}); 

Then the required family on MI~+1 is (yi, f l ,  f2, f3}: to see this, it is enough to 
note tha t  the connected component of Mk+l\((W ~io) W (W ~j)) containing 3D is homeo- 
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morphic to a cylinder, while the o~hers, when different f rom a connected component  
of M ~ \ ( u  y~), may  be obtained from one of these by  adding a hole and a cut t ing 

from the boundary  of the hole to the previous boundary  (and thus they  are still 
homeomorphic  to a cylinder). 

2.2 l~EMA~K. -- M , \ ( U  y~) has n ~ - 2  connected components  V1, ..., V~+2, where 

we denote by  V~ the one containing S~c 8Mn: In  the following~ we shall need tha t  
the closure of one of these components,  say V1, intersects e a c h  Vj~ j -~ 2, ..., n ~ 2, 
in a circle of the family (y~}. To achieve this, it is enough to choose one of the two 
disks D~ and D2 of the last remark  to be always in the  connected component  of 
MT~\(U y~) containing S~. Note  that ,  in this case, we can choose paths ~j, with 
cndpoints a point  of S~ and a point  of Sj (j ---- 2, ...~ n ~ 2), such tha t  eueh ~ in- 
tersects in exact ly  one point  and transversal ly just  one circle of the f~mily {y~}, 

and different paths  intersect different circles (see fig. 1). 

Figure 1 

We want  to prove  the following theorem, whose s ta tement  makes clear what  
we mean by  a special resolution of singularities. 

2.3 T~E0]~E~. - Le t  P be a good stratified space, satisfying (A) and (B); then  
there  exists an ( A -  B) special resolution of the singularities of P,  tha t  is a chain 
p,, 3L~ p ,  +' --> • such tha t :  

1) / "  is a good stratified space, satisfying (A) and (B) and such tha t  Z o P ' =  0; 
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2) / ' -~(ZoP)= 5 ~ -= U I'~, where 

a) for eaeh r, -G is or a circle or a wedge of circles (where we [agree tha t  a 
wedge of 0 circles is a single point); 

b) if /~  is a circle, then /7  is embedded in P ' \ Z P ' ;  

c) if ff~ is a wedge of m~ circles, then the center x~ of F~ is a point of Z P '  
such tha t  lk (G, P')  = S~ (2m~ points); x~ = ~v n Z P ' ;  

d) the /~ 's  intersect transversally in P ' \ Z_ P ' ;  

3) / '  is a continuous epimorphism such t h a t / ' [ p , \ ~ :  P ' \ 5 - + P \ Z o P  is an 
isomorphism a n d / '  [e'\~'-,Ur P ' \ / ' -~(No)  ~ P \ N o  is the identi ty;  

4) P" is a good stratified space such tha t  XoP"= X~P"=  f); tha t  is, P" is a 
manifold~ maybe  not  equidimensional; 

5) /'-~(X1P') = 5 ' =  U E'~ is a family of circles in general position embedded 
in P";  k 

6) /" is a cont inuous epimorphism such tha t  / " ] p , , \ ~ , : / ~ " \ ~ - ' - + P ' \ Z ~ P '  is an 
isomorphism and/"lp,,h~,,_~(N~): P"\/"-~(N~) -+I:"\Ni  is the identi ty;  

7) /"-~(3 v) = ~-"~- [ J / ~  is a family of circles embedded in P" and such tha t  
h 

5 ' U  5"  is a family ia general position; 

8) put t ing / -=/'o/", we have tha t  /1: P"\(Sv 'U 5") - + P \ Z P  is an isomor- 
phism; moreover, for each ~ ' e  5"~/IF~ is the constant map on a point of 

l XoP, while, for each ~v~e ~-',/"l~- or is the constant map on a point of 
X-P'~ or it is an n-covering of a circle of XP'.  

We shall prove this theorem in three steps: 

2.4 Step 1: construction o/ P'. - Let P be a good stratified space satisfying (A) 
and (B) and assume first XoP = (xo}. / '  = lk (xo, P) is a graph with an even num- 
ber of vertices rl, ..., r ~ = / ? o l  and such that ,  for each i -=  1, ..., 2k, a neighbour- 
hood U~ of r~ in F is a cone with vertex r~ on an even number of points P ,  
(j = 1, ..., 2n~; n~>0);  as P satisfies (B), we may  assume also nl-= n~, ..., n2~_~= n~: 

One can prove easily (by induction on k) t ha t  there exist s c i rcles/1,  ..., F~ i n / '  
such t h a t / "  is the quotient of the disjoint union( H F~)]_[ ( I_I r~) by  art equiv- 
alence relation such tha t :  t= , .... -~=1 ..... 2~- 

a) if r~ is isolated in F, then  [r~] -- {r~}; 

b) if r~ is not  isolated in / ' ,  then [ri]= (r~,P~,...,P~,,}, where P~eFj and 
j=/: h ==> I~j=/: I',~;. 

c) if p r [r~] for some i, then [p] ---- {p}. 
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Let  us choose once for all Ft ,  ..., F~; reorder then the points P~;~ ~U, so tha t  
/)i.~;_1 and P~.~; belong to the same circle _N~, for any j = 1, ..., 2n, (this construc- 
t ion is clearly empty  if n~ = 0). 

At tach now nl-]- ... -1- n~ edges to ]_I U, so tha t  the boundary  of each edge 
i = l , . . . , 2 k  

are two points of the kind P~,~_~ ~nd P~.~, and l e t /~  be the resulting graph. 
_P is the disjoint union of 2/~ wedges of circles, with centers in r~, such tha t  each 

circle meets the  boundary of U~ in two points belonging to the same _P~. 

Pu t  

/5 = -P\ o U u, x [o, 1] U -# 
U~ x { o }  ~7~ x {1} 

and consider one of the circles F~, say / '1 ;  let r~, ..., rt be the vertices of _P belonging 
to /'1; for each i = 1, ..., t, choose in the wedge of circles with center in (r~, 1) e]~ 
tha t  one containing the two points (P~;, 1) such tha t  P , e  _P~; we thus get t circles 
%, ..., &.  

Consider now the manifold M}~ 1 and identify ~M~ 1 with -Flu S~w ... u ~,; 
choose a family {~} of circles in general position embedded in M}I_) 1 as in 2.1 and 2.2, 

where T'l is ~ow the circle playing the role of $1 in 2.2. Choose then  t paths cq, ..., c~, 
as in 2.2, such tha t  the endpoints of ~ are (r~, 0) ~ F~ and (rl, 1) e N~; let N~ be a 
tabular  neighbourhood of ~ in MI~ ~ such tha t  

(u , •  n 1"1 and N , n  S~= (U,•  n S,. 

We can then  at tach MI~ ~ to /5 by identifying N~ with (U~ n F]) •  [0, 1] in the 
natura l  way (in particular, ~ is identified with {r~)• [0, 1]). 

Do this for each circle /"1,-.., P~ and call /5 the  resulting space; /5 is a good 
stratified space, with boundary _P: 

D = P U ( M  m u ... u M(')) = P \ N o  U ( M  (~) LA ... U M (')) . 
{~v,} _~o {&} 

We denote by C~ the wedge of n~ circles; l e t /~ '  be the quotient of the disjoint 
union P L[ ( ( c lw  ... u c~)•  1]) by  the identification of Ci• with the wedge 
of ~b2i_ 1 ~ ~2i  circles with center in (r=~_l, 1) e P and C~ • {1} with the wedge of n=~ 
circles with center in (r2~, 1 ) e / ~  for each i = 1, ..., k. 

p r  with the natura l  stratification, is a good stratified space and 

where the equivalence relation ~ is defined by 

(r2i~ 0) ,-- r~_l e 2~701 and (r~, 1) ~-- r~ie -/Vol. 
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Thus Z o P ' =  0 and condition (B) is e m p t y w i t h  respect to P ' ;  moreover, for 
each x e Z P ' \ ( X P n N P ' ) , l k ( x , P ' ) = S ~  points} for some i: therefore P '  

satisfies condition (A). 
Observe finally that ,  if ZoP  consists of more than one point, we can make the 

same construction on disjoint neighbourhoods of the  points belonging to XoP. 
Therefore we have constructed a space P' satisfying property 1) of 2.3. 

2.5 Step 2: construction el ]'. - We always assume, for the sake of simplicity, 

= {Xo}. 

.e'= mX_,Vo U Q; = O,,ILI Q;'-'; O,=  (M,, ,  u . . .  u M,'))I,-,; u.. .  u x to, 1], 
_~o 

where .-~ denotes the identifications previously described. 
No is a cone with vertex Xo on ~o;  thus, in order to define a map ]': P ' ~ P  

satisfying properties 2) and 3) of theorem 2.3, it is enough to find a family 5 = U / ~ ,  

satisfying properties a), b), c), d) of 2) and such that  ( ~ \  U ~ is a collar on ~o = ~(~. 

First  of all, for each i ---- 1, ..., s, we choose a family of circles {7(/)) embedded 
in the  manifold M (~), as ill the remark 2.2 with respect to F~. Note  that ,  for each 

. . . . . .  ~(0 in M ~) (the ones where we make the i ~--1, ,s ,  there are t~ paths ~ ) ,  , t, 

identifications to get Q1), such tha t  the endpoints of ~ )  are the  two points (rj, 0) c / '~  
and (rj, 1 ) s  S~); as we saw, we can choose the circles {y(~)} so tha t  one and only 

_ (4) transversally. one (which we call y~o) meets the  pa th  ~ 
Let  us fix then a point  x j E ~  ~), for example x j =  (r~., �89 and choose ?~) so t ha t  

x~ e y~). Note  also tha t  y~o is the only circle of the family {r~ ~)} which is contained in 
the closures of the  two connected components of M(~)\{V~ )} meeting S~ 0 and /~, 

respectively. 
Therefore, if we choose the families (7(h ~ as described, after the  identifications 

we shall get a family 5'---- ~ '  { ~} satisfying properties a), b), e), d), and such that  
Q~\5'  is a collar  on ~Vo w/~. 

Let  us now at tach to Q1 a (~ handle ~> C~ x [0, 1] ; if C~ is a wedge of n~ = 0 circles, 
tha t  is the single point  r2~, it is enough to add to the  family Y' the  point  (r~, �89 

Suppose then n2v > 0 and let S be a circle belonging to  the  wedge C~: we shall 
describe how to make some modifications to the  family 37' in order to get a family 
satisfying the same properties with respect to the  space Q~U (S • [0, 1]). 

S •  is identified with a circle S~)c  ~M (~) and S•  is identified with a 
circle S(h~)c 3M (~) (maybe p = q). 

As we saw, we can associate to S~ v) (resp. S(a q)) a well-defined circle ?I ~) (resp. rlq)); 
we shall use the simpler notation S'----~(v) S"--S(~ q), ? '  .(v) ~'----y(~q) Let  V' 
(resp. V ~)) be the  connected component  of M(~) \  'U~'  '~) which meets S' (resp. F~); 
V" and V (~) are defined similarly. 

There exists a projection p ' :  M(~)~+ U ~ )  (resp. p": M(q)-+ U ~I q)) such that  V' 
S 
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is the mapping cylinder of ib'~-p'{s, and y ' cp ' (V ' ) ;  moreover, as y 'c  V (') and 
f ! ! 

V(~)=# V', there exists ai~ are f i ' cy ' ,  with endpoilltS x 1 and x~, such tha t  x je f l ' ,  
p,-l(fl,) is homeomorphic to a disk and ih'-l(fl ') is an are a ' r  S' with endpoints y '  

1 f/ g 
and Y'2; in a similar way we choose fl", with endpoints x 1 and x2, an4 a", with end- 

g U points y~ ancl Y2. Choose now two ares 01 and ~2 in S •  such that :  i)" S •  
• 1 ] \ ( ~ w  ~2) is the disjoint union of two disks D~ and D~; ii) ~ D I =  a'W Q~U 

U (S"\a")  U ~ ;  iii) 3D~= a"U ~ )  ( S ' \ a ' )  ~J ~ ;  iv) (r~,, �89 ~ ~ .  
Consider the circle 

" ! # 

~' = (~)r\~,) U p'-- l(~, X2 } U (~1 I.J ~)2) U Pr~--I(x~, X2} U (~jI\~H) 
i t i r  n 

and the family of circles ~ ' -~  5 ' \ ( y ' ,  ~"} W (~} (see fig. 2). 

/ / / 
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! : ] 
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: I 

X x  
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- . . - ~  
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i\Y  l 

/ Q . . . ,  

i . _  ~'-(~""" 

atw 

s % 

Figure 2 
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This family satisfies the required properties with respect to the space ~1W (S x 
• 1]); observe that th~ only connected components of G U (Sx[O, 1 ] ) -  Y' 
which are not  connected components of Q1\5"  are the union of V (~) (resp. V (~)) and 

three disks: 

D1 (resp. D~) and 

such tha t  

,-1( , (resp. # ) p,,-l(~,,)), 

p"-~(p"(S'%a")) (resp. p'-lp'(S'\a')) 

,a' 

and similarly for r(~); thus the resulting connected component is homeomorphie 
to V (~) (resp. V(~)). The same holds if p ---- q, as the intersections of V(9)= V (q) with 
the first two disks are two disjoint arcs fl 'c y'  and fl"c 7"V= ~'. 

:Note finally t ha t  the  only properties of the f~mily 5 '  which we used ~re: 

1) 5 ~ satisfies the required conditions with respect to 01; 

2) to any circle SJOc 1~ = ~01\fVo we can associate a circle ~ ~  ~-' with the 
described properties. 

As these two properties hold for the new f~mily f '  with respect to the space 
Q1 u S • [0, 1], we can repeat the same construction until  there are no handles left. 
We shall get at the end the required family ~- = {F~}: note tha t  the property iv) of 
the arcs 0~ ensures tha t  ~- satisfies condition e). 

As before, we can remove the first assumption S0P = {x0} by working in disjoint 
neighbourhoods of the  points belonging to ZoP, so tha t  we have proved the ex- 
istence of ~ map F: 29'-+ P satisfying conditions 2) and 3) of the theorem 2.3. 

2.6 Step 3: construction o] 1 )" and ]". - Consider the stratified space P ' ,  satisfy- 
ing (A) and (B) and such tha t  S O P ' =  0; S P '  is the disjoint union of a finite 
number  of circles S~, . . . ,S,  and a finite number  of points xl, . . . , G .  Without  loss 
of generality we can assume X P ' =  X~P' (as SP' \ .S1P'  consists of connected com- 
ponents of P ') .  

Let  (2V',p') be the regular neighbourhood of S P '  in P ' ,  2V~ = p'-l(x~), 

N~ = p'-l(x,) (for each i = 1, ..., s ) ,  N , =  p'-~(&) 

and 

Nr = i5'-l(Sj) (for each j = 1, ..., r) . 

N' and /Vj are both disjoint unions of circles embedded in P'\S_P'; note tha t  
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we could obviously get a space P" as required by put t ing P " =  P ' \ N '  0 (disjoint 
k' 

union of a finite number  of disks); however, we shall give a different construction 
of /~", which makes clear the existence of the map ]": P " - ~  P ' .  

As P '  satisfies condition (A), if ~ . =  S j U  ... W Sj~, there are exactly an even 
number of indices k such tha t  the map lb'l: Sg-~  Sj has odd degree; as ZoP ' -~  0, 
we can also assume that ,  if lb']: S~- -+ St has degree n, then it is in fact an n-covering. 

These remarks show tha t  it  is enough to prove the theorem in the three follow- 
ing particular cases: 

a) 2 : P ' =  x; 

b) 2 : / ) ' =  S, 15'-x(S) = N ' :  $1 and lb'l: SI-->S is a 2m-covering; 

c) XP'-~ S~ ~5'-~(S) -~ N'-~ g~w S~, :#[: $1-+ S is a 2m ~- 1-covering and  ib']: 
S~ -+ S is a 2n -~ 1-covering. 

Case a): let ~ '~ - -15 ' -~(x) :  $1~)... ~)S~ (k>2,  as P '  is good). 

Consider the manifold M~_2 described in 2.1, and the family {ys} of circles em- 
bedded in Mk_~ in general position; there is a natural  map ~. Mk_2-~ N '  such tha t  
W-~(x) --~ [J ~s and ~ :  ~Mk_~-~ ~ ' :  S~ U ... O Sk is a homeomorphism, according to 

the mapping cylinder structure of Mk_s and the cone structure of X' .  

P a t  then P"-~ P ' \ N '  [_J M~_~ and ]": P"--~P' defined by extending ~ with the 

ident i ty on P ' \ N ' .  I t  is clear tha t  P~' is a manifold a n d / "  satisfies conditions 5), 6) 

and 8); condition 7) is empty.  

Case b): let M be a Moebius band and y c M a circle such tha t  M is the mapping 
cylinder of a 2-covering ~: 3 M - ~ .  

Pu t  P " ~ / ) ' \ 2 ~ '  W M, identifying ~'---- S~ with 3M. 
There exists a map ~: y -~ S (which is an m-covering) such tha t  ~oz:  ~M -+ S 

is the same map as 15']: S~-~ S, up to the given identification. As 

M = ~ / •  [o, 1] /  (x, l )  ~-, (x', 1) iff ~ (x) -= = (x') 

and 
2~'---- S~ • [0, 1]/ (y, 1) ~ (y', 1) iff p'(y) -~ 15'(y'), 

we can define ]": M -> ~ '  by  extending the given identification between ~M and S, 
according to the mapping cylinder structures. 

I t  is clear t ha t  P" is a manifold and ]" satisfies conditions 5), 6) and 8) (fl'-~(XP') 
=-y) .  As for proper%y 7), let F i e  S ;  if F~ is a circle, there is nothing to check~ 
because / ~ ( ~ N ' = 0 ,  so ~hat ] " - ~ ( _ F ~ ) ( S y - - ~ F ~ 0 .  I f  F~ is a wedge of m 
circles, with center x ~ S ,  ]"-~(x)= {x~, ..., x.~} ~ ?  and, if U = / ~  N'--~ cone with 
vertex x on 2m points, ]~'-~(U) consists of  m arcs embedded in M, meeting 7 trans- 
versally in the points x~, ..., m~. Thus (f'-~(F~)} w y is a ~ m i l y  of circles in general 

position. 
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Case c): if r e = n ,  pu t  V - - ~ B ' •  and do the same construc- 
t ion as in the previous case. 

Suppose now m < n. L e t  V be the union of a manifold M1 (as described in 2.1) 
and a Moebius band M, where ~M is identified with 

f ! ? 

c : u u 

P u t  P " =  P ' \ N ' W  V~ where the union is made by  an identification of ~ / ' =  

----S~t)~ and ~V:S~W~'~. 
In order to define ]"~ consider the circles yl, Y2~ ~3, ~ embedded in M1 (as in the 

remark  2.2) and let ~1, ~ ,  c~3 be the arcs of 7~ such that ,  if z :  M1 -* ?~ U 71U y~ U ~3 
is the retraction,  

! 

Change now ~ into a new circle Y2 as follows: let fl c ~'2 be an arc, with end- 
points x~ and x~ such tha t  f l ~  y d :  0; a =- z-l(fl) n ~M is an are with endpoints y~ 

and y~. 
Let  Q c M be a pa th  with endponts y~ and y~ such tha t  M ~  is connected. Define 

where VM is the connected component  of M1\{y~} such tha t  ~M c V~ (see fig. 3). 

! 

$3 ~ ~M 

"] 

N2 

~M 
i i  . . . . . . .  u i 

Yl Y~ 
2 ] /  

Figure 3 



15~ t~. BE~E])ET~ - IV[. DE]35: The topology of two-dimensional~ etc. 

Then V is a regular neighbourhood of ?~ w ?'~ ~ ?a L~ ?~ and, if q: V -> ?~ k) ?'~ U 
~) y~W ~ is the retraction such tha t  V is the mapping cylinder of ~-= ~br,  then  

q(~'~) r3~2~i~E ~ and q(S'~) ' -~ ' -~ 

Define now ~: 71 k) ?'2 k) 7~ k) 74 -+ S such tha t  

~D{ylu 7 i is the constant map on a point xoe S ,  

is a (2m ~- 1)-covering 

is a ( n -  m)-eovcring. 

I t  follows tha t  the map qoq: ~V-> S is specially homotopie to a (2m-t-1)- 
covering when restricted to S~, while it is specially homotopic to a (2n ~ 1)-covering 
when restricted to S~. Therefore, one can assume tha t  ~oq is the same map as 
~5': S ~ ) $ 2 - +  S, up to the given identification between S~W ~ and S'~U S~, and 
we can define /H: BH _>p, aS in the previous case. 

As before, properties 5), 6) and 8) are obvious from the constructions; property 7) 
is proved similarly to the previous case: the only difference is t ha t  we must  take 
care to choose the point Xo~ S snch tha t  ]'~-X(xo)-= ?~W ?~ so tha t  it is not  the 
center of a wedge of circles F ~  ~-. 

I t  is clear how the general case follows from these three particular cases, so tha t  
theorem 2.3 is now completely proved. 

2.7 I~E1VfAI~KS AND EXASVIPLES. 

1) I t  is easy to check that ,  if P is a good stratifiecl space which has an (A -- B) 
special resolution of singularities, in the sense of theorem 2.3, then  P satisfies condi- 
tions (A) and (B). 

2) (A) is equivalent to the following condition: 

(K): the (smooth unoriented) bordism class [15: ~ --> XP] is zero which is a 
necessary and sufficient condition to the  existence of a blow-up ] : / 5  __> p of XP 
in B (in the sense of K i T 0  [5]). 

3) (K) does not  imply the existence of an ( A -  B) special resolution: for ex- 
ample, let (S1VS1)~, i ~-1 ,  2, 3~ be three copies of S1VS x and x~ b~ the center of 
the  wedge (S1VS1)~. P u t  

K i =  ~(S1VS1)~ = (S1VS1)~ x [0, 1]/(x, o) ~ (x,, O) for  each x 

(x, l)~(x~, i) for each x 
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and 

t" = Kl U K ~ u  KJ(x~, O)... (x,, 1)..~ (x~, O) 

(x~, 1 ) ~  (x,, O),-, (x,, 1) 

with the natural  good stratification. 

/~ satisfies (K) and does not  satisfy (B). 

4) The stratified space lP of the last example does not  even satisfy the fol- 
lowing condition: 

(K/): the (smooth unoriented) bordism class [~bol:/Vo~-*ZoP] is zero which 
is a necessary and sufficient condition to the existence of a blow-up of ZoP in 2:P. 
In  fact, (K') is strictly weaker t h a n  (B) and not  even (K) and (K') together imply 
the existence of an (A -- B) special resolution of singularities, as we can see from the 
following example. 

5) Let  K~--S(S:VS 1) and K 2 =  S(S:VS:VS:) and (x~,j) be defined as in 
example 3) (i = 1, 2; j = 0, 1). 

Pu t  

P = K~ U K2/(x~, O) ,--, (x~, O) ; (x~, 1) ,-~ (x2, 1) 

with the natural  good stratification. P satisfies (K) and (K') and does not satisfy (B). 
P does not  even satisfy condition (E). 

6) Let  P ---- S(S1VSIVS1), which is a stratified space satisfying (E) and not  (B) 
(see remark 1.13 b)). P is t h e  example of a space which can' t  be homeomorphic 
to a real algebraic affine variety whose algebraic and topological singularities are 
the same. 

7) I t  is clear enough how the notion of an ( A -  B) special resolution can be 
generalized to higher dimensional stratified spaces. 

We have seen tha t  conditions (A) and (B) are strictly stronger t han  condition 
(E); we want  now to give a construction, similar to the (A -- B) special resolution, 
for spaces satisfying only (E). ~ o r e  precisely, we want  to prove the following theo- 
rem, which is the analogue of 2.3: 

2.8 THEOrEm. - Let  _P be a good stratified space satisfying (E). Then there 
exists an (E) special resolution of the singularities of P,  tha t  is a chain P" ~--~ P '  ~ P 
such tha t :  

1) lP' is a good stratified space, satisfying (E) and such that XoP'---- {xl, ..., x.} 
and, for each i ---- 1, ..., n, lk (x o / ) ' )  or is a wedge of an odd number of circles, or 
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is a graph with two vertices y, and z~, 4n~ edges with endpoints y~ and z, and a wedge 
of 2m~ circles with center z, ( m , >  0); 

2) ]'-~(ZoP) -~ ~--~ [.J F , ,  where ~- satisfies conditions a), b) and d) of theo- 
T 

rem 2.3, 2) and the following 

e') i f / ~  is a wedge of m~ circles with center x~, then  or x~eXoP', or x~eZ1P' 
and lk (x~, P')  -~ S o * (2m~ points); x~ = 2~ (~ XP' ;  

3) as in 2.3; 

4) as in 2.3; 

5) we can define a (not good) stratification of 2 ~' by  adding some 1-dimen- 
sional s trata so that ,  if ~P'---- Z P '  (3 (new strata}, then ]"-~(~P') : ~ ' -~  (.J F~ is a 
family of circles in general position embedded in P";  

6) as in 2.3, put t ing ~ P '  instead of XP ' ;  

7) as in 2.3; 

8) let ] ~]'o]"; then ]1: P " \ (  37'~3 ~-")---~P\ZP is an isomorphism; for each 
F~ e ~-", ] l~ is the constant  map;  for each ' ~ '  " F~ e ~ , ]"[~ or is the constant  map. or 
it is an n-covering of a circle of ~ P ' ,  or it is a double covering, branched in two 
points, of an are of ~ P ' .  

As for 2.3, we shall prove this theorem in three steps. 

2.9 Step 1: construction of P'. - Let  us always suppose, for the sake of simplicity, 

= {Xo}. 
We can first make the same construction as in 2.4, unti l  we get the stratified 

space /5 _~ P \ N o U  [M (1) L)... L)M~)]/~ with botmdary /~. /~ is the disjoint union 
/~---- C, 1U ... u C~ r, where C** is the wedge el n, circles. I t  is no longer true tha t  
the ni's are equal in pairs; however, as 2 ~ satisfies (E) (so tha t  Z(P)----Z(F) 
---- g(lk (Xo, P)) is even), there are exactly an even number of indices i such t h a t  n, 
is even. Make then  the following constructions: 

1) if there exist n~ and nj such tha t  n~ = ~ ~ k, we a t tach t o / 5  the (~ handle ~> 
C~: • [0, 1], identifying C~ • with C,~ and Uk • with C,~ (as in 2.t). Do this 
until  ~here are no pairs of equal n~'s left; 

2) if q~ is odd, consider the space B., = D2/-.~, where --~ is the eqniv~lenee 
relation which identifies n~ distinct points of ~D ~ to a single point (which we call 
the vertex of B~,). Then at tach B,, to 15, identifying B.,  with C~,; 

3) if n~ is even, then  there exists another wedge G.: left, with nj even; let 
n ~ =  2h, nj----2k and k ~ h .  
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Consider the  space 

r.,,.. = (o~. • [0, ~]) ~ (~.,~_., • [0, 5]) w B~(~_.,/~ 

where ~ is the  equivalence relation which identifies/~(~_a) with C~(~_~)• {�89 and 
(x) • [0, 5] with (y} • [0, 1] (where x is the  center of C2a and y is the center of C~(~_a)). 
We can then a t tach T.,,~ to /~, identifying its boundary  with C., u C~. 

After all these constructions, we shah get a stratified space /~' which satisfies 
condition 1) of 2.8; to see this, note tha t  ZoP '  consists exactly of the  vertices za 
of the  spaces B~: in the case 2), lk(z~,_P ~) is the  wedge of an odd number  of 
circles, while, in the case 3)~ it is a graph of the  required kind. 

2.10 Step 2: construction of ]'. 

" i=l , . . .~s  " 

we have to find a family ~- : {/~} in Q which satisfies properties a), b), e'), d) and 
such that  Q \  [ J / ~  is a collar on 2Vo. 

We  first consider the  families {?(~)} in M o and the family 5 '  obtained from these 
by  the given identifications; proceed then as in 2.5 whenever we add a handle 
S •  1] with S c / ~  and SX[0 ,  1] c C,~• 1] or S •  [0, 1] c :T%,j. 

We thus get a family Y* = {F*} satisfying conditions a), b), o), d) and such 
tha t  Q ' \  [J ~v* is a collar of ~Q', where 

Q'= (~\( U B. , ) \ (U B~176 and n . , . . , =  (Co,_., • [0, ~]) U B.,_.,I~ c to, , . , .  

As we have done in 2.5 with respect to the handles, we shall give now a stand- 
ard way  to change the family 5 ' ,  whenever we add a space B~, (or B,,,.j,  which 
will be the  same). 

Let  B ,  ~ D/zl . . . . .  z~ with zl, ..., z~ ~ ~D (n is odd if B ~ -  B~, and it is even 
if B., , .= B.u  ~.x[0, 5]). 

Let  $1, ..., S .  be the  circles o f /~  belonging to the  wedge which is identified with 
C , =  2 ,  and yl, ..., y .  be the  circles associated to St, ..., S .  as in 2.5. ~ o t e  tha t  
y~ ~ Y*, as these circles have never been changed by  the previous modifications. 

Le* ~j be the  retraction s~: Vj-+ LJ ~'(h ~), where Sic  ~M (~) and Vj is the  con- 
h 

nected component  of M(~J)\ [J ~(h ~j) containing S~. 
h 

Choose, as in 2.5, an are fl~c ~- (for each j ---- 1, ..., n) intersecting 2:P and such 
thgt  s~(f l j )  is homeomorphie to a disk. 

Let  a~ = ~,x(/3j) c Sj and "c~ = S j \ ~ . .  

1 1  - A n n a l i  eli M a t e m a l i c a  
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We make  now the  following modifications of the family 5 ' :  

A) take  off the circles 71~-..~ $~; 

B) add s circles 931, .. .~8~ s ~ [ n / 2 ] - - 1 ;  for each k<s,  ~tr is the  quotient  
of aa  arc in D with endpoints zl and z2~+1 and ~j (3 ~k = {vertex of B~} if j # k; 

C) add s ~ - 1  circles ~1, ...7 %+~ obtainc& by  (, connecting ~) two or three  of 

vl A 

Figure 4 

i 
. . . .  " . _ _  .2 :  

Figure 5 
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the  circles ?, 's. i~Iore precisely, 51 is obtained by  (( connecting >> Yl and ?~, ~ by  (( con- 

necting >> ~a and 74 and finally %+~ is obtained by  << connecting >> ~ ,  y~_~ (and ~_~, 
if n is odd) (see fig. 4). The connecting operation is made  as iu 2.5: for example, 

in order to  construct  ~ ,  we choose two arcs in the connected component  of D \ (  U ~)  
containing S~ U S~ so as to  divide it  ia  (four) disks such that, if the  boundary  of one 
of these disks contains v~, then  its intersection with v~ is empty  (see fig. 5). We can 

make  a similar construction ia the ease of three circles, as we can see in fig. 6. 

C, 

/ /  ',. . 

J 

o r ~  

o' 

w ~ ~ 1 7 6 1 7 6 1 7 6  

. o . f  ~  ~ 1 7 6  

~ - ~ 
_ ' f  "~ 

o. 

�9 ~ 1 7 6  i 

~  

I 
i ~ ~  

P 

""../" 
.o 

o . . . .  ~ . 

/ 
/ 

w m 

Figure 6 

Note  tha t ,  if z is the  ver tex  of B~, then  z e ~ ,  for each k ~ 1, ..., s ~ 1, as one 
of the  arcs choseu in D necessarily contains ~ for some i. After all the  operations 
just described, we shall get a new family ~ * ;  with the  same kind of arguments as 
in 2.5, one can easily prove t ha t  the  family ~*  satisfies the required conditions with 

respect to  the  space Q 'w  B~. 
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~orcover,  we didn ' t  change the 7~'s associated to the circles of f different f r o m  
31, ..., S~; this ensures tha t  we can repeat the construction until  there are no 
more B~ or B~,.~j left. We thus get the required family &-=  {F~} in (~ and, as a 
consequence, the map ]':  P'--->P satisfying properties 2) and 3) of 2.8. 

Note finally tha~, if z is the vertex of B~, the number of circles F,. such tha t  
z ~ is exactly s -4- (s d- 1), t ha t  is n - -  1 ff n is even and n - -  2 if n is odd. 

2.11 ~tep 3: construction of P" and fl'. - Consider now the stratified space P ' ;  
as _P' satisfies property 1) of 2.8, its singularities may  be of the following three kinds: 

a) circles or isolated points in XP' ,  which do not intersect ZoP ' ;  

b) arcs whose endpoints are ~wo points x~ ,x~XoP ' ,  such tha t  lk(x~, P ' ) =  
= lk(x2, P ' ) =  wedge of an odd number of circles; 

c) circles intersecting XoP' in points whose links are graphs with two vertices 
of the kind described in 1). 

The case a) is dealt with exactly as in 2.6. 

b) assume Z P ' =  a, where a is an arc with endpoints x~ and x~ and lk (x~: P~) = 
= lk (x~, P')  = wedge of (2n d- 1) circles. 

Let  (N ' ,p ' )  be a regular neighbourhood of 2/P' in P ' ;  N~ (i = 1,2) a regular 
neighbourhood of x~ in xo'; y l~N' (~  N ' I =  {(dn d-2)  points} and a' be the unique 
are of N ' \ ( R ' r ~  (N'~u N'~)) contgining yl. 

Let  y~ be the other endpoint of s  y~ e ~ '  • ~ '  and ~ be the arc with eM- 
points xl and x~ obtained by extending s according to the cone structures of N'I 

and X '  2 "  

1)ut X / ~ ' =  (~ ~9 ~} and let (iV, ~) be a regular neighbourhood of ~ P '  in P '  

(remark: we shall define ~ P  as f (~P' ) ) .  -~ is the disjoint union of a finite number 
of circles S~, .. . ,Sk. 

Igotation: let us fix an orientation of S ~nd ~ P ' ;  by  S ~ ~ ~--- i~ " ' "  ~ w e  shal l  

mean tha t  we ca~ divide ~ into /~ ~rcs such tha t  the map /~]: S--> XP' ,  when 
restricted to the j - th  arc, is au homeomorphism with the arc % c  XP' ,  conserving 
(resp. inverting) the orientation if the exponent is I (resp. --1). 

By construction we have r up to ~ permutat ion of the circles Sj, 

8~ = (:r162 for each i = 3, ..., k 

and h2 q- ha q- ... -q- h~ = ((4n q- 2 ) -  2)/2 ---- 2n. 
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For  each i ---- 1, ..., k, consider a manifold M(~)= MJ ~), where 

j - ~ O ~  if i ~ 1  

j ~ l ,  if i = 2  

j = 2 ,  if i : 2  

or i > 2 and h i is even; 

and h~ is even or if i >  2 and h~ is odd; 

and h~ is odd. 

Let aM~)--  - ~ t )S~)U) . . .  U S}~ 1 and identify S~ with S~; let ~ = {y~i)} be the 
! 

family of circles in general position in MJ ~) constructed as in 2.2 with respect to Sr 
= U M} ~) and ~: V--> ~ be the retract ion such tha t  I ? is the mapping cylinder 

i 

of } = 
I t  is clear then that ,  following 2.6, we can define a map ~: ~ -->XP' such tha t :  

a) ~O~[s'~ is specially homotopic to /3[s~, up to the given identification; 

�9 [ (:c:c-1)~ if h~ is even, i > 2  

b) @o~ls~)= / (:C:C--1)h,--1 if h~ is odd, i > 2 ;  

e) @o~ls~)-~ :c:c-~ if h~ is odd, i~>2; 

d) r = r = :ca, where r =  2 if h~ is even and r -~ 3 if h~ is odd. 
Note  that ,  as h~q- ... + h~ is even, the  number  iof circles S~ ~) such tha t  ~o~ls~) = 

= : c g - ~  i s  e v e n .  

We shall outline now the modifications to make on I ?, ~ ,  ~ to get a manifold V, a 
family Y' of circles in general position in V and a map qJ: ~ ' - +  ~ P '  satisfying the 
required properties:  

1) if ~o~[s~) ---- (:c~-~)2~, add a 1VIoebius band M to V, identifying its boundary  
with S)~); change then the circle ~ ~ ~- (~ associated ~> to ~q~) to get a new circle 7 aa 
in 2.6, ease b), and define ~ l r =  (:c:c-1)~; 

2) if q%~ls~,--~ q~o~[s~'= :c:c-~, add a cylinder S x [ 0 ,  1] to l? identifying its 
boundary  with S} ~) t )z~ ,  ; take  off then the two circles (~ associated ~> to ,~!~) and 
S(~) ~,  add a new circle y as in 2.5 and define F l y =  :c:c-z; 

3) do the same as in 2) for S~ ~) and S~ ~), put t ing ~[, = gS. 

We thus get a manifold V with ~V = S[ u ... L) Ss a family $v, of circles in 
general posit ion and a map ~: ~ ' - ~ X P '  such that ,  if q: V - +  Y' is the  usual re- 
traction, then ~0oqls' ~ is specially homotopic  to P[s,, up to the  given identification 
(see fig. 7). 

P u t  P"----- ~ ' \ _ ~  [_J V and define ]": P" -+ P '  according to the mapping cylinder 

structures, as in 2.6. I t  is clear tha t  P" and fl' satisfy properties 4), 5), 6) and 8) 
of 2.8. 
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Figure 7 

As for p roper ty  7), let us consider a wedge of circles F e 5 with center in 

x~E XoP':]"-~(x~) is the  disjoint union of a finite number  of points belonging to the  
t 

circles y~ ..., ?k_~, ?k and of a finite number  of the circles ?~. ( j #  1, ..., k - - 1 ) .  
Le t  U = ~ (~ -N; U consists of an even number  of points belonging to S~, ..., S'  k: 

I t  is clear t hen  t ha t  (eventually changing V or % and with the  same kind of argu- 
ments  as those up to  now used), we can achieve tha t  ]"-~(5) W {yj} is a family of 
circles in general position. 

c) assume now Z P ' =  S, and S ~  Z0_P'~--{x~, ..., x~}. 

Let  c~, (i < m) be the  are of S with endpoints  x~ und x~+~ ~nd or the  are with end- 
points x~ and x~; let ni be such tha t  y~e a~ ~ lk (y~, P ' )  = S ~  {4n, points} (note 
tha t  h i #  n,+l). 

Le t  (N ' , p ' )  be a regular neighbourhood of Z P '  in P '  and ~ ' ~  S1U ...~J S~: 

We saw tha t  lk (x~, P ' )  is a graph with two vertices Y~-I and y,,  4n~_1 edges 
with endpoints y~_~ ~n4 y~ and a wedge of 2(n/--  n,_~) circles with center y~. This 
ensures tha t  the  map ~':  S~ w ... w S~-> S is described as follows (using the same 
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nota t ion as before):  

r I_ l~h~  s 

(i = 1, ..., k), where ~ denotes a suitable are of S (not necessarily ~;-~ ~ )  and, 
for each j = 1, ..., s, hl~ + h~j+ ... + h~j is an even number  (because it is equal 

to  the  sum, or the  difference, of some of the  4n2s). 
For  each i = 1, ..., k, consider a manifold M~ 0, where 

j = #~ {r" hire= 0} -{- ~z~ {~'. hi r is o d d }  - -  ]. 

and  proceed then  exact ly  as in the  previous case. 
Note  only tha t ,  if n~ = 0 (as in this case we can ' t  suppose, as in the  ( A -  B) 

case, t ha t  2 : P ' :  X1P') V is the  disjoint union of a circle ~ and a two-dimensional  
manifold V' and t he  map/" ]~  is a homeomorphism between ~ and S (otherwise ]" 

wouldn ' t  be an epimorphism). 

2.12 RE~ARI~S A~D EXA~I'LES. 

a) it  is clear t ha t  in speciM cases one can give a simpler construct ion than  

the  general o n e  here  described: 

b) we finish this paragraph with some figures explaining all the steps of the  

constructions of 2.3 and 2.8: 

1:' 

Figure 8 
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3. - P o l y n o m i a l  e q u a t i o n s .  

We first recall some facts (see [2] and [3] for precise definitions). We say tha t  V 
is an algebraic var ie ty  iff 

V =  ( x e  Re : / '~ (x )  = / ' , ( x )  . . . . .  /'~(x) = o , / ' , e  R[x~, ... ,  x . ] ,  i = 1, . . . , /~} 

I(V) c R[xl, ...,xn] is the  ideal of polynomials vanishing on V. 

L e t  W c R  "~ be an other algebraic var ie ty ;  a map  9: V--> W is regular iff it is 
locally given (in the  Zariski topology) by  non singular rat ional functions. I t  is 

known tha t  for such a 9 there  exists a regular extension ~ :  R ~ -> R ~. 
V is regular iff for every  x e V there  exist Q,, ..., Q~ e l (V) such t h a t  q = n -- 

- - d i m  V and dQ,, ...,dQq are linearly indipendent.  

Le t  M be a smooth compact  submanifold of R ~, d the  usual metric on R", G,.~ 
the Grassmann manifold of r-linear spaces in R" and d' a metric on G,,~ which induces 

the usual topology. Then, for every  e > 0, a submanifold M'  of R" is an s-approx- 
imat ion of 2 /  in R" iff there  exists a diffeomorphism h: M -~ M'  such tha t :  

(i) d(x, h(x)) < s; 

(if) d ' (T i~ ,  TM~(,)) < s, 

where TM~ and TM~(~) are the linear tangent  varieties to  M in x and to M'  in 

h(x) respectively. I f  s is small enough,  there  exists a (small) isotopy Ht: Rn-~ R ~ 
such tha t  He = id, HI IM = h and Ht  is the  ident i ty  outside a fixed compact  neigh- 
bourhood K of M, K DM' (see [2]). The  set of differentiable maps between 
manifolds is endowed with the  Whi tney  topology. 

Let  X c V and ~ be topological spaces and 9: X ~ Y be a map. We denote 

by  Q(V, 9, Y) the  quot ient  space V ILl ~ / ~ ,  where x ~  y iff: (i) x ~- y ;  (if) x, y s X 
and 9(x) = 9(Y); (iii) :Y ~ y = 9(x). 

We can now state the  main results of this paper:  

3.1 THE0~E~. -- Let  P be a good compact  two-dimensional stratified space 
satisfying (A) and (B). Then  there  exists a homeomorphism g: P - + / 5 ,  where /5 
is real algebraic and the  real algebraic singularities of 15 are equal to g(XP). 

3.2 THE0~E~. - Le t  P be as before, satisfying (E) instead of (A) and (B). Then 

there  exists a homeomorphism g: P -+/5, where t5 is real algebraic and the algebraic 
singularities of t5 are equal to  g(XP) (see 2.8, 5)). 

P ~ o o r s  o~ 3.1 AnD 3.2. - We can suppose there  are no isolated points in P (ac- 
tually, the  theorems hold for P if and only if they  hold for P \ { i s o l a t e d  points}). 

F ix  an (A -- B) (or (E)) special resolution of the singularities of P :  P"J-% P ' J ~  P ;  
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we shall always write Z P ,  ~.P',  meaning tha t  in the first case ~.P--- -ZP and 
2 ~ ' =  z~ ' .  

Let  5 ~ {F,} =- ]'-~(XoP); then  /~ = ]'(/~.') is natural ly homeomorphic to Q(~o', 

]'1~, ~o~) and 2~ to Q(2F, i'l~oe~,, ~o~). 
/)" consists of the disjoint union of one- and two-dimensional manifolds N = 

---- {N~, ..., N~} and M ~- {M~, ..., Ms} respectively. 

V-~(2~ ') = (f'-~(Zv') ~ ~ )  u ~v = {s~} ~ ~ ,  

where S = {S~} is ~ finite family of circles in general position in M. 

I"-~(~) = (1"-~(~) n M) u (i"-~(5) n N) = {Zo} v {qd, 

where ~ = {~} is a finite family of circles in M such tha t  S U ~ is in general posi- 
t ion and Q --- {qj} consists of a finite number of points. 

There exists a natural  relative homeomorphism between 

and 

(p', x)  = (F(P'), ]"(g u Q)) 

"~,P" ,,, 2~v,), Q(8 ~ Q, I'1 o x n 2p')) (~d( , !  s'u_,v, (s ;v)~(~uQ), �9 

We can assmne tha t  2",  P '  and P are realized in three copies of an R ~, for a 
big A. ~/~ '  consists of a finite number of smooth circles of R~: ~ P ' ~  C = {C~, ..., Ck}; 
C n 5 is a finite number of points. 

C' Le t  us approximate every Cs with a regular algebraic curve s such tha t ,  if 
hs: C~ -~ C~ is the related diffeomorphism, then:  h~]c,.:~= id; there exist isotopies H~ 
of R ~ such that H~ id, H~Ic~ h~, and ~ = = ~ Htlo~: ~ id, for each t; every H~ has a 
compact support Ki which is a neighbourhood of C~ and Ks n K ~ - - 0  if i =/=j 
(see [3]). Then the H~'s define a global isotopy H~ of R ~. 

We can construct a special resolution P " - ~  t5, ~, = --> P of /~ such tha t  t5, HI(P') ;  
2/5'= ~ ' =  {~}; 

g'-~(Zot') n C =  ]'-~(ZoP) n C; g"= H~o]'~; g '= ]'oH~ ~ . 

Clearly ( P ' , ~ ) =  (g"(P"),g"(SuQ)) is homeomorphic 

(Q(P", g"l~o~, 2P'), Q(8 u Q, g"l(~o~)~(~o~), ~ n 2P'));  i- 
Q(P', g'[$, ZoP). 

to ( P ' , ~ )  and to 
is homeomorphie to 

3.3 I~E~A~K. - The unoriented smooth bordism of C', u.(C') is generated by 
algebraic elements (uj(C') = 0 if j ~e 0, 1 ; Uo(C') is generated by the classes [point -> 
-~ C] ;  ~1(C) is generated by the classes [C' s ~-> C]). 



1~. BENEDETTI - ~r DE])6: The topology o/ two-dimensional,  etc. 167 

If  A is big enough, the  following facts hold: 

1) There exist approximations h~: M -+ M',  h~: iV -> iV' of M ~nd iV in R ~ 
such tha t :  

(a) M'  ~nd iV' are regular algebraic varieties; 

(b) for e~ch p, h~ ~ h~ls~: S~ -+ Z~ is an approximation of ST in R ~, where Z~ 
is regular algebraic and h~[s~- s = i f ;  h~]s~(s~,~r } = i f .  Let  Z = {Z~}. 

(e) For  each q, h q =  h~]~:  ~q-~ Zq is un approximation of S~ in R A, where 
~q is regular algebraic and ~ q l ~ s - ~  i f ,  ~[~o(~r,~:~}-~ id. Let  ~ = {Z~}. 

(f) For  each i, k~ ~ h~[~ : iV~-~ iV~ is an approximation of iV~ in Ra~ where 
l iV~ is regular algebraic and k~]~,~o-~ id. 

2) There exists a regular map r  Z W  iV~-~ C' such tha t :  

(a) for eaeh p, if ~ =  ~b]z~, then:  (i) ~oh~ approaches g"[s~; ( i f ) ~ I s ~ =  g"]; 
cf~ls~,~z~,~,~) ~- g"l; (iii) ~oh~  is specially homotopic  to g"Is~; (iv) if g"I~ 
is the  constant  map,  then ~----g"Is~ is the  constant map;  

(b) for each i, if g,----~b]~,, then:  (i) g~ok~ approachesg"[~;  (if)g~[~,~a: g"; 
(iii) g,ok~ is specially homotopic to g"I~,. 

B y  means of remark 3.3, all these claims follow almost immediately from theo- 
rem 3 and proposition ! (with its related lemma) of [3] (the same results ~n4 the 
same proofs are again in paragraph e) of [10]). 

! 
The only one which is not  immediate  to  prove is the  following: if g'~]s : S~-~ C~ 

! 
is a 2-covering of an arc A c C~ with Yo and y~ as endpoints, which is branched on Y0 
and y~ in ~o, x~ ~ ST, then ~: Z~ -* C] has the same property (as xo and x~ E ST 
r (SU ST)g~ {Sq, q vap), they also belong to Z~; therefore, the above statement is 

equivalent  to the proper ty  2 (iii) for T~oh~). 
We  give here a sketch of the  proof (using s tandard arguments:  see [2], [3] 

and [11]). 
Let  U~, V~ be neighbourhoods of x~ and y~ in R ~ (i ~ 0, 1) such that  Uo (~ U~ = 

---- Vo n V~= 0 and there exist diffeomorphisms b,: U~-~ B,,  f , :  V,-> D~, where B,  
and D~ are balls in R ~ with the  origin as center and: 

b~(S, n U~) = {B~ n { x 2 -  - -  x~ = 0}}; 

fi(Cj (~ Vi) = {D~ ~ {x~ . . . . .  x~ = 0}}; b,(x~) : 0 : f~(y,). 

We  can assume that: 

r /  0 ~PO L - l /  _ _  2 (1) ~ g ~ ib , ( s~ , ) - -  (xl, 0, ..., 0); 

(2) g"[s~ is the restriction to ST of a differentiable map G ~ (G1, ..., Ga) defined 
on a neighbourhood W of ST in R ~ such tha t  dG~(x~) = O~ i = O~ 1, j ~- 1~ ..., A .  
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By (1), every map near to g"ls, has only two critical points lying in two fixed 
disjoint neighbourhoods W~ of x~ (i -~ 0, 1); then  it is a 2-covering of another are A'  

! 
of Cj, branched at  the endpoints. 

Let  P = (P~, . . . ,Pz)  be polynomials of R[x~, . . . ,x~] such tha t  Pj(x~)= Gj(x~) 
and dPr = 0, for each i and j .  Then, by  (2), for each j ,  if Hr = Gj(x) -- P~(x), 
then  Hj(x~) = 0 and dHj(x~) = O. 

t~ix a compact neighbourhood K of S.,  K c W; there exists a finite open covering 
{U~} of K and polynomials Q~, ..., Q~ such tha t  Q,.(x~)= O, dQr(x~)= 0 for each r 

Hi(x) = ~s x ~ U~, where every /7~ is smooth on Us. 
r  

Using a part i t ion of uni ty  (as in [11]) and the usual Weierstrass approximation 
theorem, we can approximate H = (H~, ..., HA) with P ---- (P~, ..., P~) where every 
P~ is a polynomial  and P;(x~) = 0, dP~(xi) = 0, for each i and j .  

Then P ----- (P~ ~ P ~ , . . . , / 5  _4_ p~) approaches G and P~(x~) = ~-(x~), d P~(x~) = 0. 
Now (see [3], lemma 2) Z~ (and %) is obtained by generic projection on R ~ of a 
regular algebraic copy Z~ of S~ in 

{(x, y) e K •  y = ~ ( P ( x ) )  - -  P(x)}, 

where ~r is the projection of a tubular  neighbourhood of C~ in R~; (x~, 0)~ Z~, 
i = 0, 1 ; % is given by the restriction to F~ of P(x) ~ y, which is defined on K • R ~. 

By  means of our choice of _P, it is clear tha t  the only critical points of %oh, 
are Xo and xl, which is what  we had  to prove. 

Let  us re turn  now to M',  satisfying properties 1) and 2); it is not hard to prove 
tha t  there exists a natura l  relative homeomorphism @ between (/5,, ~ )  and (P', ~)  = 
- -  y g  - 
- -  (Q(M'w N', r  2P') ,  Q(Z w Q, r  (s~)~(s~e), 5 (3 2 P ' ) )  and there 
exists a homeomorphism between g'(/5') = p and /3  = Q(/5', g'o @-11~., No P) ;  therefore, 
the theorems 3.1 and 3.2 are proved by using twice the following proposition. 

3.4 PI~OPOSITION. - -  Let  Z, X c V c R ", T c 3~ c R " be algebraic varieties and 
~o: X--> ~g a regular map such tha t  ~(Z n X ) c  T. Suppose tha t  V is compact. 
Then there exist an algebraic variety W c Rk•  R m and a regular map q): V ~ W 
such t h a t :  

1) w = r  w {0 x y }  = ~ ( v )  w ]?; 

~) r  c ~  = ~ ( x ) ;  

3) ~bl: V \ X  ~ r  is an algebraic isomorphism; 

4) r = (0, ~); 

5) W ' =  ~(Z) W {0 • T} = ~(Z) U T is aa  algebraic subvariety of W. 

P~ooF. - Let  s: S~'-,p -+ R ~ be the stereographic projection from the north pole 
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and let i be its inverse. P u t  V = i ( V ) , ~ = i ( Z ) , ~ = i ( X )  and r  
O: V - * R  ~ be a regular map which extends r and put  0 =-Oosle.  

Choose a set of generators ~ ,  ..., ~, of I (X)  and let 

Let  

= ( w ,  . . . ,  ~.)os[~: ? + R ' .  

~ = {(x, ~, z) e ~ • R ~ • ~ :  x + ? ,  v = ~ ( x ) ,  z = O(x)} 

is isomorphic to V and contains the subvarieties F~ and / ~  which ~re isomorphic 
to Z and 2~ respectively. Clearly, it  is enough to prove the proposition for F ~ , / ~  
/ ~ ,  z]r~ where z:  S " • 2 1 5  ~ is the natural  projection. 

Let  Y ---- {0 • :Y} c R ~ • R ~, T = {0 • T} cY and R(y, z), S(y, z) be polynomials 
such that  ~V = { ~  = 0}, ~ = {S = 0 )  

Let iv: R-+~ • •  ~ -~ R~+~ •  ~ •  ~ be defined by tZ(x, y, z) = (R(y, z) x, y, z). 
Claim: W =  2 ' (E~)wY,  W ' =  ~(F~i t) ~ and r = iv]r; satisfy the required con- 

ditions: 

1) ~l~---- (0, 0, ~): F ~  Xo = (x, 0, ~(x)); therefore /~(0, ~(x)) ---- 0 and /~(Xo) = 
= (o, o, ~(x)).  

2) I f  Xoe['~. and 2'(xo)e /?, then  Xoe/'~: ~(Xo)= 0 impfies Xoe /~ .  

3) From 2) it follows that ] ' ~ \ F~  = _F~\{(x, y, z):/~(y, z) = 0) and the inverse 
of the isomorphism F :  _F~\F~ -+ W'-.:F is (x', y', z') -+ (x'/_R(y', z'), y', z'). 

I t  is now enough to prove tha t  W is algebraic. 
Since IV~c S" •  ~ •  ~, we can suppose tha t  /'~ = {P(x, y, z) = 0} where 

r ( x , y , ~ )  = ( Ix [ s -  1) ,+ 5 e,(x,y,z) 
i= l , . . . , s  

and each P,  is an homogeneous polynomial of degree t ~  2t with respect to x. 
Using the isomorphism of 3), it  is easy to see tha t  

w k s  = {P = 0, R(y, z) r 0}, 

where 

P(x ,  y, ~) = (Ixl 0 -  R(y, z)~)*+ ~ ~(y ,  z):*-',P,(x, y, ~). 

But,  if P(x,  y, z) = 0 and t~(y, z) = O, then  x ---- 0 and therefore W = {P = 0). 
We can do the  same for W', using S(y, z), thus proving the proposition. 

3.5 l~E~igK. - I t  is known tha t  a topological space V has an algebraic struc- 
ture if and only if its one point compactification, ~ - V u  {~}, has one; more- 
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over, for every structure on V, it is possible to get l y such that  V and ~\{oo} are 
isomorphic. I t  follows that  the previous proposi~ion is true with the weaker hypo- 
thesis tha t  only X is compact (see [1], [3]). 

Furthermore, it is easy to prove the following 

3.6 CO~0LLA~Y. - A two-dimensional (non compact) stratified space P is home- 
omorphic to an algebraic variety if and only if it is homeomorphic to P \ x l k  (x, P), 
where _P is a compact two-dimensional stratified space satisfying (E). 

PEo0F. - I t  follows from theorems 3.1 and 3.2 and remark 3.5. 

3.7 FINAL I%EMAI%KS. 

a) The remark 3.3, which is obvious in this case, has been essentially used 
to apply the results of [3]. In  order to generalize these results to higher dimensional 
spaces, we may need a theorem saying, roughly speaking, that  every compact closed 
smooth manifold M in R ~ (where N is big enough) can be approximated by a regular 
algebraic variety M' such that  ~.(M') has algebraic generators. 

b) Every compact two-dimeusional real analytic space is homeomorphie to 
an algebraic variety. 

e) From the details of the proofs of the theorems 3.1 and 3.2 we can get inior- 
mations about the irreducible algebraic components of P (besides informations about 
the singularities of P); moreover, this points out that,  (( up to little modifications ~), 
every two-dimensional (compact) stratified space is homeomorphic to an algebraic 
variety. 

d) I t  seems interesting to study the relations between the topological prop- 
erties ( A -  B) and the (coherence of the) analytic structure of P. 

e) Let Q be an algebraic variety and Sing Q be the algebraic singularities 
of Q; if Sing(~)Q is defined inductively by Sing (~) Q = Sing Sing (~-1) Q, then the al- 
gebraic structure /~ has the property that  the index j such that  Sing(J)/~ ~ ~ is 
the least possible with respect to the topology of P. 
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