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Abstract

The use of cuts along surfaces for the study of domains in Euclidean 3-space widely occurs in the
theoretical and applied literature about electromagnetism, fluid dynamics and elasticity. This paper
is aimed at discussing techniques and results of 3-dimensional topology that provide an appropriate
theoretical background to the method of cuts along surfaces. We consider two classes of bounded
domains that become “simple” after a finite number of cuts along disjoint properly embedded
surfaces. The difference between the two classes arises from the different meanings that the word
“simple” may assume, when referred to spatial domains. In the definition of Helmholtz domain,
we require that the domain may be cut along disjoint surfaces into pieces such that any curl-free
smooth vector field defined on a piece admits a potential. On the contrary, in the definition of
weakly Helmholtz domain we only require that a potential exists for the restriction to every piece
of any curl-free smooth vector field defined on the whole initial domain. We use classical and
rather elementary facts of 3-dimensional geometric and algebraic topology to give an exhaustive
description of Helmholtz domains, proving that their topology is forced to be quite elementary: in
particular, Helmholtz domains with connected boundary are just possibly knotted handlebodies, and
the complement of any nontrivial link is not Helmholtz. The discussion about weakly Helmholtz
domains is more advanced, and their classification is a more demanding task. Nevertheless, we
provide interesting characterizations and examples of weakly Helmholtz domains. For example, we
prove that the class of links with weakly Helmholtz complement coincides with the well-known class
of homology boundary links.
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1. Introduction

Hodge decomposition is an important analytic structure widely occurring in the
theoretical and applied literature on electromagnetism, fluid dynamics and elasticity in
domains of the Euclidean space R3. In [8], one can find a friendly introduction to this
topic, including a historical account concerning its origins. In 1858, Helmholtz [14]
first investigated the motion of an ideal fluid in a spatial domain Ω without assuming
that its velocity field V admits a potential function. He defined the notion of curl of
V to measure the local rotation of the fluid and proved that every vector field on Ω
decomposes in its curl-free and divergence-free parts. This is the first manifestation of
the Hodge decomposition theorem. In his study, Helmholtz recognized the importance
of the role played by the topological properties of Ω . He defined simply-connected and
multiply-connected 3-dimensional domains, extending the corresponding notions used by
Riemann for surfaces. In particular, the concept of multiply-connectedness for Ω is given
in terms of the maximum number of cross-sectional surfaces (Σ , ∂Σ ) in (Ω , ∂Ω) that
one can “cut away” from Ω without disconnecting it. These topological notions were
developed by Thomson and reconsidered by Maxwell in the study of fluid dynamics and
electromagnetism. Quoting from p. 439 of [8]:

“Thomson introduced an embryonic version of the one-dimensional homology H1(Ω)
in which one counted the number of “irreconcilable” closed paths inside the domain Ω .
This was subject to the standard confusion of the time between homology and homotopy
of paths: homology was the appropriate notion in this setting, but the definitions were
those of homotopy. He also introduced a primitive version of two-dimensional relative
homology H2(Ω , ∂Ω) in which one counted the maximum number of “barriers”, meaning
cross-sectional surfaces (Σ , ∂Σ ) ⊂ (Ω , ∂Ω), that one could erect without disconnecting
the domain Ω . Thomson pointed out that while these barriers might be disjoint in simple
cases, in general one must expect them to intersect one another.”

Thomson’s insight concerning the fact that, in general, one must expect the “barriers”
to intersect one another was almost completely disregarded in the literature on
electromagnetism, fluid dynamics and elasticity, leading to the extensively used method
of cutting surfaces (see “Section A” of our References for a selection of titles).

The method of cutting surfaces is aimed at providing an effective construction of a
basis of the space of harmonic vector fields on the domain Ω . Such a space appears as
a summand in the Hodge decomposition of the space of vector fields and contains a lot of
topological information about Ω . We refer the reader to Section 4.1 for more information
about the method of cutting surfaces in the standard setting of square-summable vector
fields.

In this paper we discuss in detail the class of domains to which this method can
be successfully applied. We call such domains Helmholtz domains. The characterizing
property of Helmholtz domains is that they become “simple” after a finite number of cuts
along pairwise disjoint surfaces. It turns out that there is a bit of indeterminacy in the
literature about the right meaning of “simple” in this definition. Requiring the domain to be
simply connected certainly suffices. However, the (possibly weaker) condition consisting
in the existence of potentials for curl-free smooth vector fields is more appropriate with
respect to the usual applications of the method. Apparently, the relationship between
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these (a priori different) notions is not widely well-established. One could say that the
confusion of the early times between homology and homotopy somehow propagated until
now, sometimes giving rise to true misunderstandings (see e.g. Example 3.6).

The first aim of this expository paper is to provide a complete description of the topology
of Helmholtz domains. We achieve this result just by applying a few classical results of 3-
dimensional topology. It is worth recalling that spatial domains (whose study includes,
for example, knot theory) represent a nontrivial instance of 3-dimensional manifolds.
Since Poincaré’s Analysis Situs (1895) (see [41] for a useful historical account), ideas and
techniques of (3-dimensional) geometric and algebraic topology have been developed and
successfully applied to the study of spatial domains.

Theorem 3.2 shows that, under mild assumptions on the boundary (e.g. when
the boundary is Lipschitz regular), the homological and the homotopical notions of
“simplicity” mentioned above are indeed equivalent to each other. Moreover, it turns out
that simple domains admit a clear and easy description: they are just the complement of
a finite number of disjoint closed balls in a larger open ball. For domains with polyhedral
boundary, this result is due to Borsuk [28] (1934). The (more general) case of domains
with locally flat topological boundary is settled here thanks to later deep results that will be
recalled in Theorem 2.8. Our proof is based on elementary properties of the Euler–Poincaré
characteristic of compact surfaces and 3-manifolds and (like in [28]) eventually reduces
to the celebrated Alexander Theorem [23] (1924), that ensures that every locally flat 2-
sphere in R3 bounds a 3-ball. In [39] (1948), Fox obtained Borsuk Theorem as a corollary
of his re-embedding theorem (see Section 4.4). However, Fox’s arguments are admittedly
inspired by Alexander’s results and techniques.

Once simple domains have been completely described, it is rather easy to give an
exhaustive characterization of general Helmholtz domains (see Theorem 4.5). In a sense,
this is a disappointing result, since it shows that the topology of Helmholtz domains is
forced to be quite elementary. For example, Helmholtz domains with connected boundary
are just (possibly knotted) handlebodies, and the complement of any nontrivial link is not
Helmholtz. This seems to suggest that the range of application of the method of cutting
surfaces is quite limited.

In Section 5, we introduce and discuss the strictly larger class of weakly Helmholtz
domains. Roughly speaking, such a domain can be cut along a finite number of disjoint
surfaces into subdomains on which every curl-free smooth vector field that is defined on
the whole original domain admits a potential. We believe that this requirement naturally
weakens the Helmholtz condition, thus allowing to apply the method of cutting surfaces
to topologically richer classes of domains. Unlike in the case of Helmholtz domains, we
are not able to give an exhaustive classification of weakly Helmholtz ones. However, we
provide several interesting characterizations of weakly Helmholtz domains. In particular
and remarkably, we prove that the class of links with weakly Helmholtz complement
coincides with the class of homology boundary links. In particular, every knot and every
boundary link has weakly Helmholtz complement. Homology boundary links are broadly
studied in knot theory, and it is a nice occurrence that the method of cutting surfaces
naturally leads to this distinguished class of links.

Paper [13] is a sort of complement to the present one. It deals with a rather explicit
description of the Hodge decomposition of the space of L2-vector fields on any bounded
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domain of R3 with sufficiently regular boundary, and it does not make use of methods
relying on cutting surfaces. In paper [1], taking inspiration from the results of [13], the
authors devise an efficient algorithm computing a finite element discrete basis of the
space of harmonic vector fields on a general domain Ω , without the assumption that Ω
is Helmholtz.

Fox re-embedding theorem (see Theorem 4.9) implies that the study of spatial domains
may be often reduced to the study of knotted handlebodies in Euclidean 3-space. Recent
results about knotted handlebodies may be found in [26], where a thorough discussion of
handlebodies with weakly Helmholtz complements is carried out.

We stress that, from the viewpoint of 3-dimensional topology, most results of
this paper follow from direct applications of classical and well-known facts of
differential/algebraic/geometric topology, that are usually covered by basic courses on
these subjects. Accordingly, “Section B” of our References contains well-established books
on these subjects (see e.g. [42,61]). The classical results described in such books are
sufficient to our needs, and will be recalled time by time just when they are needed.
We mentioned above that the discussion about Helmholtz domains only relies on simple
facts about the Euler–Poincaré characteristic (see Section 3.4), together with Alexander
Theorem. Very clear and accessible proofs of this last result are available (e.g. in [48]). The
discussion about weakly Helmholtz domains is a bit more advanced. More information on
the algebraic topology of spatial domains is developed in Section 5.2, where we make an
intensive use of Poincaré–Lefschetz duality, and in Section 6.2.

We hope that this paper could be helpful to people interested in the research areas
mentioned at the beginning of this introduction. The role of the (algebraic) topology
of domains had already been stressed in [8,15] (for example in order to justify the
dimension of the summands of the Hodge decomposition). Hopefully, the present work
should supplement the papers just mentioned, by unfolding some aspects of 3-dimensional
topology underlying the method of cutting surfaces.

2. Domains

Let us first introduce a bit of terminology. In what follows, smooth maps (whence, in
particular, diffeomorphisms) and smooth manifolds are assumed to be of class C∞. In the
literature, the terms “disk” and “ball” are often used without distinction. We prefer here to
use both terms, and we agree that a disk is closed and a ball is the open interior of a disk.
More precisely:

Definition 2.1. Let (x1, x2, x3) be the usual coordinates of R3 and let D3 be the standard
3-disk {(x1, x2, x3) ∈ R3

| x2
1 + x2

2 + x2
3 ≤ 1} of R3. We also denote by D2 the standard

2-disk in the plane R2 defined by D2
:= D3

∩ R2, where we identify R2 with the plane
x3 = 0 of R3. A subset X of a manifold M homeomorphic to R3 is a (topological) 3-
disk if, up to homeomorphism, the pair (M, X) is equivalent to (R3, D3), i.e. there exists
a homeomorphism ψ : M −→ R3 such that ψ(X) = D3. A (topological) 3-ball of
M is the internal part of a 3-disk. We say that a subset Y of M is a (topological) 2-
disk if, up to homeomorphism, the pair (M, Y ) is equivalent to (R3, D2). Smooth disks
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Fig. 1. The Alexander horned sphere SAlex. The loop a is not homotopically trivial in R3
\ SAlex.

or balls in a smooth M diffeomorphic to R3 are defined in the same way by replacing
“homeomorphism” with “diffeomorphism”. Disks and balls in an arbitrary 3-manifold W
are contained, by definition, in some chart M homeomorphic (or diffeomorphic, in the
smooth case) to R3.

A domain in R3 is a nonempty connected open set Ω ⊂ R3 such that Int Ω = Ω (i.e.
Ω coincides with the interior of its closure in R3). Moreover, throughout the whole paper,
domains are assumed to be bounded, whence with compact closure.

Sometimes it is convenient to identify R3 with an open subset of the 3-sphere S3
=

R3
∪ {∞} via the stereographic projection from the point “at infinity”. A nonempty

connected open subset Ω of S3 is a domain if Int Ω = Ω . Of course every domain in S3 has
compact closure, and the stereographic projection induces a bijection between domains in
R3 and domains in S3 whose closure does not contain the point at infinity.

We denote by ∂Ω the usual (topological) boundary of Ω , i.e. the set

∂Ω = Ω \ Ω .

It turns out (see e.g. Remark 3.8) that domains with “wild” boundary can display
pathological behaviors that we would like to exclude from our investigation. Therefore,
we will concentrate our attention on domains with “tame” boundary, carefully specifying
what “tame” means in our context. However, before going on we would like to mention
what is probably the most famous example of wild surface in S3: the Alexander horned
sphere, which is described in Fig. 1.

The Alexander horned sphere is a subset SAlex ⊂ R3 homeomorphic to the 2-
dimensional sphere. It was constructed by Alexander in 1924 (see [24]), and it is one
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of the most famous pathological examples in mathematics. The celebrated (and quite so-
phisticated) Jordan–Brouwer Separation Theorem (see [30]) asserts that every topological
2-sphere S embedded in R3 disconnects R3 in two components, and each of these com-
ponents is in fact a domain, according to our definition. Moreover, exactly one of these
components is unbounded. Among the peculiar properties of the Alexander horned sphere,
there is the remarkable fact that the unbounded component of R3

\ SAlex is not simply
connected (see Section 2.6 for a brief discussion of this notion).

2.1. Smooth surfaces, tubular neighborhoods and separation theorems

We begin by defining the tamest class of domains one could consider. A smooth surface
S in R3 is a compact and connected subset of R3 such that the following condition holds:
for every point p ∈ S, there exist a neighborhood Up of p in R3 and a diffeomorphism
ϕ : Up −→ R3 such that ϕ(Up ∩ S) = P , where P is an affine plane. In other words,
S ⊂ R3 is a smooth surface if the pair (R3, S) is locally modeled, up to diffeomorphism,
on the pair (R3,R2). For i = 1, 2, 3, let Hi := {(x1, x2, x3) ∈ R3

| xi = 0}, where
(x1, x2, x3) are linear coordinates on R3. By the Inverse Function Theorem, S is a smooth
surface if and only if it is locally the graph of a real smooth function defined on an open
subset of some Hi .

We have already mentioned that the Jordan–Brouwer Separation Theorem ensures that
every topological 2-sphere S embedded in S3 disconnects S3 in two domains. Using
Alexander duality (see e.g. [47, Theorem 3.44]), it is possible to generalize this result
to the case of embedded topological compact surfaces. In Proposition 2.2 we show how, in
the less general case of smooth surfaces, a much easier proof of this result may be obtained
using transversality, which is one of the main tools of differential topology. To this aim
we first introduce the notion of tubular neighborhood. We refer the reader, for instance, to
[65,50] for a proof of the existence of tubular neighborhoods.

Let S be a compact smooth surface in S3. For every ϵ > 0, let us define the ϵ-
neighborhood Nϵ(S) of S in R3 by setting

Nϵ(S) := {x ∈ R3
| dist(x, S) ≤ ϵ}.

If ϵ is small enough, then there exists a natural retraction r : Nϵ(S) −→ S such that
r(x) is the nearest point to x in S, and the pair (Nϵ(S), S) is locally modeled, up to
diffeomorphism, on the pair (R2

× [−1, 1],R2) (we will see in Section 2.2 that the pair
(Nϵ(S), S) is in fact globally diffeomorphic to (S×[−1, 1], S)). Moreover, for every x ∈ S,
the set r−1(x) is a straight copy of [−ϵ, ϵ] intersecting S in x and ∂Nϵ(S) exactly in its
endpoints. If ϵ is such that the properties just described are satisfied, then Nϵ(S) is a tubular
neighborhood of S.

Proposition 2.2. Every smooth surface S in R3 disconnects S3 in two domains Ω(S) and
Ω∗(S).

Proof. Let us fix a point p ∈ S and a tubular neighborhood Nϵ(S) of S, and set {p1, p2} =

r−1(p) ∩ ∂Nϵ(S). We first show that every point x ∈ Nϵ(S) \ S may be joined either to
p1 or to p2 by a path in Nϵ(S) \ S. Let q = r(x). Recall that r−1(q) is a closed interval
intersecting S in one point, so it is possible to join x to a point x ′

∈ r−1(q) ∩ ∂Nϵ(S) by a
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path α in Nϵ(S) \ S. Since S is connected, there exists a path γ on S joining q to p. Using
that (Nϵ(S), S) is locally modeled, up to diffeomorphism, on the pair (R2

× [−1, 1],R2),
it is not difficult to show that γ may be pushed into a path γ ′ in ∂Nϵ(S) starting at x ′ and
ending either at p1 or at p2. By concatenating α with γ ′ we have thus obtained the desired
path in Nϵ(S) \ S joining x to p1 or to p2.

Let us now show that S3
\ S has at most two connected components. It is sufficient to

prove that every point x ∈ S3
\ S can be joined either to p1 or to p2 by a path supported

in S3
\ S. The case when x ∈ Nϵ(S) \ S has already been settled, so we may suppose

that x ∉ Nϵ(S). Let β be a path in S3 joining x to p1. If β does not intersect S, we are
done. Otherwise, there exists a subpath β ′ of β supported in S3

\ S joining x to a point
y ∈ N (S) \ S. We have seen that y may be joined to pi for some i = 1, 2 by a path β ′′ in
Nϵ(S) \ S, so the conclusion follows by considering the concatenation of β ′ and β ′′. We
have thus proved that S3

\ S has at most two connected components.
Suppose now, by contradiction, that S3

\ S is connected. Then any closed interval
transverse to S in a local model can be completed in S3

\ S to an embedded smooth circle
f0 : S1

−→ C0 ⊂ S3 that transversely intersects S in exactly one point. Since S3 is
simply connected, f0 is smoothly homotopic to an embedded circle f1 : S1

−→ C1 ⊂ S3

that does not intersect S. Moreover, we can assume that there exists a smooth homotopy
F : S1

× [0, 1] −→ S3 between f0 and f1, which is transverse to S. Then the set
F−1(S) consists of a finite disjoint union of smooth circles or closed intervals having
F−1(S)∩ (S1

×{0, 1}) as set of end-points. In particular, F−1(S)∩ (S1
×{0, 1}) should be

given by an even number of points, while we know that it consists of just one point. This
gives the desired contradiction. �

Notation. Henceforth, whenever S ⊂ R3
⊂ S3 is a smooth surface, we denote by Ω(S)

and Ω∗(S) the connected components of S3
\ S. We also assume that ∞ ∈ Ω∗(S), so Ω(S)

is the unique bounded component of R3
\ S, while Ω ′(S) := Ω∗(S) \ {∞} is the unique

unbounded component of R3
\ S. In particular, Ω(S) is a domain in R3 and ∂Ω(S) = S.

The local model of (Ω(S), S) at every boundary point is given by (P+, P), where P is an
affine plane as above, and P+ ⊂ R3 is a half-space bounded by P .

Definition 2.3. A domain Ω in R3 has smooth boundary if ∂Ω consists of the disjoint
union of a finite number of smooth surfaces.

It readily follows from the definitions that the closure of a domain with smooth boundary
admits a natural structure of compact smooth manifold with boundary.

The following lemma is an immediate consequence of the previous discussion.

Lemma 2.4. Let Ω be a domain with smooth boundary. Then we can order the boundary
surfaces S0, S1, . . . , Sh in such a way that:

(1) The Ω(S j )’s, j = 1, . . . , h, are contained in Ω(S0) and are pairwise disjoint.
(2) Ω is given by the following intersection:

Ω = Ω(S0) ∩

h
j=1

Ω∗(S j ).
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2.2. Orientation

Let S ⊂ R3 be a smooth surface. We claim that S is orientable. In fact, if R3 is oriented
by means of the equivalence class of its standard basis (e1, e2, e3), then S can be oriented
as the boundary of Ω(S), via the rule “first the outgoing normal vector”. More explicitly,
for each p ∈ S, one can consistently declare that a basis (v1, v2) of the tangent space Tp S
of S at p is positively oriented if and only if (n, v1, v2) is a positively oriented basis of R3,
where n is a vector orthogonal to Tp S and pointing outward Ω(S).

Let now Nϵ(S) be a tubular neighborhood of S. Using the fact that Nϵ(S) \ S has
exactly two connected components, it is not difficult to show that the pair (Nϵ(S), S)
is diffeomorphic to (S × [−1, 1], S). Moreover, under this identification the subset
Nϵ(S) ∩ Ω(S) corresponds to S × [−1, 0], hence it is a collar of S in Ω(S). In the same
way, Nϵ(S) ∩ Ω∗(S) is a collar of S in Ω∗(S).

Similar results hold for tubular neighborhoods of 1-submanifolds of the Euclidean
3-space: if C is a smoothly embedded circle in R3 and ϵ is small enough, then Nϵ(C)
is a tubular neighborhood of C , diffeomorphic to a (closed) solid torus D2

× S1 and having
C as a core.

2.3. Link complements

A link L = C0 ∪ · · · ∪ Ch in S3 is the union of a finite family of smoothly embedded
disjoint circles C j . If h = 0, then L is a knot. Suppose that ∞ ∈ C0, hence A(L) = S3

\ L
is a connected open set in R3. With our definitions, since A(L) = R3, the internal
part of A(L) does not coincide with A(L) and A(L) is not a domain. However, to L
there is associated the domain C(L) = S3

\ U (L), where U (L) is the union of small
disjoint closed tubular neighborhoods of the C j ’s. We call C(L) the complement-domain
of L . The boundary component of C(L) corresponding to C j is a smooth torus T j and,
with the above notations, Ω∗(T0) and Ω(T j ), j = 1, . . . , h, are open solid tori. It is
clear that C(L) is homotopically equivalent to A(L) (see e.g. [47] for the definition of
homotopy equivalence), hence C(L) and A(L) share all their homotopy invariants (like
the fundamental group). A knot C = C0 is unknotted if also Ω(T0) is a solid torus or,
equivalently, if C bounds a 2-disk of S3. A link has geometrically unlinked components if
its components are contained in pairwise disjoint 3-disks of S3. A link is trivial if it has
geometrically unlinked unknotted components.

Suppose now that ∞ ∉ L , i.e. consider L as a link of R3. We use the symbol U (L)
again to indicate the union of small disjoint closed tubular neighborhoods of the C j ’s in
R3. Choose a smooth 3-ball B of R3 containing U (L) and define B(L) := B \ U (L). We
call B(L) the box-domain of L . Any self-diffeomorphism of S3 that takes L onto a link
L ′ containing the point at infinity establishes a diffeomorphism between the box-domain
B(L) and the complement-domain C(L ′) with a 3-disk removed.

The reader may observe that the complement- and the box-domains of a link are well-
defined, up to diffeomorphism (up to ambient isotopy indeed).

2.4. Cutting along surfaces

Let Ω be a domain with smooth boundary. A properly embedded surface Σ in (Ω , ∂Ω)
is a compact and connected subset of Ω such that:
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(1) At points in Σ \ ∂Ω ,Σ has the same local model of a smooth surface.
(2) If Σ ∩ ∂Ω ≠ ∅, then at every point of this intersection, up to local diffeomorphism, the

triple (Ω , ∂Ω ,Σ ) is equivalent to the local model (P+, P, T+), where the pair (P+, P)
is as in Section 2.1, and T+ = T ∩ P+, T being a plane orthogonal to P . It follows
that Σ is a smooth surface with boundary ∂Σ = Σ ∩ ∂Ω . This boundary is a (not
necessarily connected) smooth curve embedded in ∂Ω .

(3) (Σ , ∂Σ ) admits a bicollar in (Ω , ∂Ω), i.e. there exists a closed neighborhood U of Σ
in Ω such that (U,U ∩ ∂Ω) is diffeomorphic to (Σ × [−1, 1], (∂Σ ) × [−1, 1]), via
a diffeomorphism sending each point x ∈ Σ into (x, 0) ∈ Σ × {0}. It is not hard to
see that the existence of a bicollar is equivalent to the fact that Σ is orientable. Any
orientation on Σ induces an orientation on ∂Σ , via the rule “first the outgoing normal
vector” mentioned above.

Let Σ be properly embedded in (Ω , ∂Ω). Then the result ΩC (Σ ) of the cut/open
operation along Σ is the internal part in R3 of the complement in Ω of a bicollar of
(Σ , ∂Σ ). In general, ΩC (Σ ) is not connected. However, every connected component of
ΩC (Σ ) is a domain. The boundary of ΩC (Σ ) is no longer smooth, because some corner
lines arise along ∂Σ . However, by means of a standard “rounding the corners” procedure,
we can assume that the class of domains with smooth boundary is closed under the cut/open
operation.

Remark 2.5. We could define cuts more directly just by setting A(Σ ) = Ω \ Σ . The
components of A(Σ ) are not domains in general. On the other hand, each component of
ΩC (Σ ) is contained in and is homotopically equivalent to one component of A(Σ ). This
establishes a bijection between the set of components of A(Σ ) and the set of components
of ΩC (Σ ), such that corresponding components share all their homotopy invariants.

Example 2.6. Given a knot K in S3, a Seifert surface of K is a connected orientable
smoothly embedded surface S with boundary equal to K . Every knot has a Seifert surface
(see [69]). Given the domain C(K ) as in Section 2.3, we can assume that such a surface
S is transverse to the boundary torus of C(K ) along a preferred longitude parallel to K
(it is well-known that the isotopy class of this preferred longitude does not depend on the
chosen Seifert surface—see Remark 6.3). Hence, Σ := S ∩ C(K ) is properly embedded
in C(K ) and the space (C(K ))C (Σ ) obtained by applying to C(K ) the cut/open operation
along Σ , being connected, is a domain.

2.5. Domains with locally flat boundary

In order to perform constructions and develop arguments which use tools from
differential topology, it is very convenient to work with domains with smooth boundaries.
Such a choice allows us, for instance, to exploit the powerful notion of transversality, that
has already appeared in the proof of Proposition 2.2. Using transversality, in Section 5.2
we will be able to approach in an elementary and geometric way some fundamental results
about duality (such results are usually established in more general settings by using more
sophisticated tools from algebraic topology). On the other hand, in the literature about
the method of cutting surfaces, classes of domains with weaker regularity properties are
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often considered. For example, it is common to require the boundary of a domain to be
locally the graph of a Lipschitz function. In this case, the domain is said to have Lipschitz
boundary. There is a natural way to deal with more general classes of boundaries, keeping
nevertheless the same qualitative local pictures as in the case of smooth domains. In fact,
we may consider triples (Ω , ∂Ω ,Σ ) that admit the same local models as in the smooth
case, where local models are now considered only “up to local homeomorphism” rather
than “up to local diffeomorphism”. Such topological triples are called locally flat. Note
that, according to these definitions, our topological disks in 3-manifolds are locally flat.
The following lemma is immediate.

Lemma 2.7. A compact connected subset of R3, which is locally the graph of continuous
functions, is a locally flat surface.

Several deep fundamental results of 3-dimensional geometric topology [66,27,30] imply
that, up to homeomorphism, there is not a real difference between the smooth and the
locally flat topological case:

Theorem 2.8. For every locally flat triple (Ω , ∂Ω ,Σ ), the following statements hold.

(1) Triangulation. There is a homeomorphism t : R3
−→ R3 that maps the given

triple onto a polyhedral triple (i.e. the piecewise linear realization in R3 of a
finite simplicial complex with distinguished subcomplexes).

(2) Smoothing. There is a homeomorphism s : R3
−→ R3 that maps the given triple onto

a smooth one.

Summarizing:
In order to study the geometric topology of arbitrary locally flat topological triples, it

is not restrictive to consider only smooth ones. Moreover, if useful, we can use also tools
from 3-dimensional polyhedral (PL) geometry.

It might be worth mentioning that no analogous of Theorem 2.8 holds in higher
dimensions. Every smooth manifold admits a unique polyhedral structure, but there exist
PL-manifolds that do not admit smoothings, and it may happen that a single PL-manifold
admits nondiffeomorphic smoothings. Moreover, there exist topological manifolds that
cannot be triangulated.

2.6. Isotopy, homotopy and homology

We conclude the section with a brief and intuitive description of some concepts that will
be extensively used throughout the paper (see Sections 3.4 and 5.2 for more details). Let M
be a smooth connected n-manifold with (possibly empty) boundary (for our purposes, it is
sufficient to consider the cases in which M is a 3-dimensional domain as above or the whole
spaces R3, S3, or a smooth surface). Two smooth simple oriented loops C0,C1 ⊂ M are
isotopic if they are related by a smooth isotopy, i.e. by a smooth map F : S1

×[0, 1] −→ M
such that, if Ft := F(·, t): S1

−→ M , then F0, F1 are oriented parameterizations of C0,C1
respectively, and Ft is a smooth embedding for every t ∈ [0, 1]. In other words, C0 is
isotopic to C1 if it can be smoothly deformed into C1 without crossing itself.
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A homotopy between C0 and C1 is just the same as an isotopy, provided that we do
not require Ft to be an embedding for every t . More precisely, if C0,C1 are continuous
(possibly self-intersecting) loops in M , we say that C0 is homotopic to C1 if it can be
taken into C1 by a continuous deformation along which self-crossings are allowed. In
particular, C0 is homotopically trivial if it is homotopic to a constant loop, or, equivalently,
if a parameterization of C0 can be extended to a continuous map from the 2-disk D2 to
M (where we are identifying S1 with ∂D2). The manifold M is simply connected if (it is
connected and) every loop in M is homotopically trivial. It is well-known (and very easy)
that R3 and S3 are simply connected, so every knot, when considered as a parameterized
loop, is homotopically trivial. On the other hand, by definition nontrivial knots in S3

provide examples of loops that are not smoothly isotopic to any unknotted knot.
More in general, let us define a 1-cycle (with integer coefficients) in M as the union L of

a finite number of (not necessarily embedded nor disjoint) oriented loops in M . We say that
L is a boundary if there exist an oriented (possibly disconnected) surface with boundary
S and a continuous map f : S −→ M such that the restriction of f to the boundary of S
defines an orientation-preserving parameterization of L (the orientation of S canonically
induces an orientation of ∂S also in the topological setting): with a slight abuse, in this case
we say that L bounds f (S). Of course, knots and links in S3 are particular instances of 1-
cycles in S3, and every knot is a boundary, since it bounds a (possibly singular) 2-disk, or
a Seifert surface. If L , L ′ are 1-cycles in M and −L ′ is the 1-cycle obtained by reversing
all the orientations of the loops of L ′, we say that L is homologous to L ′ if the 1-cycle
L ∪−L ′ is a boundary, and that L is homologically trivial if it bounds or, equivalently, if it
is homologous to the empty 1-cycle. It readily follows from the definitions that homotopic
loops define homologous 1-cycles. The space of equivalence classes of 1-cycles (with
respect to the relation of being homologous) is the singular 1-homology module of M (with
integer coefficients) and it is usually denoted by H1(M; Z). The union of 1-cycles induces a
sum on H1(M; Z), which is therefore an Abelian group. It is not difficult to show that, since
M is connected, every 1-cycle in M is homologous to a single loop, and this readily implies
that, if M is simply connected, then H1(M; Z) = 0. The converse statement is not true in
general (see Remark 3.9), but turns out to hold for tame domains in R3 (see Corollary 3.5).
Note, however, that even if M = Ω is a domain in S3 with locally flat boundary, then
there may exist a loop of M which is homologically trivial, but not homotopically trivial:
if K ⊂ S3 is a nontrivial knot with complement-domain C(K ), then a Seifert surface
Σ for K defines a preferred longitude γ = Σ ∩ ∂C(K ) ⊂ ∂C(K ). Such a longitude
bounds the surface with boundary Σ ∩ C(K ) and is therefore homologically trivial in
C(K ). However, as a consequence of the classical Dehn’s Lemma (see [69, p. 101]), if γ
were homotopically trivial in C(K ), it would bound a (embedded locally flat) 2-disk in
C(K ), and this would imply in turn that K is trivial, a contradiction.

The singular 2-homology module of M can be described in a similar way as the set of
equivalence classes of maps of compact smooth oriented (possibly disconnected) surfaces
in M , up to 3-dimensional “bordism”. A nice, nontrivial fact in the situations of our interest
is that every 1- or 2-homology class can be represented by submanifolds (i.e. the above
maps may be chosen to be embeddings). In the polyhedral setting, this is a consequence of
Kneser’s method (1924) for eliminating singularities (see [43, p. 32]). By Theorem 2.8 (or
even by classical results within the smooth framework), this also holds in the smooth case.
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3. Simple domains

Let Ω be a domain. In the theoretical and applied literature about Helmholtz domains,
two main notions are employed in order to declare that Ω is “simple”:

(a) Ω is simply connected (i.e. it has trivial fundamental group).
(b) Every curl-free smooth vector field on Ω is the gradient of a smooth function on Ω .

Since our discussion is mainly motivated by the applications mentioned in the
introduction, we believe that condition (b) is more relevant here, so henceforth we use
the term “simple” according to the following:

Definition 3.1. Let Ω be a domain. Then Ω is simple if it satisfies condition (b) above.

It is widely known (and proved in Corollary 3.5) that a simply connected domain is
simple. In fact, as described in the following paragraphs, condition (b) above is equivalent
to the vanishing of the first de Rham cohomology module of Ω , which is in turn implied
by the request that Ω be simply connected. The converse implication seems to have risen
some misunderstandings (see Example 3.6). The main result of this section ensures that
conditions (a) and (b) above are indeed equivalent, if we restrict to domains with locally
flat boundary (but see also Remark 3.8). In fact, in Section 3.5 we will prove the following
result (where we keep notations from Lemma 2.4):

Theorem 3.2. Let Ω be a simple domain of R3 with locally flat boundary ∂Ω = S0 ∪· · ·∪

Sh . Then, for every j ∈ {0, 1, . . . , h}, both Ω(S j ) and Ω∗(S j ) are 3-balls of S3 bounded
by the locally flat 2-sphere S j . Therefore, the domain

Ω = Ω(S0) ∩

h
j=1

Ω∗(S j )

is just an “external” 3-ball with a finite number of “internal” pairwise disjoint 3-disks
removed. In particular, Ω is simply connected.

Other characterizations of simple domains are given in Corollary 3.5.

3.1. Vector fields, differential forms and de Rham cohomology

We begin by reformulating condition (b) more conveniently in terms of differential
forms. Every nondegenerate scalar product ⟨ , ⟩ on a finite dimensional real vector space
V determines an isomorphism ψ : V −→ V ∗ between V and its dual space V ∗

:=

HomR(V,R), by the formula ψ(v)(w) = ⟨v,w⟩, for every v,w ∈ V . A Riemannian
metric on a smooth manifold M is just a smooth field {⟨ , ⟩p}p∈M of positive definite
(hence nondegenerate) scalar products on the tangent spaces Tp M . The above formula
applied pointwise on M determines a canonical isomorphism between the space of smooth
tangent vector fields and the space of smooth 1-forms on M (from now on, even when not
explicitly stated, differential forms are assumed to be smooth). Let us apply this general
fact to the standard flat Riemannian metric ds2

= dx2
1 + dx2

2 + dx2
3 on R3 (and to its

restriction to any domain). In this case, if V = (V1, V2, V3) is a smooth vector field on a
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domain Ω , then ω :=
3

j=1 V j dx j is the associated 1-form. The differential of ω is the
2-form

dω =


−
∂V2

∂x3
+
∂V3

∂x2


dx2 ∧ dx3 −


∂V1

∂x3
−
∂V3

∂x1


dx1 ∧ dx3

+


−
∂V1

∂x2
+
∂V2

∂x1


dx1 ∧ dx2.

Since

curl(V ) =


−
∂V2

∂x3
+
∂V3

∂x2
,
∂V1

∂x3
−
∂V3

∂x1
, −

∂V1

∂x2
+
∂V2

∂x1


,

V is curl-free if and only if dω = 0.
If f : Ω −→ R is a smooth function, the differential of f is the 1-form

d f =

3
j=1

∂ f

∂x j
dx j .

By the very definitions, the gradient ∇ f corresponds to d f , via the above canonical
isomorphism determined by ds2.

A 1-form is closed if its differential vanishes, and it is exact if it is the differential of
a smooth function. Since d(d f ) = 0 for every smooth function f (or, equivalently, every
gradient field is curl-free), every exact 1-form is closed. If Ω is a domain, then the first
de Rham cohomology group H1

DR(Ω) is defined as the quotient vector space of closed
1-forms defined on Ω modulo exact 1-forms defined on Ω . Condition (b) above is then
equivalent to condition

(b′) Every closed 1-form on Ω is exact, i.e. H1
DR(Ω) = 0.

While condition (b) involves the Riemannian metric of Ω , condition (b′) only depends
on the differential structure of Ω : therefore, property (b), which is obviously an isometric
invariant of domains, is in fact a diffeomorphism invariant. Moreover, as a very particular
case of de Rham Theorem (see e.g. [29]), we know that

H1
DR(Ω) ∼= H1(Ω; R),

where the vector space on the right-hand side is the singular 1-cohomology module with
real coefficients, which is a topological (homotopic indeed) invariant (see e.g. [47]). Hence,
we may reformulate condition (b) in the language of (basic) algebraic topology as follows:

(b′′) H1(Ω; R) = 0.

3.2. The Universal Coefficient Theorem

Singular homology and singular cohomology with real and integer coefficients are
closely related to each other. In fact, the Universal Coefficient Theorem expresses singular
homology and singular cohomology with arbitrary coefficients in terms of singular
homology with integer coefficients (see e.g. [47, Theorems 3.2 and 3A.3]). In order to
state the consequences of the Universal Coefficient Theorem that are relevant to our
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purposes, we first extend our notations for the 1- and 2-dimensional (co)homology modules
to the case of arbitrary dimension. Let X be a topological space, and let R be either
the ring of integers Z or the field of real numbers R. For every i ∈ N we denote by
Hi (X; R) (resp. by H i (X; R)) the singular i-th homology module (resp. the singular i-th
cohomology module) of X with coefficients in R. We also denote by Ti (X) the submodule
of finite-order elements of Hi (X,Z), and we observe that Ti (X) is finite if Hi (X; Z) is
finitely generated. If G,G ′ are Abelian groups, we denote by HomZ(G,G ′) the space of
group homomorphisms between G and G ′ (the subscript Z is due to the fact that every
Abelian group is naturally a Z-module, and group homomorphisms coincide with Z-linear
homomorphisms of Z-modules). On the other hand, if V is a real vector space, we denote
by HomR(V,R) the dual space of V , i.e. the space of R-linear maps from V to R. Since
R is a field, in our cases of interest the Universal Coefficient Theorem specializes to the
following results:

Theorem 3.3 (Universal Coefficient Theorem for Homology). For every i ∈ N, there exists
a canonical isomorphism

Hi (X; R) ∼= Hi (X; Z)⊗ R.

Theorem 3.4 (Universal Coefficient Theorem for Cohomology). For every i ∈ N, there
exist canonical isomorphisms

H i (X; R) ∼= HomZ(Hi (X; Z),R) ∼= HomR(Hi (X; R),R).

In addition, if Hi−1(X; Z) is finitely generated, then

H i (X; Z) ∼= HomZ(Hi (X; Z),Z)⊕ Ti−1(X).

In fact, the last statement of Theorem 3.4 may be strengthened as follows. The
tautological pairing between singular cochains and singular chains induces a well-defined
Z-bilinear pairing

H i (X; Z)× Hi (X; Z) → Z,

usually called Kronecker pairing, which in turn induces a Z-linear map

H i (X; Z) → HomZ(Hi (X; Z),Z).

This map is always surjective, and its kernel is isomorphic to Ti−1(X) whenever
Hi−1(X; Z) is finitely generated. Since HomZ(Hi (X; Z),Z) is a free Z-module, it is not
difficult to show that these facts imply the last statement of Theorem 3.4.

Using Theorem 3.2, we may now establish the following characterizations of simple
domains. We refer the reader to Section 4.1 for the definitions of weak derivatives of vector
fields and of the Sobolev space W 1,2(Ω). These notions are involved in the statement of
condition (f) below, and they naturally come into play in several applications of the method
of cutting surfaces (see again Section 4.1).

Corollary 3.5. Let Ω be a domain with locally flat boundary. Then the following properties
are equivalent:
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(a) Ω is simply connected.
(b) Ω is simple, i.e. every curl-free smooth vector field on Ω is the gradient of a smooth

function.
(b′′) H1(Ω; R) = 0.

(c) H1(Ω; Z) = 0.
(d) H1(Ω; R) = 0.
(e) For every curl-free smooth vector field V and every divergence-free smooth vector

field W on Ω with compact support, the integral

Ω V • W dx is null, where

V • W =
3

j=1 V j · W j if V = (V1, V2, V3) and W = (W1,W2,W3).

Moreover, if Ω has Lipschitz boundary, then we can add the following equivalent
condition to the list:

(f) Every curl-free vector field in L2(Ω)3 is the weak gradient of a function in W 1,2(Ω).

Proof. As observed in Section 2.6, if Ω is simply connected, then every 1-cycle in Ω is
a boundary, so H1(Ω; Z) = 0. Therefore, the Universal Coefficient Theorem implies that
H1(Ω; R) = 0 and H1(Ω; R) = 0. We have thus proved that

(a) H⇒ (c) H⇒ (d) H⇒ (b′′) (⇐⇒ (b)) .

On the other hand, Theorem 3.2 ensures that (b) implies (a). We have thus proved that the
first five conditions are equivalent to each other.

If (b) holds, then (e) follows immediately from the Green formula. Suppose now that (e)
holds, let V be a curl-free smooth vector field on Ω and let ω be the 1-form corresponding
to V via the duality described above. Let now ϕ be any fixed compactly supported closed
2-form on Ω . As a direct consequence of Stokes’ Theorem, the map which associates to
every class [ψ] ∈ H1

DR(Ω) the real number
Ω
ψ ∧ ϕ

is well-defined and determines a linear map fϕ : H1
DR(Ω) −→ R. Now a classical result

in de Rham Cohomology Theory (see e.g. [29, p. 44]) ensures that every linear map
H1

DR(Ω) −→ R arises in this way, i.e. it is of the form fϕ for some closed compactly
supported 2-form ϕ. Therefore condition (e) translates into the fact that every linear map
H1

DR(Ω) −→ R vanishes on the cohomology class [ω] of ω, and this readily implies that
[ω] = 0, i.e. ω is exact. This is in turn equivalent to the fact that V is the gradient of a
smooth function.

Finally, (b′′) ⇐⇒ (f) is immediate from the version of de Rham Theorem given in
[20, Assertion (11.7), p. 85]. �

3.3. A fallacious counterexample

Before going into the proof of Theorem 3.2, we discuss a fake counterexample to the
implication (b) H⇒ (a).
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Example 3.6. We briefly analyze the example given by Vourdas and Binns in their
response to Kotiuga in the correspondence [19, p. 232] (see also [7], [16, Section 2.1]
and [17, Section 1]). Let C be the oriented trefoil knot of R3 and let Σ be the Seifert
surface of C drawn in Fig. 2 (on the left). Denote by ΩC (Σ ) the domain of R3 obtained by
applying to the complement-domain C(C) of C the cut/open operation along Σ .

In [19, p. 232], Vourdas and Binns assert that S3
\ Σ (or, equivalently, ΩC (Σ )) is not

simply connected, while H1(S3
\ Σ ; R) = 0 (or, equivalently, H1(ΩC (Σ ); R) = 0). The

second claim is wrong. In fact, consider the two oriented loops a and b contained in Σ and
the two oriented loops R and T contained in ΩC (Σ ) drawn in Fig. 2 (on the right). The
surface Σ is homeomorphic to a torus minus an open 2-ball, and the homology classes of
a and of b in Σ form a basis of H1(Σ ; R) (see also Fig. 8.12 of [6, p. 243] to visualize
these facts). Alexander Duality Theorem immediately implies that the homology classes
of R and of T form a basis of H1(ΩC (Σ ); R). In particular, this last space is nontrivial.
Moreover, the trefoil knot is an example of fibered knot having the given Seifert surface
as a fiber (this is carefully described in [69, p. 327]). Hence, ΩC (Σ ) is homeomorphic to
(Σ \ ∂Σ ) × (0, 1) and has therefore the same homotopy type of Σ . Note that this fact
confirms the above claim that H1(ΩC (Σ ); R) and H1(Σ ; R) are isomorphic.

The first argument above can be rephrased in a more physical fashion. Suppose a is an
ideally thin conductor, carrying a current of unitary intensity. Let Ha be the corresponding
magnetic field. The restriction H′

a of Ha to S3
\Σ is a curl-free smooth vector field, which

does not have any scalar potential. In fact, the circulation of H′
a along R is 1. In particular,

by Stokes’ Theorem, the homology class of R in S3
\ Σ is not null. Similar considerations

can be repeated for b and T .
We believe that the following observation points out a possible source for this mistake.

In Fig. 3, it is drawn a compact connected orientable surface B of R3 with boundary R
contained in S3

\ C (see also Fig. 8.13 of [6, p. 244]). The existence of such a surface
implies that R represents the null homology class in H1(S3

\ C; R). Then the restriction
to S3

\ Σ of any curl-free smooth vector field defined on the whole of S3
\ C has null

circulation along R. On the other hand, not every curl-free smooth vector fields on S3
\ Σ

can be extended to S3
\ C . Note also that the surface B intersects in an essential way the

Seifert surface Σ . These facts explain why the homology class of R in S3
\C is null, while

the homology class of R in S3
\ Σ is not. We refer the reader to Section 5 for further

elaborations.

Example 3.7. In their discussion about the relationship between homotopy and
homology [19], Vourdas and Binns also consider the case of the Whitehead link (see
the top of Fig. 4, on the left). With notations as in Fig. 4, they claim that the loop R
is homologically trivial and homotopically nontrivial in the complement of C (see [7]).
On the contrary, the sequence of moves described in Fig. 4 shows that R is homotopic
(in the complement of C) to a loop R′ which is clearly null-homotopic. As discussed in
Section 2.6, the fact that R is homotopic to R′ in R3

\ C follows from the fact that R can
be continuously deformed into R′ without crossing C (but crossing itself!). This implies,
in particular, that R bounds a singular 2-disk in R3

\ C . In fact, since R and C are not
geometrically unlinked, R cannot bound an embedded locally flat 2-disk in R3

\ C . As a
consequence, it can be shown that R and R′ are not isotopic in R3

\ C .
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Fig. 2. The trefoil knot with one of its Seifert surfaces.

Fig. 3. A null homologous cycle.

3.4. Elementary results about the algebraic topology of domains

Let M be a compact smooth manifold. We say that M is closed if its boundary is empty.
By the classical Morse theory (see [63,50]), if M is closed, then it has the homotopy type
of a finite CW complex of dimension m = dim M , which can be constructed starting
from any Morse function on M . If M is connected with nonempty boundary, then it has
the homotopy type of a CW complex of dimension <m, which can be determined by any
Morse function f : (M, ∂M) −→ ([0, 1], {1}) without local maxima. The same facts hold
if M is polyhedral. One can get a unified treatment of the smooth and of the polyhedral
case by reformulating Morse theory in terms of handle decomposition theory (see [64,70]).
By Theorem 2.8, in our favorite case of spatial domains, we can adopt both points of view.

Recall that the Universal Coefficient Theorem for cohomology implies that, for every
k ∈ N, the singular k-cohomology module H k(M; R) of M with real coefficients
is isomorphic to the dual space HomR(Hk(M; R),R) of the corresponding singular
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Fig. 4. A proof that R is homotopically trivial in R3
\ C . The horizontal moves are realized by

smooth isotopies, while the third move describes a homotopy between R and R′ in R3
\ C . During

this homotopy, the loop crosses itself.

homology module Hk(M; R). Moreover, compactness of M implies that, for every k ∈

N, the k-th Betti number bk(M) := dim Hk(M; R) of M is finite, whence equal to
dim H k(M; R). In fact, the fundamental isomorphism between cellular (or simplicial) and
singular homologies implies that dim Hk(M; R) is finite for every k ∈ N and vanishes
if k > dim M . Similar results also hold for homology and cohomology with integer
coefficients: Hn(M; Z) and Hn(M; Z) are finitely generated for every n ∈ N and trivial for
n > dim M . Hence, the submodule Tn(M) of finite-order elements of Hn(M,Z) is finite,
and

Hn(M; Z) =

Hn(M; Z)/Tn(M)


⊕ Tn(M).

Being finitely generated and torsion-free, the quotient Hn(M; Z)/Tn(M) is isomorphic to
Zr for some r ≥ 0; such an r will be called the rank of Hn(M; Z) and will be denoted by
rn(M).

The Universal Coefficient Theorem for homology ensures that Hn(M; R) = Hn(M; Z)
⊗ R, and this implies in turn that rn(M) = bn(M). Let us now recall the definition of the
Euler–Poincaré characteristic χ(M) of M :

χ(M) :=

dim M
n=0

(−1)nbn(M).

It is well-known that, if cn is the number of n-cells (n-simplices) of any finite CW
complex homotopy equivalent to (any triangulation of) M , then χ(M) admits the following
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combinatorial description:

χ(M) =

dim M
n=0

(−1)ncn .

We now list some elementary results that will prove useful later.

(1) Assume that M is connected. Then b0(M) = 1. If dim M = m and M has nonempty
boundary, then bm(M) = 0. The last claim follows from the fact that M has the homotopy
type of a CW complex of strictly smaller dimension.

(2) If M is a closed manifold of odd dimension m = 2n +1, then χ(M) = 0. In fact, the
“dual” CW complexes associated to f and − f , where f is a suitable Morse function on
M , are such that the respective numbers of cells verify the relations ci = c∗

m−i . Then the
result easily follows from the combinatorial formula for χ(M). If M is triangulated, one
can use the dual cell decomposition of a given triangulation. These facts may be thought
as primitive manifestations of the Poincaré duality for M .

(3) If M is a connected manifold with nonempty boundary ∂M , then we can construct
the double D(M) of M , by glueing two copies of M along their boundaries via the identity
map. Then D(M) is closed and

χ(D(M)) = 2χ(M)− χ(∂M).

In the case of triangulable manifolds (like spatial domains), the latter equality follows
easily by considering a triangulation of (M, ∂M), that induces a triangulation of the
double, and by using the combinatorial formula for χ . Hence, if dim M is odd, then
χ(∂M) = 2χ(M) is even. Moreover, we observe that

χ(∂M) =


i

χ(Si ),

where the Si ’s are the boundary components of M .

Let us now specialize to domains.

(4) As already mentioned, if Ω ⊂ R3 is a domain with smooth boundary, then Ω is
homotopically equivalent to Ω , so bn(Ω) = bn(Ω) for every n ∈ N. Since Ω is a compact
smooth 3-manifold with nonempty boundary, we deduce from point (1) above that

χ(Ω) = χ(Ω) = 1 − b1(Ω)+ b2(Ω).

(5) If M = S is a smooth surface in R3, then b0(S) = 1 = b2(S), and S bounds Ω(S).
In particular, by point (3) above, b1(S) = 2 − χ(S) is even. The nonnegative integer

g(S) :=
b1(S)

2

is called genus of S. A basic classification theorem of orientable surfaces (see [50]) says
that two compact orientable surfaces are diffeomorphic if and only if they have the same
genus. In particular, S is a smooth 2-sphere if and only if g(S) = 0.
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(6) If Ω ⊂ R3 is a domain whose boundary consists of the disjoint union of smooth
surfaces S0, . . . , Sh , then points (3) and (5) above imply that:

χ(Ω) =
χ(∂M)

2
=

1
2

h
i=0

χ(Si ) =
1
2

h
i=0


2 − 2g(Si )


= h + 1 −

h
i=0

g(Si ).

3.5. Proof of Theorem 3.2

Let Ω be a simple domain with locally flat boundary. We already know that the fact that
Ω is simple is equivalent to the condition H1(Ω; R) = 0. Moreover, it is not restrictive to
assume that Ω has smooth boundary. We denote by S0, . . . , Sh the boundary components
of ∂Ω , keeping notations from Lemma 2.4.

Let us set b1 := b1(Ω), b2 := b2(Ω). As a consequence of the Universal Coefficient
Theorem for cohomology, the fact that H1(Ω; R) = 0 is equivalent to the condition
b1 = 0. By point (4) above, this is equivalent to χ(Ω) = 1 + b2 as well. Together with the
equality χ(Ω) = h + 1 −

h
i=0 g(Si ) proved above, this implies that

h −

h
i=0

g(Si ) = b2 ≥ 0. (1)

The proof proceeds now by induction on h ≥ 0. If h = 0, then we have −g(S0) ≥ 0,
so g(S0) = 0 and S0 is a smooth 2-sphere embedded in S3. Hence, in this case, our
theorem reduces to the celebrated Alexander Theorem (1924) [23] (see also [48] for a
very accessible proof in the case of smooth spheres, rather than polyhedral ones as in
the original paper by Alexander). If h ≥ 1, then Eq. (1) implies that g(S j0) = 0 for at
least one j0 ∈ {0, . . . , h}. Suppose first that j0 ≥ 1. Let us denote by Ω0 the domain
Ω0

= Ω ∪ Ω(S j0) obtained by capping-off the boundary sphere S j0 of Ω with the 3-disk
Ω(S j0). An elementary application of the Mayer–Vietoris Theorem (see e.g. [47]) shows
that Ω0 is a domain with (h − 1) boundary components such that H1(Ω0

; R) = 0, and this
allows us to conclude by induction. If j0 = 0, then the same proof applies, after defining
Ω0 as the domain obtained by filling Ω (in S3) with the 3-disk Ω∗(S0). �

Remark 3.8. Theorem 3.2 does not hold in general if we do not assume Ω to have locally
flat boundary. In fact, on one hand, the Jordan–Brouwer Separation Theorem establishes
that every topological 2-sphere S embedded in S3 disconnects S3 in two domains each of
which has trivial singular 1-homology module. On the other hand, as we already mentioned
above, Alexander ([24,25], see also [69, p. 76 and p. 81]) produced celebrated examples of
nonlocally flat topological 2-spheres whose complement in S3 consists of domains one of
which (or even both of which) is not simply connected.

Remark 3.9. A smooth compact connected 3-manifold M with nonempty boundary is a
Z-homology disk (resp. R-homology disk) if its homology modules with coefficients in Z
(resp. in R) are trivial, except that in dimension 0 (so a Z-homology disk is necessarily
an R-homology disk). Non-simply connected R-homology disks are easily constructed
by removing a small genuine 3-ball from closed 3-manifolds with finite (but nontrivial)
fundamental group such as the projective space P3(R) or any lens space L(p, q) (see
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[69, p. 233]). In the same spirit, a Z-homology disk which is not simply connected can
be obtained by removing a genuine 3-ball from a closed connected 3-manifold that has
trivial 1-dimensional Z-homology but is not simply connected. The first example of such
a manifold is due to Poincaré. Theorem 3.2 implies that connected R-homology disks that
are not simply connected cannot be smoothly embedded in S3.

Remark 3.10. Even in the locally flat case, the conclusions of Theorem 3.2 are no longer
true when dealing with domains in higher dimensional Euclidean space. For example,
the projective plane P2(R) can be embedded in R4, and a tubular neighborhood of the
image of such an embedding is a 4-dimensional R-homology disk with fundamental group
isomorphic to Z/2Z.

We end this section with an open question (as far as we know):

Question 3.11. Let Ω be a not necessarily bounded domain with smooth boundary.
Assume that H1(Ω; R) = 0. Is it true that Ω is simply connected?

4. Helmholtz domains

Before giving the precise definition of Helmholtz domain, we briefly describe the
method of cutting surfaces in the standard L2-setting (see [11,10,3]), by considering the
basic problem of “superconductive walls” in magnetostatics.

4.1. The standard setting of the method of cutting surfaces

Let Ω be a bounded open domain of R3 with Lipschitz boundary, let L2(Ω) be the usual
Hilbert space of square-summable functions on Ω and let L2(Ω)3 be the corresponding
Hilbert space of L2-vector fields on Ω whose scalar product is given by

⟨V,W ⟩ :=


Ω

V • W dx,

where V • W :=
3

i=1 Vi Wi if V = (V1, V2, V3) and W = (W1,W2,W3). Denote by
W 1,2(Ω) the Sobolev space consisting of all functions in L2(Ω) whose weak gradient is a
well-defined element of L2(Ω)3. Let C ∞

0 (Ω) be the set of all real-valued smooth functions
on Ω with compact support and let V ∈ L2(Ω)3. We recall that V has weak curl in L2(Ω)3,
denoted by curl(V ), if curl(V ) is a vector field in L2(Ω)3 such that

⟨curl(V ),Φ⟩ = ⟨V, curl(Φ)⟩ for every Φ ∈ C ∞

0 (Ω)3.

Moreover, V has weak divergence div(V ) in L2(Ω) if div(V ) is a function in L2(Ω) such
that 

Ω
div(V ) · ϕ dx = −⟨V,∇ϕ⟩ for every ϕ ∈ C ∞

0 (Ω).

The vector field V is called curl-free if curl(V ) = 0 and divergence-free if div(V ) = 0.
If V is both curl- and divergence-free, then it is called harmonic. Let n∂Ω be the outward
unit normal L∞-vector field of the boundary ∂Ω of Ω (see Lemma 4.2 of [21, p. 88]) and
let H(Ω) be the space of harmonic L2-vector fields of Ω tangent to ∂Ω , i.e.
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H(Ω) :=


V ∈ L2(Ω)3 | curl(V ) = 0, div(V ) = 0, V • n∂Ω = 0

,

where V • n∂Ω is the normal component of V on ∂Ω in the sense of traces (see Part A,
Section 1 in Chapter IX of [9]).

The mentioned problem of “superconductive walls” in magnetostatics can be stated as
follows (see Section 4.2 of [5]): given a divergence-free vector field J in L2(Ω)3 having
null flux across every connected component of ∂Ω , find H ∈ L2(Ω)3 in such a way that

curl(H) = J on Ω ,
div(H) = 0 on Ω ,
H • n∂Ω = 0 on ∂Ω ,
⟨H, V ⟩ = 0 for every V ∈ H(Ω).

The Hodge decomposition theorem for L2(Ω)3 ensures that such a system has a unique
solution, and that H(Ω) is isomorphic to the first de Rham cohomology group of Ω . The
latter fact implies that H(Ω) is finite-dimensional, so that the system can be reformulated
in a form suitable for numerical computations. Indeed, if {V1, . . . , Vg} is a basis of H(Ω),
then one can rewrite the system replacing the last equation (which encodes an infinite
number of conditions) with the following finite number of conditions:

⟨H, Vi ⟩ = 0 for every i ∈ {1, . . . , g}.

The method of cutting surfaces allows to construct a basis of H(Ω) as follows. Suppose
that there exist pairwise disjoint oriented Lipschitz connected surfaces Σ1, . . . ,Σg in Ω ,
called cutting surfaces of Ω , such that each surface Σi intersects transversally ∂Ω in its
boundary ∂Σi and the open set Ω̇ := Ω \

g
i=1 Σi is “simple” in the following sense:

every curl-free vector field in L2(Ω̇)3 is the weak gradient of a function in W 1,2(Ω̇).
(2)

Let i ∈ {1, . . . , g} and let nΣi be the unit normal L∞-vector field of Σi . Given
φ ∈ W 1,2(Ω̇), we denote by [φ]Σi the jump function φ|Σ+

i
− φ|Σ−

i
of φ across Σi .

Similarly, we denote by [∂φ/∂nΣi ]Σi the jump function (∂φ/∂nΣi )|Σ+

i
− (∂φ/∂nΣi )|Σ−

i
of the normal derivative ∂φ/∂nΣi of φ (see Remark 2.1 of [10] for further details).

Consider the following problem: find φi ∈ W 1,2(Ω̇) such that

1φi = 0 on Ω̇ ,

∂φi/∂n∂Ω = 0 on ∂Ω \

g
i=1

∂Σi ,

[∂φi/∂nΣ j ]Σ j = 0 for every j ∈ {1, . . . , g},

[φi ]Σ j = δi j for every j ∈ {1, . . . , g}.

This system has a simple variational formulation, which implies the existence of a solution,
that is unique up to an additive constant (see Lemma 1.2 of [11]). It follows that the weak
gradient Vi of φi on Ω̇ uniquely defines an element of L2(Ω)3. The set {V1, . . . , Vg} is
a basis of H(Ω) (see Lemma 1.3 of [11]). The fact that the cutting surfaces Σi of Ω are
pairwise disjoint is of crucial importance in the above procedure. We refer the reader to
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[2–5,10–12,18] for some applications and further results concerning the method of cutting
surfaces.

4.2. Helmholtz domains

The previous discussion motivates the following:

Definition 4.1. A domain Ω ⊂ R3 with locally flat boundary is Helmholtz if there exists a
finite family F = {Σi } (called cut system for Ω ) of disjoint properly embedded (connected)
surfaces in (Ω , ∂Ω), such that every connected component of ΩC (F) is a simple domain.
The symbol ΩC (F) denotes the open subset of R3 obtained from Ω by the cut/open
operation along the Σi ’s.

We are going to provide an exhaustive and simple characterization of Helmholtz do-
mains (and of their cut systems). We say that a cut system for Ω is minimal if it does not
properly contain any cut system for Ω . Of course, every cut system contains a minimal cut
system.

Lemma 4.2. Suppose F is a minimal cut system for Ω . Then ΩC (F) is connected.
Moreover, every surface of F has nonempty boundary.

Proof. Let Ω1, . . . ,Ωk be the connected components of ΩC (F) and suppose by
contradiction k ≥ 2. Then we can find a connected surface Σ0 ∈ F which lies “between”
two distinct Ωi ’s. We now show that the family F ′

= F \ {Σ0} is a cut system for Ω , thus
obtaining the desired contradiction.

Up to reordering the Ωi ’s, we may suppose that (parallel copies of) Σ0 lie in the boundary
of both Ωk−1 and Ωk , so that ΩC (F ′) = Ω ′

1 ∪ · · · ∪ Ω ′

k−1, where Ω ′

i = Ωi for every
i ∈ {1, . . . , k − 2},Σ0 is properly embedded in Ω ′

k−1 and Ωk−1 ∪Ωk is obtained by cutting
Ω ′

k−1 along Σ0. Since F is a cut system for Ω , the modules H1(Ωk−1; R) and H1(Ωk; R)
are null. By Theorem 3.2, it follows that Ωk−1 and Ωk are simply connected. But Σ0 is
connected, so an easy application of van Kampen’s Theorem (see e.g. [47]) ensures that
Ω ′

k−1 is also simply connected, whence simple. Therefore F ′ is a cut system for Ω .
We have thus proved the first statement of the lemma. Suppose by contradiction that

an element of F , say Σ0, has nonempty boundary. Then Proposition 2.2 implies that Σ0
disconnects S3, and this implies in turn that Σ0 disconnects Ω , a contradiction. �

Definition 4.3. A (3-dimensional) 1-handle is a topological pair (M, A) homeomorphic
to the pair (D2

× [0, 1], D2
× {0, 1}). Equivalently, the pair (M, A) is a 1-handle if

M is homeomorphic to the 3-disk D3 (which, of course, is in turn homeomorphic to
D2

× [0, 1]) and A is the union of two disjoint 2-disks in ∂M . The connected components
of A are the attaching 2-disks of M , while if B ⊂ M corresponds to D2

× {1/2} under a
homeomorphism (M, A) ∼= (D2

× [0, 1], D2
× {0, 1}), then B is a co-core of M .

A handlebody H in S3 is a compact submanifold with boundary of S3 which is
constructed by attaching a finite number of 1-handles to a finite number of 3-disks of S3.
More precisely, a handlebody is a compact connected submanifold H ⊆ S3 with locally
flat boundary that can be decomposed as the union of a finite number of 3-disks (that
are usually called the 0-handles of H ) and a finite number of 1-handles in such a way
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that the following conditions hold: the 0-handles are pairwise disjoint; the 1-handles are
pairwise disjoint; if Z is the union of the 0-handles and U is the union of the 1-handles
of the decomposition, then Z ∩ U coincides with the union of the attaching 2-disks of
the 1-handles; the previous conditions imply that these attaching 2-disks are pairwise
disjoint subsets that lie on the union of the boundaries of the 0-handles. We notice that
the decomposition of a handlebody H into handles is not unique, even up to isotopy. An
open handlebody is just a domain H whose closure H in S3 is a handlebody.

The very same definition also works in the smooth (rather than locally flat) case,
provided that a “rounding the corners” procedure is carried out along the boundaries of
the attaching 2-disks.

Remark 4.4. It is readily seen that a subset H of S3 is a handlebody if and only if
it is isotopic to a regular neighborhood of a finite connected spatial graph Γ (i.e. a 1-
dimensional compact connected polyhedron) in S3. Such a graph is a spine of H .

Every open handlebody H is Helmholtz: a cut system M for H is easily constructed by
taking one co-core for every 1-handle of H , since in this case the result HC (M) of cutting
H along M is just the union of the internal parts of the 0-handles of H , that are 3-balls.
It is not hard to see that M contains a subfamily M′ of co-cores such that HC (M′) is
just one 3-ball. We call such an M′ a minimal system of meridian 2-disks for H . An easy
argument using the Euler–Poincaré characteristic shows that the number g(H) of 2-disks
in a minimal system of meridian 2-disks for H is equal to the genus g(∂H) of ∂H . In
particular, this number does not depend on the handle-decomposition of H , it is denoted
by g(H) and called the genus of H . Via “handle sliding”, it can be easily shown that two
handlebodies are (abstractly) homeomorphic if and only if they have the same genus. It
follows from the definitions that 3-disks are the handlebodies of genus 0, while solid tori
are the handlebodies of genus 1.

4.3. A characterization of Helmholtz domains

We are now ready to state the main result of this section.

Theorem 4.5. Let Ω be a domain with locally flat boundary and let S0, . . . , Sh be the
connected components of ∂Ω , ordered as in Lemma 2.4. Then Ω is a Helmholtz domain if
and only if the following two conditions hold:

(1) The domains Ω(S0) and Ω∗(S j ), j = 1, . . . , h, are open handlebodies in S3.
(2) Every Ω(S j ), j = 1, . . . , h, is contained in a 3-disk of S3 embedded in Ω(S0), and

these 3-disks are pairwise disjoint.

Moreover, if Ω is Helmholtz, then there exists a cut system F for Ω such that each element
of F is a properly embedded 2-disk in (Ω , ∂Ω), and ΩC (F) consists of one “external” 3-
ball with a finite number of “internal” pairwise disjoint 3-disks removed. In particular,
ΩC (F) is connected and simply connected.

Proof. We can suppose as usual that Ω has smooth boundary. Assume that Ω verifies
(1) and (2). Thanks to these conditions, it is possible to choose a minimal system M0
of meridian 2-disks for Ω(S0) and, for every i ∈ {1, . . . , h}, a minimal system Mi
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of meridian 2-disks for Ω∗(Si ) in such a way that 2-disks belonging to distinct Mi ’s,
i = 0, 1, . . . , h, are pairwise disjoint. It is now readily seen that

h
i=0 Mi provides the cut

system required in the last statement of the theorem. In particular, Ω is Helmholtz.
Let us concentrate on the converse implication. Denote by F an arbitrary cut system for

the Helmholtz domain Ω . According to the definition of the cut/open operation along F ,
we have ΩC (F) = Ω\


Σ∈F UΣ , where each UΣ is a bicollar of (Σ , ∂Σ ) in (Ω , ∂Ω), and

these bicollars are pairwise disjoint. Hence Ω can be reconstructed starting from ΩC (F)
by attaching to its boundary the UΣ ’s along the surfaces Σ+ and Σ− corresponding to
Σ × {±1} in Σ × [−1, 1] ∼= UΣ . By Theorem 3.2, every component of ΩC (F) consists of
an “external” 3-ball with a finite number of “internal” pairwise disjoint 3-disks removed, so
the boundary components of ΩC (F) are spheres. It follows that every surface Σ is planar,
whence homeomorphic either to the 2-sphere or to D2

k for some nonnegative integer k,
where D2

k is the closure in R2 of a 2-disk D2 with k disjoint 2-disks removed from its
interior.

We conclude the proof of the theorem in two steps. We first assume that all the surfaces
of a given cut system F of the Helmholtz domain Ω are 2-disks. Next we show how every
arbitrarily given cut system F can be replaced by one consisting of 2-disks only.

Step 1. Suppose that every surface in F is a 2-disk. By Lemma 4.2, up to replacing F
with a minimal cut system contained in F , we may suppose that ΩC (F) is connected,
so that it consists of just one “external” 3-ball B0 with a finite number of “internal”
pairwise disjoint 3-disks removed. Observe that we can reconstruct Ω starting from ΩC (F)
just by attaching to ΩC (F) one 1-handle for each 2-disk in F : if D is such a disk, the
corresponding 1-handle coincides with the removed tubular neighborhood D × [−1, 1] of
D in Ω , in such a way that the attaching 2-disks are identified with D×{−1, 1}. Let us first
consider the 1-handles attached to B0. By the very definitions, the internal part Ω(S0) of
the union of B0 with these 1-handles is an open handlebody. Let T1, . . . , Th be the internal
boundary spheres of ΩC (F) and, for each j ∈ {1, . . . , h}, let B j be the internal part of
the 3-disk D j bounded by T j . Now Ω is obtained by attaching to each T j a finite number
of 1-handles contained in the corresponding D j . This description provides a realization of
each Ω∗(S j ), j = 1, . . . , h, as an open handlebody. Note that every Ω(S j ), j = 1, . . . , h,
is contained in the corresponding B j . Moreover, F coincides with the family obtained by
taking one co-core 2-disk for each added 1-handle. This completes the proof under the
assumption that every surface in F is a 2-disk.

Step 2. Suppose now that F is arbitrary, and let us show that it is possible to replace F
with a cut system containing only 2-disks.

Up to replacing F with a minimal cut system, we may assume that every element of
F is homeomorphic to D2

k for some nonnegative k, and that ΩC (F) is connected, so that
it consists of just one external 3-ball B0 with a finite number of internal pairwise disjoint
3-disks D1, . . . , Dl removed. We denote by T0 the 2-sphere bounding B0 and by Ti the 2-
sphere bounding Di , i = 1, . . . , l, and we observe that, under the above assumptions, for
every surface Σ ∈ F , there exists i ∈ {0, . . . , l} such that both Σ+ and Σ− are contained
in Ti .

We now show that, if Σ ∈ F is homeomorphic to D2
k for some k ≥ 1, then we can obtain

a new cut system F ′ from F by replacing Σ with two properly embedded 2-disks. Such a
cut system contains a minimal cut system F ′′ with a smaller number (with respect to F ) of
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Fig. 5. Diskal vs. planar co-cores: the dashed lines represent Σ ,Σ+ and Σ−, while the thickened
strings represent the “holes” of D2

k × [−1, 1] (here k = 2).

surfaces that are not disks. Together with an obvious inductive argument, this easily implies
that, if Ω is Helmholtz, then it admits a cut system consisting of 2-disks only, whence
the conclusion. So let Ti be the component of ∂ΩC (F) containing Σ+ and Σ−, choose
a boundary component γ of D2

k and denote by γ+, γ− the curves on Ti corresponding to
γ×{−1}, γ×{1} under the identification of Σ ×{±1} with Σ+

⊂ Ti and Σ−
⊂ Ti . If Dγ+

is the 2-disk on Ti bounded by γ+ and containing Σ+, we slightly push the internal part
of Dγ+ into ΩC (F) thus obtaining a 2-disk D+ properly embedded in ΩC (F) such that
∂D+

= γ+ (see Fig. 5). The same procedure applies to γ− providing a 2-disk D− properly
embedded in ΩC (F), and of course we may also assume that D+ and D− are disjoint. Also
observe that by construction both D+ and D− are disjoint from every surface in F .

We now set F ′
= (F \ {Σ }) ∪ {D+, D−

}. It is easy to see that ΩC (F ′) is given by the
disjoint union of a domain homeomorphic to ΩC (F) and a domain Ω ′ homeomorphic to
the internal part of

D2
× [−1,−1 + ε]


∪


D2

k × [ε, 1 − ε]


∪


D2

× [1 − ε, 1]


.

Now Ω ′ is homeomorphic to a 3-ball with k pairwise disjoint 3-disks removed, so it is
simple. Together with the fact that ΩC (F) is simple, this implies that F ′ is a cut system
for Ω . �

Remark 4.6. Building on Theorem 3.2, and bearing in mind the proof of Theorem 4.5,
we can now list some equivalent reformulations of the Helmholtz condition for spatial
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domains.

(1) A domain Ω of R3 with locally flat boundary is Helmholtz if and only if there exists
a finite family {Ωi }i∈I of simple domains of R3 with locally flat boundary such that
the following conditions hold: the closures of the Ωi ’s are pairwise disjoint, and Ω can
be constructed by attaching a finite number of pairwise disjoint 1-handles to


i∈I Ω i

along the boundary spheres of the Ωi ’s. In addition, one may suppose that {Ωi }i∈I
consists of a single simple domain.

(2) A domain Ω of R3 with locally flat boundary is Helmholtz if and only if there exists a
finite family {Di }i∈I of properly embedded 2-disks in (Ω , ∂Ω) such that Ω \


i∈I Di

is simply connected. In particular, as already mentioned in Lemma 4.2, we get an
equivalent definition of Helmholtz domains if we admit only cutting surfaces with
nonempty boundary.

(3) Suppose that Ω is Helmholtz. Then Ω is weakly Helmholtz, and every cut system for
Ω is a weak cut system for Ω (see Section 5 for the definitions of weakly Helmholtz
domain and weak cut system). In particular, Proposition 5.19 implies that every cut
system for Ω contains at least b1(Ω) surfaces. On the other hand, if F = {D1, . . . , Dℓ}
is a cut system for Ω consisting of properly embedded 2-disks in (Ω , ∂Ω) such that
Ω \

ℓ
i=1 Di is simply connected, then an easy application of the Mayer–Vietoris

Theorem implies that ℓ is equal to b1(Ω). Therefore, b1(Ω) provides the optimal lower
bound on the number of surfaces contained in a cut system for Ω .

In Fig. 6, it is drawn a “typical example” of Helmholtz domain: each big circle
containing smaller circles represents an “external” 3-ball with a finite number of “internal”
pairwise disjoint 3-disks removed, and the remaining bands represent the attached 1-
handles.

In some sense, Theorem 4.5 should be considered a negative result, as it shows that
the topology of Helmholtz domains is necessarily very simple. The following corollary
provides an evidence for this claim. Its proof follows immediately from Theorem 4.5 and
the discussion in Section 2.3. For simplicity, we say that a link L of S3 is Helmholtz if its
complement-domain C(L) is.

Corollary 4.7. Given a link L in S3, the following assertions are equivalent:

(1) L is Helmholtz.
(2) L is trivial.
(3) B(L) is Helmholtz.

In Fig. 7, it is drawn a trivial knot (on the left) and its box-domain (on the right). By
the preceding corollary, such a box-domain is Helmholtz. The trefoil knot is not trivial,
so its box-domain, drawn in Fig. 8, is not Helmholtz. Other examples of Helmholtz and
non-Helmholtz domains are described in Fig. 9.

4.4. On re-embeddings of Helmholtz domains

In general, the handlebodies occurring in Theorem 4.5 are knotted. Let us give a precise
definition of knotting for handlebodies. A handlebody H is unknotted if, up to ambient
isotopy, it admits a planar spine (in the sense of Remark 4.4) contained in R2

⊂ R3
⊂ S3.
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Fig. 6. A Helmholtz domain.

Fig. 7. The box-domain of the trivial knot is Helmholtz.

Thanks to a celebrated theorem of Waldhausen [80,72], this is equivalent to the fact
that also S3

\ H is a(n open) handlebody: in fact, a realization of S3 as the union of
two handlebodies along their boundaries is a so-called Heegaard splitting of S3, and
Waldhausen proved that S3 admits a unique (up to isotopy) Heegaard splitting of any
fixed genus. Just as in the case of knots, we define a link of handlebodies in S3 to be the
union of a finite family of disjoint handlebodies. A link of handlebodies is geometrically
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Fig. 8. A box-domain of a trefoil knot is not Helmholtz.

Fig. 9. A knotted torus inside a sphere. The union of these two surfaces disconnects R3 into three
connected components, two of which, being bounded, are domains. The “most internal” domain is
homeomorphic to the complement domain of the trefoil knot, so it is not Helmholtz. The domain with
two boundary components is homeomorphic to a solid torus with a disk removed, so it is Helmholtz.

unlinked if its components are contained in pairwise disjoint 3-disks of S3, and it is trivial
if it is geometrically unlinked and has unknotted components. Equivalently, a link of
handlebodies is trivial if it admits a planar spine (of course, such a spine is disconnected if
the link has at least two components).

Every (possibly knotted) handlebody can be re-embedded in S3 onto an unknotted
one. We can perform such re-embeddings separately for the handlebodies Ω(S0) and
Ω∗(S j ), j = 1, . . . , h, of Theorem 4.5, thus getting the following:
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Corollary 4.8. A domain Ω of R3 with locally flat boundary is Helmholtz if and only if it
can be re-embedded in S3 onto a domain Ω ′, which is the complement of a trivial link of
handlebodies.

It is easily seen that, in the case of the domain shown in Fig. 6, such a re-embedding can
be performed just by switching some crossings of the bands representing the 1-handles.

By comparing the previous corollary with the following general (and nontrivial) re-
embedding theorem due to Fox [39], we have a further evidence of the fact that the topology
of Helmholtz domains is quite elementary.

Theorem 4.9 (Fox Re-embedding Theorem). Every domain Ω of S3 with locally flat
boundary can be re-embedded in S3 onto a domain Ω ′, which is the complement of a
link of handlebodies.

5. Weakly Helmholtz domain

In this section, we propose and discuss a strictly weaker notion of “domains that simplify
after suitable cuts”. The notion we are introducing defines a class of domains that are very
well-behaved with respect to the method of cutting surfaces. Moreover, this class has the
advantage of covering a much wider range of topological models.

In order to save words, from now on, if M is a compact oriented 3-manifold with
(locally flat) boundary, we call system of surfaces in M any finite family F = {Σi }

of disjoint oriented connected surfaces properly embedded in M . We stress that every
element of a system of surfaces is connected and oriented, and that the elements of such
a system are pairwise disjoint. We begin with a definition in the spirit of condition (b) of
Section 3.

Definition 5.1. A domain Ω with locally flat boundary is weakly Helmholtz if it admits
a system of surfaces F (called a weak cut system for Ω ) such that, for every connected
component Ω0 of ΩC (F), the following condition holds: the restriction to Ω0 of every
curl-free smooth vector field defined on the whole of Ω is the gradient of a smooth function
on Ω0.

It readily follows from the preceding definition and from Theorem 4.5 that every
Helmholtz domain is weakly Helmholtz. As already mentioned in the introduction, we
are not able to provide a description of weakly Helmholtz domains as effective as the
classification of Helmholtz domains given by Theorem 4.5. Nevertheless, Theorem 5.4
provides an interesting characterization of weakly Helmholtz domains in terms of classical
properties of manifolds and of their fundamental group.

We devote the whole section to the proof of Theorem 5.4. In fact, by taking advantage
of the techniques developed below, at the end of the section we will be able to establish a
slightly stronger result (see Theorem 5.20). Further obstructions to be weakly Helmholtz
and several examples will be discussed in Section 6.

In order to properly state our characterization of Helmholtz domains we first need the
following definitions, which in the case of closed manifolds date back to [76] (see also
[46,74]).
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Definition 5.2. Let M be a (possibly nonorientable) connected compact 3-manifold with
(possibly empty) boundary. The cut number c(M) of M is the maximal number of disjoint
properly embedded bicollared (connected) surfaces Σ1, . . . ,Σk in (M, ∂M) such that
M \

k
i=1 Σi is connected.

A properly embedded surface in an orientable 3-manifold is bicollared if and only if it
is orientable. Therefore, if Ω is a domain with locally flat boundary, then the cut number
of Ω is just the maximal cardinality of a system of surfaces that does not disconnect Ω .

Definition 5.3. For each nonnegative integer r , we denote by Z∗r the free group of rank r .
Given a group Γ , the corank of Γ is the maximal nonnegative integer r such that Z∗r is
isomorphic to a quotient of Γ .

Recall that b1(Ω) = dim H1(Ω; R) is the first Betti number of Ω . We are now ready to
state the main result of the section:

Theorem 5.4. Let Ω ⊂ R3 be a domain with locally flat boundary and let r := b1(Ω).
Then the following conditions are equivalent:

(1) Ω is weakly Helmholtz.
(2) There exists a system of surfaces F = {Σ1, . . . ,Σr } in Ω such that Ω \

r
i=1 Σi is

connected (i.e. c(Ω) ≥ r).
(3) There exists a surjective homomorphism from π1(Ω) onto Zr (i.e. corankπ1(Ω) ≥ r).
(4) c(Ω) = corankπ1(Ω) = r .

Moreover, if Ω is weakly Helmholtz, then every weak cut system for Ω contains a weak
cut system F = {Σ1, . . . ,Σr } such that Ω \

r
i=1 Σi is connected, and every Σi ∈ F has

nonempty boundary.

It was first proved by Stallings [76] that the equality c(M) = corankπ1(M) holds in
general for every M as in Definition 5.2 (see also [74] for a detailed proof). For the sake
of completeness, in Proposition 5.13 we give a proof of such an equality in the case we are
interested in, i.e. when M = Ω for some domain Ω with smooth boundary. Our proof of
Proposition 5.13 closely follows Stallings’ original argument.

5.1. Topological reformulations of the weakly Helmholtz condition

Just as we did in Section 3, we begin by giving some topological reformulations of
the definition of weakly Helmholtz domain. As usual, it is not restrictive to work in the
framework of domains with smooth boundary.

If f : M → N is a smooth map between smooth manifolds, we denote by f∗ and f ∗ the
induced maps in homology and cohomology. With a common abuse, we denote by the same
symbol f ∗ both the map induced on singular cohomology (with real or integer coefficients)
and the map induced on de Rham cohomology. In the same way, f∗ denotes both the map
on homology with integer coefficients, and the map on homology with real coefficients. It
is worth mentioning that these choices do not lead to any ambiguity, due to the easy (but
very important) fact that both the de Rham isomorphism and the isomorphisms provided
by the Universal Coefficient Theorem are natural, in the following sense:
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Proposition 5.5. Let f : M → N be a smooth map, and fix i ∈ N. Then, under the
identifications

H i (M; R) ∼= H i
DR(M), H i (N ; R) ∼= H i

DR(N )

provided by de Rham Theorem, the maps

f ∗: H i (N ; R) → H i (M; R), f ∗: H i
DR(N ) → H i

DR(M)

coincide. Moreover, under the identifications

H i (M; R) ∼= HomR(Hi (M; R),R), H i (N ; R) ∼= HomR(Hi (N ; R),R)

provided by the Universal Coefficient Theorem, the map f ∗: H i (N ; R) → H i (M; R)
coincides with the dual map of f∗: Hi (M; R) → Hi (N ; R).

In particular, we have f ∗
= 0 on de Rham cohomology if and only if f ∗

= 0 on singular
cohomology with real coefficients, and this last condition is in turn equivalent to the fact
that f∗ = 0 on singular homology with real coefficients.

Easy proofs of Proposition 5.5 may be found e.g. in [29,47]. We are now ready to express
in (co)homological terms the condition defining weakly Helmholtz domains:

Proposition 5.6. Let Ω be a domain with smooth boundary, let F be a system of surfaces
in Ω and let Ω1, . . . ,Ωk be the connected components of ΩC (F). For j ∈ {1, . . . , k}, let
also i j : Ω j −→ Ω be the inclusion. Then F is a weak cut system for Ω if and only if one
of the following equivalent conditions hold:

(β1) For every j ∈ {1, . . . , k}, the image of i∗j : H1
DR(Ω) −→ H1

DR(Ω j ) vanishes.

(β2) For every j ∈ {1, . . . , k}, the image of i∗j : H1(Ω; R) −→ H1(Ω j ; R) vanishes.
(β3) For every j ∈ {1, . . . , k}, the image of (i j )∗ : H1(Ω j ; R) −→ H1(Ω; R) vanishes.

Proof. The fact that F is a weak cut system for Ω if and only if (β1) holds is a consequence
of the canonical isomorphism between vector fields and 1-forms, and conditions (β1), (β2)

and (β3) are equivalent by Proposition 5.5. �

5.2. Poincaré–Lefschetz duality

In order to study weakly Helmholtz domains, it is now convenient to establish some
more results about the algebraic topology of an arbitrary domain. In what follows we will
try to keep our arguments as self-contained and elementary as possible. Nevertheless, the
description of weakly Helmholtz domains naturally leads to subtleties that can be faced
only with the help of more advanced techniques. In particular, we will use less elementary
(but still “classical”) tools such as relative homology and Poincaré–Lefschetz duality. The
reader may find in [47] a complete proof of Poincaré–Lefschetz Duality Theorem, and a
thorough discussion of all the notions and the results needed below. For the convenience of
the reader we recall a version of Poincaré–Lefschetz duality that will be extensively used
in the sequel:

Theorem 5.7 (Poincaré–Lefschetz Duality). Let M be a compact orientable manifold with
(possibly empty) boundary ∂M, and let n = dim M. Then for every i ∈ N there exists a
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canonical isomorphism

H i (M; Z) → Hn−i (M, ∂M; Z).

Since the contents of the following sections are less elementary than the ones introduced
so far, in the sequel we are forced to switch to a bit more formal approach, because
otherwise our discussion would probably become quite lengthy. However, in order to
preserve as much as possible the geometric (rather than algebraic) flavor of our arguments,
we will often describe algebraic notions in terms of geometric ones via an extensive use
of transversality. More precisely, we will often exploit the fact that, if M is a smooth
oriented n-dimensional manifold with (possibly empty) boundary ∂M , where n = 2, 3,
then every k-dimensional (relative) homology class in (M, ∂M) with integer coefficients
can be geometrically represented by a smooth oriented closed k-manifold (properly)
embedded in M . Moreover, the algebraic intersection between a k-dimensional and an
(n − k)-dimensional class (which plays a fundamental role in Poincaré–Lefschetz duality)
can be realized geometrically by taking transverse geometric representatives of the classes
involved and counting the intersection points with suitable signs depending on orientations.

Before going on, we need to recall some definitions and elementary results about finitely
generated Z-modules (i.e. finitely generated Abelian groups). Let A be any such module.
The elements a1, . . . , ar of A are linearly independent if, whenever c1, . . . , cr ∈ Z are
such that

r
i=1 ci ai = 0, then ci = 0 for every i (in particular, a set of linearly independent

elements do not contain torsion elements). A finite set a1, . . . , ar is a basis of A if, for
every a ∈ A, there exists a unique r -tuple of coefficients (c1, . . . , cr ) ∈ Zr such that
a =

r
i=1 ci ai or, equivalently, if the ai ’s are linearly independent and generate A. Of

course, A is free if and only if it admits a basis, and in this case the rank of A is just the
cardinality of any of its bases. In general (i.e. when the finitely generated Z-module A is
not assumed to be free), A decomposes as a direct sum F(A)⊕ T (A), where F(A) is free
and T (A) is the finite submodule of torsion elements of A. Then, the rank of A is defined
as the rank of F(A). If Λ is a submodule of A, then rank Λ ≤ rank A, and rank Λ = rank A
if and only if Λ has finite-index in A.

We now fix a domain Ω ⊂ R3 with smooth boundary. The following lemma is an
immediate consequence of the Universal Coefficient Theorem and Poincaré–Lefschetz
duality.

Lemma 5.8. We have

rank H2(Ω , ∂Ω; Z) = b1(Ω).

Proof. We have

rank H2(Ω , ∂Ω; Z) = rank H1(Ω; Z) = rank H1(Ω; Z) = b1(Ω),

where the first equality is due to Poincaré–Lefschetz duality, the second one to the
Universal Coefficient Theorem for cohomology, and the third one to the Universal
Coefficient Theorem for homology. �

Recall from Section 3.2 that, if Tn(Ω) is the submodule of finite-order elements of
Hn(Ω ,Z) ∼= Hn(Ω; Z), then Tn(Ω) is finite for every n ∈ N and trivial for every n > 2.
In fact, one can prove even more:
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Lemma 5.9 (See also [15]). We have Tn(Ω) = 0 for every n ∈ N.

Proof. Of course, it is sufficient to consider the cases n = 0, 1, 2. Since the 0-dimensional
homology module of any topological space is free, we have T0(Ω) = 0.

In order to prove that T1(Ω) = 0, we define B = S3
\ Ω and observe that ∂Ω = Ω ∩ B

is the common smooth boundary of Ω and B. Since ∂Ω admits a bicollar, we may apply
the Mayer–Vietoris machinery to the splitting S3

= Ω ∪ B, thus obtaining the short exact
sequence

0 = H2(S
3
; Z) −→ H1(∂Ω; Z) −→ H1(Ω; Z)⊕ H1(B; Z)

−→ H1(S
3
; Z) = 0. (3)

Therefore, H1(Ω; Z) is isomorphic to a submodule of the free Z-module H1(∂Ω; Z), so it
is free, and T1(Ω) = 0.

Finally, since Ω is homotopically equivalent to a 2-dimensional CW complex, we have
H3(Ω; Z) = 0. Now the Universal Coefficient Theorem for cohomology gives

H3(Ω; Z) ∼=

H3(Ω; Z)/T3(Ω)


⊕ T2(Ω),

so T2(Ω) = 0. �

Lemma 5.9 implies that the natural morphism H1(Ω; Z) −→ H1(Ω; Z) ⊗ R ∼=

H1(Ω; R) is injective. Therefore, keeping notations from the beginning of Section 5, we
obtain that (β3) is equivalent to condition

(β4) For every j ∈ {1, . . . , k}, the image of (i j )∗ : H1(Ω j ; Z) −→ H1(Ω; Z) vanishes.

Assumption. Unless otherwise specified, from now on we only consider homology and
cohomology with integer coefficients.

We are now able to describe the Poincaré–Lefschetz Duality Theorem completely in
terms of intersection of cycles:

Proposition 5.10. Let us consider the map

ψ : H2(Ω , ∂Ω) → HomZ(H1(Ω),Z)

taking a class [α] ∈ H2(Ω , ∂Ω) to the homomorphism which sends every [γ ] ∈

H1(Ω) to the algebraic intersection number between [α] and [γ ]. Then ψ establishes an
isomorphism

H2(Ω , ∂Ω) ∼= HomZ(H1(Ω),Z).

Proof. Under the identification H2(Ω , ∂Ω) ∼= H1(Ω) provided by Poincaré–Lefschetz
duality, the Kronecker pairing between H1(Ω) and H1(Ω) induces a pairing

⟨·, ·⟩: H2(Ω , ∂Ω)× H1(Ω) → Z

(we refer the reader to the brief discussion after Theorem 3.4 for the definition of Kronecker
pairing). As explained in [47], for every [α] ∈ H2(Ω , ∂Ω), [γ ] ∈ H1(Ω), the number
⟨[α], [γ ]⟩ is just the algebraic intersection number between [α] and [γ ]. On the other
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Fig. 10. Modifying γ to obtain γ ′.

hand, since T0(Ω) = 0, the Universal Coefficient Theorem for cohomology ensures that
the Kronecker pairing induces an isomorphism H1(Ω) ∼= HomZ(H1(Ω),Z), and this
concludes the proof. �

Lemma 5.11. Let F = {Σ1, . . . ,Σr } be a system of surfaces in Ω and let γ be a 1-cycle
(with integer coefficients) in Ω whose algebraic intersection with every Σi is null. Then γ
is homologous to a 1-cycle γ ′ supported in Ω \

r
i=1 Σi .

Proof. Up to homotopy, we may assume that γ is the disjoint union of a finite number of
embedded disjoint loops which transversely intersect Σ1∪· · ·∪Σr in k points p1, . . . , pk ∈

Ω . By an obvious induction argument, it is sufficient to prove that, if k > 0, then γ is
homologous to a 1-cycle γ ′ intersecting Σ1 ∪ · · · ∪ Σr in (k − 2) points.

Up to reordering the Σi ’s, we may assume that γ∩Σ1 ≠ ∅. Moreover, since the algebraic
intersection between γ and Σ1 is null, up to reordering the pi ’s, we may suppose that
γ ∩ Σ1 = {p j , 1 ≤ j ≤ h} for some 2 ≤ h ≤ k, and that γ intersects Σ1 in p1 and p2
with opposite orientations.

Let us choose ϵ > 0 in such a way that γ intersects the tubular neighborhood Nϵ(Σ1) of
Σ1 (in Ω ) in h small segments γ1, . . . , γh with pi ∈ γi for every i . Since Σ1 is connected,
if α is a path on Σ1 connecting p1 and p2, then we can define the 1-cycle γ ′ as follows
(see Fig. 10): we remove γ1 and γ2 from γ and we concatenate the resulting paths with
the paths obtained by pushing α on the boundary components of Nϵ(Σ1) in Ω . Since γ
intersects Σ1 in p1 and p2 with opposite orientations, the 1-cycle γ ′ is the disjoint union
of a finite number of embedded loops which can be oriented in such a way that [γ ′

] = [γ ]

in H1(Ω). This concludes the proof. �

If Λ is a submodule of the finitely generated Z-module A, then we say that Λ is full if it
is not a proper finite-index submodule of any other submodule of A. Therefore, if Λ is full
and rank Λ = rank A, then Λ = A.

Lemma 5.12. Let F = {Σ1, . . . ,Σr } be a system of surfaces in Ω and let [Σi ] ∈

H2(Ω , ∂Ω) be the class represented by Σi , i = 1, . . . , r . Then the following conditions
are equivalent:
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(1) The [Σi ]’s are linearly independent in H2(Ω , ∂Ω).
(2) The [Σi ]’s are linearly independent and generate a full submodule of H2(Ω , ∂Ω).
(3) The set ΩC (F) is connected.

Proof. (1) H⇒ (3) Let Ω ′
:= Ω \

r
i=1 Σi . Since ΩC (F) is a strong deformation

retract of Ω ′, it is sufficient to show that Ω ′ is connected. Suppose by contradiction
that Ω ′ is disconnected and let Ω0 be a connected component of Ω ′ with ∂Ω0 \ ∂Ω =

(Σ j1 ∪ · · · ∪ Σ jl ) \ ∂Ω (where jh ≠ jk if h ≠ k). Then [Σ j1 ] + · · · + [Σ jl ] = 0 in
H2(Ω , ∂Ω), a contradiction.
(3) H⇒ (2) Recall that, under the isomorphism

H2(Ω , ∂Ω) ∼= HomZ(H1(Ω),Z)

described in Proposition 5.10, the class [Σ j ] ∈ H2(Ω , ∂Ω) is identified with the linear map
f j : H1(Ω) −→ Z which sends every [γ ] ∈ H1(Ω) to the algebraic intersection between
Σ j and γ . Now, since ΩC (F) is connected, for every i ∈ {1, . . . , r} we can construct a
loop γi ⊂ Ω which intersects Σi transversely in one point and is disjoint from Σ j for
every j ≠ i . It readily follows that, if

r
j=1 c j f j = 0, then, for every i ∈ {1, . . . , r},

we have that ci = (
r

j=1 c j f j )(γi ) = 0, so the [Σi ]’s are linearly independent. Let now

Λ be the submodule of HomZ(H1(Ω),Z) generated by the f j ’s and suppose that Λ′ is a
submodule of HomZ(H1(Ω),Z) with Λ ⊂ Λ′. Also suppose that Λ has finite-index in Λ′,
and take an element f ∈ Λ′. Our assumptions imply that there exists n ∈ Z \ {0} such
that n · f lies in Λ, so n · f is a linear combination

r
i=1 ci fi of the fi ’s. It follows that

ci = n f (γi ) for every i = 1, . . . , r , so ci = nc′

i for some c′

i ∈ Z and f =
r

i=1 c′

i fi ∈ Λ.
We have thus proved that Λ is full.
(2) H⇒ (1) is obvious. �

5.3. Cut number and corank

Let Ω be a domain with smooth boundary. We define d(Ω) as the maximal cardinality
of a system of surfaces F = {Σ1, . . . ,Σr } whose elements define linearly independent
elements [Σ1], . . . , [Σr ] of H2(Ω , ∂Ω). Of course we have

d(Ω) ≤ rank H2(Ω , ∂Ω) = b1(Ω).

The following result describes how the invariants c(Ω), corankπ1(Ω) and d(Ω) are related
to each other.

Proposition 5.13. The following equalities hold:

d(Ω) = c(Ω) = corankπ1(Ω).

Proof. The equality d(Ω) = c(Ω) is an immediate consequence of Lemma 5.12.
Therefore, in order to conclude, it is sufficient to prove the inequalities c(Ω) ≤

corankπ1(Ω) ≤ d(Ω).
Let F = {Σ1, . . . ,Σr } be a system of surfaces in Ω such that Ω \

r
i=1 Σi is connected

and let Br be the wedge of r copies S1
1 , . . . , S1

r of the circle, with base point x0. Also
recall that the fundamental group π1(Br , x0) is freely generated by the (classes of the)
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loops γ1, . . . , γr , where γ j : [0, 1] −→ S1
j is a generator of π1(S1

j , x0) (in particular,
γ (0) = γ (1) = x0). By a classical Pontryagin–Thom construction (see [65]), we can
construct a continuous map

f = fF : Ω −→ Br

as follows. Consider a system of disjoint closed bicollars U j of the Σ j ’s in Ω and fix
diffeomorphic identifications U j ∼= Σ j ×[0, 1], j = 1, . . . , r . Then we set f (x, t) = γ j (t)
if (x, t) ∈ U j , and f (q) = x0 if q ∈ M \

r
j=1 U j . Since Ω \

r
j=1 U j is connected, it

is easily seen that, if p is any basepoint in Ω \
r

j=1 U j , then the map f∗:π1(Ω , p) −→

π1(Br , x0) is surjective. We have thus shown that c(Ω) ≤ corankπ1(Ω).
In order to prove that corankπ1(Ω) ≤ d(Ω), we can argue as follows. Let r =

corankπ1(Ω) and take a surjective homomorphism φ : π1(Ω) −→ Z∗r . As Br is a
K (Z∗r , 1) space with contractible universal covering (see [47]), there exists a continuous
surjective map f : Ω −→ Br such that φ = f∗. Up to homotopy, we can assume that the
restriction of f to f −1(Br \{x0}) is smooth. By Morse–Sard Theorem (see [65,50]), we can
choose a regular value x j ∈ S1

j \ {x0} and define N j := f −1(x j ) for every j ∈ {1, . . . , r}.

Then N j is a finite union of disjoint properly embedded surfaces in Ω . Moreover, if we fix
an orientation on every S1

j , then we can define an orientation on N j by the usual “first the
outgoing normal vector” rule, where a vector v is outgoing in q ∈ N j if d f (v) is positively
oriented as a vector of the tangent space to S1

j in f (q). Let now p be a basepoint in

f −1(x0) ⊂ Ω and let α j be a loop in Ω based at p whose homotopy class [α j ] ∈ π1(Ω , p)
is sent by φ = f∗ onto a generator of π1(S1

j , x0) < π1(Br , x0). Up to homotopy, we
may suppose that the intersection between α j and N j is transverse. Moreover, by the very
construction of α j , the algebraic intersection between α j and Nk is equal to 1 if j = k and
to 0 otherwise. In particular, there exists a connected component Σ j of N j such that the
algebraic intersection of α j with Σk is not null if and only if k ≠ j . By Poincaré–Lefschetz
duality, this readily implies that Σ1, . . . ,Σr represent linearly independent elements of
H2(Ω , ∂Ω). This gives in turn the inequality corankπ1(Ω) ≤ d(Ω). �

Since d(Ω) ≤ b1(Ω), Proposition 5.13 immediately implies the following result.

Corollary 5.14. We have c(Ω) = corankπ1(Ω) ≤ b1(Ω).

Remark 5.15. As mentioned above, the relations c(M) = corankπ1(M) ≤ b1(M) hold
in general, i.e. even when M is any (possibly nonorientable) compact manifold. In fact,
the proof of Proposition 5.13 can be easily adapted to show that c(M) = corankπ1(M).
Moreover, if corankπ1(M) = r , then there exists a surjective homomorphism from π1(M)
to the Abelian group Zr . As a consequence of the classical Hurewicz Theorem (see
e.g. [47]), such a homomorphism factors through H1(M), whose rank is therefore at least
r . This readily implies the inequality corankπ1(M) ≤ b1(M).

5.4. Topological characterizations of weakly Helmholtz domains

We say that a weak cut system F for Ω is minimal if no proper subset of F is a weak
cut system for Ω . It follows from the definitions that every system of surfaces containing a



38 R. Benedetti et al. / Expo. Math. ( ) –

weak cut system is itself a weak cut system, so a system of surfaces is a weak cut system
if and only if it contains a minimal weak cut system.

The following result shows that, just as in the case of Helmholtz domains, every weakly
Helmholtz domain admits a nondisconnecting cut system. Moreover, each surface of such
a cut system has nonempty boundary. As usual, let Ω ⊂ R3 be a domain with smooth
boundary.

Lemma 5.16. Let F be a minimal weak cut system for Ω . Then ΩC (F) is connected, and
every surface of F has nonempty boundary.

Proof. Let Ω1, . . . ,Ωk be the connected components of ΩC (F), and suppose by
contradiction that k ≥ 2. Then we can find a connected surface Σ0 ∈ F which lies
“between” two distinct Ωi ’s. We set F ′

= F \ {Σ0} and show that F ′ is a weak cut system
for Ω , thus contradicting the minimality of F .

Up to reordering the Ωi ’s, we may suppose that (two parallel copies of) Σ0 lie in the
boundary of both Ωk−1 and Ωk , so that ΩC (F ′) = Ω ′

1 ∪ · · · ∪ Ω ′

k−1, where Ω ′

i = Ωi for
every i ∈ {1, . . . , k − 2},Σ0 is properly embedded in Ω ′

k−1 and Ωk−1 ∪ Ωk is obtained
by cutting Ω ′

k−1 along Σ0. We now claim that every 1-cycle in Ω ′

k−1 decomposes, up to
boundaries, as the sum of a cycle supported in Ωk−1 and a cycle supported in Ωk . In fact,
since Σ0 disconnects Ω ′

k−1, the homology class represented by Σ0 in H2(Ω ′

k−1, ∂Ω
′

k−1) is
null. This implies that the algebraic intersection between Σ0 and any 1-cycle in Ω ′

k−1 is
null, and the claim now follows from Lemma 5.11.

The claim just proved implies that the image of (i ′k−1)∗ : H1(Ω ′

k−1) −→ H1(Ω) equals
the sum of the images of (ik−1)∗: H1(Ωk−1) −→ H1(Ω) and of (ik)∗: H1(Ωk) −→ H1(Ω),
which are both trivial, because F satisfies condition (β4). Therefore, the image of (i ′j )∗
vanishes for every j ∈ {1, . . . , k − 1}, so F ′ is a weak cut system for Ω . We have thus
obtained the desired contradiction and proved that ΩC (F) is connected.

Suppose now that an element of F , say Σ0, has nonempty boundary. Then
Proposition 2.2 implies that Σ0 disconnects S3, and this implies in turn that S disconnects
Ω , a contradiction. �

Lemma 5.17. Let F = {Σ1, . . . ,Σr } be a system of surfaces in Ω and let Λ ⊂ H2(Ω , ∂Ω)
be the submodule generated by the classes [Σ1], . . . , [Σr ] represented by the Σi ’s. The
system F is a weak cut system if and only if rank Λ = b1(Ω).

Proof. We claim that F is a weak cut system for Ω if and only if the following condition
holds:

• if [γ ] ∈ H1(Ω) has null algebraic intersection with every [Σi ], i = 1, . . . , r , then
[γ ] = 0 in H1(Ω).

In fact, suppose that F is a weak cut-system and let [γ ] ∈ H1(Ω) have null algebraic
intersection with every [Σi ], i = 1, . . . , r . Then, by Lemma 5.11, we can suppose that
[γ ] is represented by a 1-cycle supported in ΩC (F). This implies that, if Ω1, . . . ,Ωk
are the connected components of ΩC (F), then [γ ] =

k
i=1[γi ] in H1(Ω), where the 1-

cycle γi is supported in Ωi for every i . But condition (β4) implies that, if F is a weak
cut system, then [γi ] = 0 in H1(Ω) for every i , so [γ ] is homologically trivial in Ω .
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On the other hand, if the inclusion i j : Ω j −→ Ω induces a nontrivial homomorphism
(i j )∗: H1(Ω j ) −→ H1(Ω), then every nonnull class [γ ] in Im (i j )∗ has null algebraic
intersection with every [Σi ], i = 1, . . . , r . This concludes the proof of the claim.

For every j ∈ {1, . . . , r}, let now f j : H1(Ω) −→ Z be the linear map corresponding to
[Σ j ] under the identification

H2(Ω , ∂Ω) ∼= HomZ (H1(Ω),Z)

provided by Proposition 5.10. The claim above shows that F is a weak cut system for Ω if
and only if

r
i=1

Ker( fi ) = {0}.

It is now easy to check that this last condition is satisfied if and only if the fi ’s
generate a finite-index submodule of HomZ (H1(Ω),Z), i.e. if and only if rank Λ =

rank H2(Ω , ∂Ω) = b1(Ω). �

Corollary 5.18. Every weak cut system for Ω contains at least b1(Ω) surfaces.

We summarize the results obtained so far in Proposition 5.19 and Theorem 5.20, which
provide a characterization of weakly Helmholtz domains and of their weak cut systems.

Proposition 5.19. Let F = {Σ1, . . . ,Σr } be a system of surfaces in Ω , and let [Σi ] ∈

H2(Ω , ∂Ω) be the class represented by Σi , i = 1, . . . , r . Then the following conditions
are equivalent:

(1) F is a minimal weak cut system for Ω .
(2) r = b1(Ω) and ΩC (F) is connected.
(3) The [Σi ]’s provide a basis of H2(Ω , ∂Ω).
(4) r = b1(Ω) and the [Σi ]’s are linearly independent elements in H2(Ω , ∂Ω).

Proof. Let us denote by Λ the submodule of H2(Ω , ∂Ω) generated by the [Σi ]’s.
(1) H⇒ (2) By Lemma 5.16, the minimality of F implies that ΩC (F) is connected.

Moreover, Lemma 5.12 implies that Λ is free of rank r , while Lemma 5.17 gives rank Λ =

b1(Ω).
(2) H⇒ (3) Since ΩC (F) is connected, Lemma 5.12 implies that Λ is freely generated

by the [Σi ]’s, so condition (2) ensures that rank Λ = r = b1(Ω) = rank H2(Ω , ∂Ω).
Moreover, again by Lemma 5.12, the submodule Λ is full, so it is equal to the whole of
H2(Ω , ∂Ω), and the [Σi ]’s provide a basis of H2(Ω , ∂Ω).
(3) H⇒ (4) is obvious.
(4) H⇒ (1) Condition (4) implies that rank Λ = rank H2(Ω , ∂Ω), so Lemma 5.17

implies that F is a weak cut system for Ω . Moreover, F is minimal by Corollary 5.18. �

As a consequence of Propositions 5.13 and 5.19, we obtain the following characteriza-
tion of weakly Helmholtz domains, which implies in particular Theorem 5.4 stated at the
beginning of the section.

Theorem 5.20. Let Ω ⊂ R3 be a domain with locally flat boundary and set r := b1(Ω).
Then the following conditions are equivalent:
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(1) Ω is weakly Helmholtz.
(2) There exists a system of surfaces F = {Σ1, . . . ,Σr } in Ω such that Ω \

r
i=1 Σi is

connected.
(3) There exists a basis of H2(Ω , ∂Ω) represented by a system of surfaces in Ω .
(4) There exists a surjective homomorphism from π1(Ω) onto Z∗r .
(5) c(Ω) = d(Ω) = corankπ1(Ω) = r .

Moreover, if Ω is weakly Helmholtz, then every weak cut system for Ω contains a weak
cut system F = {Σ1, . . . ,Σr } such that Ω \

r
i=1 Σi is connected, and every Σi ∈ F has

nonempty boundary.

Proof. The equivalence of conditions (1)–(3) is proved in Proposition 5.19. The
equivalence between (2) and (4) follows from the equality c(Ω) = corankπ1(Ω), and
(5) is equivalent to (2) (or to (4)) by Proposition 5.13 and Corollary 5.14. Finally, the last
statement of the theorem follows from Lemma 5.16. �

6. Weakly Helmholtz domains: obstructions and examples

In this section we describe some effective obstructions that prevent a domain from being
weakly Helmholtz. We then apply these obstructions to the study of families of examples,
paying a particular attention to the case of link complements. We begin by introducing a
tool that will prove useful to our purposes.

6.1. The intersection form on surfaces

Let S be a connected compact oriented surface. If α, β are 1-cycles on S, up to homotopy,
we can suppose that α and β transversely intersect in a finite number of points. We can then
define the algebraic intersection between α and β as the difference between the number of
points in which they intersect “positively” and the number of points in which they intersect
“negatively”, with respect to the fixed orientation on S. It is not difficult to show that the
algebraic intersection defines a bilinear skew-symmetric product on the space of 1-cycles,
and that, if a 1-cycle is a boundary, then it has null algebraic intersection with any other
1-cycle. It follows that this bilinear product descends to homology, thus defining a bilinear
skew-symmetric intersection form

⟨ · , · ⟩: H1(S)× H1(S) −→ Z.

Proposition 5.10 may be adapted to the context of surfaces to show that the identification
between H1(S) and HomZ(H1(S),Z) induced by ⟨· , ·⟩ coincides with the identification
H1(S) ∼= H1(S) ∼= HomZ(H1(S),Z) induced by Poincaré–Lefschetz duality and the
Universal Coefficient Theorem for cohomology. Using this, it is easy to show that ⟨· , ·⟩ is
nondegenerate. Then, general results about nondegenerate skew-symmetric bilinear forms
imply that H1(S) admits a symplectic basis, i.e. a free basis α1, β1, . . . , αg, βg such that
⟨αi , α j ⟩ = ⟨βi , β j ⟩ = 0 and ⟨αi , β j ⟩ = δi j for every i, j ∈ {1, . . . , g}, where g = g(S) is
the genus of S.

A submodule A of H1(S) is said to be Lagrangian if the intersection form of S
identically vanishes on A × A.
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6.2. More algebraic topology of spatial domains

We are interested in studying the intersection form on the boundary components of
domains with smooth boundary. So, let Ω be such a domain, and let S0, . . . , Sh be the
components of ∂Ω . We are now going to describe some important relationships between
the homology of Ω and the homology of ∂Ω . We begin with the following:

Lemma 6.1. The maps i∗: H1(∂Ω; Z) −→ H1(Ω; Z) and i∗: H2(∂Ω; Z) −→ H2(Ω; Z),
induced by the inclusion i : ∂Ω ↩→ Ω , are surjective.

Proof. Every class in H1(Ω; Z) can be represented by a knot C embedded in Ω . Let
S ⊂ S3 be a Seifert surface for C , which we can assume to be transverse to ∂Ω . Then
S ∩ Ω realizes a cobordism between C and a smooth curve contained in ∂Ω , thus proving
that C is homologous to a 1-cycle in ∂Ω .

Every class in H2(Ω; Z) can be represented by the disjoint union of a finite number
of compact smooth orientable surfaces embedded in Ω . Every such surface necessarily
separates S3 (see Proposition 2.2), whence Ω , and is therefore homologically equivalent to
a linear combination of boundary components. �

We now consider the following portion of the homology exact sequence of the pair
(Ω , ∂Ω):

H2(∂Ω) // H2(Ω)
π∗ // H2(Ω , ∂Ω)

∂ // H1(∂Ω)
i∗ // H1(Ω)

// H1(Ω , ∂Ω) . (4)

Lemma 6.2. We have the short exact sequence of free modules:

0 // H2(Ω , ∂Ω)
∂ // H1(∂Ω)

i∗ // H1(Ω) // 0.

Moreover, rank H2(Ω , ∂Ω) = rank Ker(i∗) = b1(Ω) =
h

j=0 g(S j ).

Proof. By Lemma 6.1, the map π∗ in sequence (4) is trivial, so ∂ is injective. Surjectivity
of i∗ and the fact that i∗∂ = 0 follow respectively from Lemma 6.1 and from the exactness
of sequence (4). Moreover, we already know that H1(∂Ω) and H1(Ω) are free, so the
sequence splits and H2(Ω , ∂Ω) is also free.

As a consequence of the exactness of the sequence in the statement, we have

rank H2(Ω , ∂Ω) = rank Ker(i∗),

rank H1(∂Ω) = rank H2(Ω , ∂Ω)+ rank H1(Ω).

Moreover, we have proved in Lemma 5.8 that rank H2(Ω , ∂Ω) = b1(Ω), so
rank H1(∂Ω) = 2 rank H1(Ω), i.e. b1(∂Ω) = 2b1(Ω). But homology is additive with
respect to the disjoint union of topological spaces, so b1(∂Ω) = 2

h
j=0 g(S j ), whence

the conclusion. �

Remark 6.3. Let K ⊂ S3 be a knot with complement-domain Ω = C(K ). Lemma 6.2
implies that the kernel of the map i∗: H1(∂Ω) → H1(Ω) is freely generated by the class
[γ ] of a nontrivial loop on ∂Ω . Let S be a Seifert surface for K intersecting ∂C(K ) in a
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simple loop α parallel to K . Since α bounds the surface S ∩ Ω properly embedded in Ω ,
the class [α] is a multiple of [γ ], and using that α is simple and not homologically trivial it
is not difficult to show that in fact [α] = ±[γ ]. Finally, two simple closed loops on a torus
define the same homology class if and only if they are isotopic, so we can conclude that
the isotopy class of the loop obtained as the transverse intersection of ∂Ω with a Seifert
surface for K does not depend on the chosen surface, as claimed in Example 2.6.

6.3. An obstruction to be weakly Helmholtz

As usual, let Ω be a domain with smooth boundary and let S0, . . . , Sh be the connected
components of ∂Ω . Since homology is additive with respect to the disjoint union of
topological spaces, we have a canonical isomorphism H1(∂Ω) ∼=


j H1(S j ), which

allows us to define canonical projections p j : H1(∂Ω) −→ H1(S j ), j = 0, . . . , h. If
i∗: H1(∂Ω) −→ H1(Ω) is the homomorphism induced by the inclusion, then we set

Pj := p j (Ker(i∗)) ⊂ H1(S j ), j = 0, . . . , h.

Proposition 6.4. If Ω is weakly Helmholtz, then Pj is a Lagrangian submodule of H1(S j )

for every j ∈ {0, . . . , h}.

Proof. By Theorem 5.20, we can choose a basis of H2(Ω , ∂Ω) represented by a system
of surfaces F = {Σ1, . . . ,Σr }. By Lemma 6.2, we have that Ker(i∗) = Im ∂ , where
∂: H2(Ω , ∂Ω) −→ H1(∂Ω) is the usual “boundary map” of the sequence of the pair
(Ω , ∂Ω). This readily implies that, for every j ∈ {0, . . . , h}, the module Pj is generated
by a set of classes which are represented by pairwise disjoint 1-cycles, whence the
conclusion. �

Example 6.5. As an application of the previous proposition, we can show that the open
tubular neighborhood (homeomorphic to S × (0, 1)) of a smooth surface S of genus g > 0
is not weakly Helmholtz. In fact, if γ is any simple loop on S × {1}, then the 1-cycle
(γ ×{1})⊔ (−γ ×{0}) bounds the annulus γ ×[0, 1], so the class [γ ×{1}]−[γ ×{0}] lies
in Im ∂ = Ker(i∗). After setting Si = S × {i}, i = 0, 1, we have then Pi = H1(Si ), and
Pi is not Lagrangian. In Fig. 11, we have drawn an open tubular neighborhood of a torus
in R3 corresponding to the case g = 1: such a domain is not weakly Helmholtz.

The following lemma shows that, if ∂Ω is connected, then Proposition 6.4 does not
provide any effective obstruction to be weakly-Helmholtz.

Lemma 6.6. If the boundary ∂Ω = S0 is connected, then Ker(i∗) ⊂ H1(S0) is a
Lagrangian submodule of H1(S0).

Proof. Let α be a 1-cycle in Ker(i∗) represented by a smooth loop C1 ⊂ S0. If [β] is any
class in Ker(i∗) = Im ∂ , then [β] = ∂[Σ ], where Σ is a properly embedded surface in
(Ω , ∂Ω). Since S0 admits a collar in Ω , we can push α a bit inside Ω and obtain a 1-cycle
α′ transverse to Σ . Since [α′

] = i∗([α]) = 0, the algebraic intersection between α′ and Σ
is null, and this easily implies in turn that ⟨[α], [β]⟩ = 0, whence the conclusion. �
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Fig. 11. An open solid torus with a coaxial smaller closed solid torus removed is not weakly
Helmholtz.

6.4. Weakly-Helmholtz links

We now concentrate our attention on the study of link complements in S3. Let L be a
link in S3. We say that L is weakly Helmholtz if the complement-domain C(L) of L is (see
Section 2.3). We have the following easy:

Lemma 6.7. The link L is weakly Helmholtz if and only if its box-domain B(L) is.

Proof. Recall that B(L) is obtained by removing a small 3-disk D from C(L). An easy
application of the Mayer–Vietoris machinery now implies that the modules H1(C(L))
and H1(B(L)) are isomorphic, so b1(C(L)) = b1(B(L)). On the other hand, an easy
application of Van Kampen’s Theorem (see e.g. [47]) ensures that the fundamental groups
π1(C(L)) and π1(B(L)) are also isomorphic, so b1(C(L)) = corankπ1(C(L)) if and only
if b1(B(L)) = corankπ1(B(L)). Now the conclusion follows from Theorem 5.4. �

As a consequence of Corollary 4.7, we know that a knot in S3 is Helmholtz if and only if
it is trivial. On the contrary, the following result shows that every knot is weakly Helmholtz:

Corollary 6.8. The following statements hold.

(1) Every knot in S3 is weakly Helmholtz.
(2) The box-domain of any knot in S3 is weakly Helmholtz.

Proof. Let K be a knot, and observe that Lemma 6.2 implies that b1(C(K )) = 1. Let S be
a Seifert surface of a knot K in S3. Since S does not disconnect the complement-domain
C(K ) of K , the equivalence (1) ⇐⇒ (2) in Theorem 5.4 immediately implies that K is
weakly Helmholtz. This proves (1), and (2) now follows from Lemma 6.7. �

Remark 6.9. The box-domain of a trefoil knot, drawn in above Fig. 8, is an example of
weakly Helmholtz domain, which is not Helmholtz.

We have seen in Corollary 6.8 that all knots and all the box-domains of knots are weakly
Helmholtz. On the other hand, if L is the Hopf link (see Fig. 12, on the left), then C(L)
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Fig. 12. The box-domain of the Hopf link is not weakly Helmholtz.

is diffeomorphic to an open tubular neighborhood of the standard torus in R3, so C(L)
is not weakly Helmholtz (see Example 6.5). By Lemma 6.7, the same is true for B(L).
Lemma 6.10 generalizes this result to a large class of links.

We say that two components K1 and K2 of L are algebraically unlinked if K1 is
homologically trivial in C(K2). It turns out that [K1] = 0 in H1(C(K2)) if and only
if [K2] = 0 in H1(C(K1)), so the definition just given is indeed symmetric in K1
and K2. Equivalently, K1 and K2 are algebraically unlinked if and only if their linking
number vanishes; moreover the linking number can be easily computed by using any
planar link diagram as half the sum of the signs at the crossing points between the two
components (see e.g. [69, Section D of Chapter 5]). Clearly, if two components of L
are geometrically unlinked (see Section 2.3), then a fortiori they are also algebraically
unlinked. The Whitehead link (see Fig. 4 above on the left) is a celebrated example with
two components that are algebraically, but not geometrically, unlinked. The components
K1 and K2 are said to be algebraically linked it they are not algebraically unlinked. For
example, the Hopf link has algebraically linked components.

Lemma 6.10. If L has algebraically linked components, then it is not weakly Helmholtz.

Proof. Take two algebraically linked components C0 and C1 of L and let F0 be an
oriented Seifert surface for C0. As usual, we can assume that F0 is transverse to C1
and to the corresponding toric boundary component S1 of ∂C(L) = ∂U (L), where
C(L) = S3

\ U (L). Then the class [α] = p1(∂[F0 \ Int(U (L))]) ∈ p1(Ker(i∗)) ⊂ H1(S1)

is represented by the oriented intersection between F0 and S1, which is given by a finite
number of copies of the meridian of S1 (with possibly different orientations). Since C0 and
C1 are linked, the class [α] is not null in H1(S1), so it is equal to a nontrivial multiple
of the class represented by the meridian of S1. On the other hand, also the class [β] of the
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preferred longitude on S1, determined by any Seifert surface of C1, belongs to p1(Ker(i∗)),
and ⟨[α], [β]⟩ ≠ 0, so Proposition 6.4 implies that L is not weakly Helmholtz. �

The following lemma investigates the case of links with algebraically unlinked
components.

Lemma 6.11. Suppose that the components C0, . . . ,Ck of a link L are pairwise
algebraically unlinked. Then there exists a family of smooth surfaces F0, . . . , Fk with
boundary such that each F j is a Seifert surface for C j and, if i ≠ j , then Fi and F j

(transversely) intersect only in C(L). Moreover, if i j : S j −→ C(L) is the inclusion of the
boundary component corresponding to C j and Q j is the kernel of (i j )∗: H1(S j ) −→

H1(C(L)), then Q j is generated by (the class of) the preferred longitude of C j , and
Ker(i∗) =


j Q j .

Proof. Fix j ∈ {0, . . . , k} and take an arbitrary Seifert surface F ′

j of C j transverse to

every Ch, h ≠ j . Up to re-defining C(L) as the complement in S3 of smaller tubular
neighborhoods of the Ch’s, we may also assume that, for each fixed h ≠ j, F ′

j intersects
transversely each Sh in a finite number m1, . . . ,ml of copies of the meridian of Sh
(with possibly different orientations), in such a way that each mi bounds a 2-disk Di in
the interior of F ′

j . Since the algebraic intersection of C j and Ch is null, we also have
[m1]+ · · ·+ [ml ] = 0 in H1(Sh), so the number of positively oriented meridians occurring
in the oriented intersection F ′

j ∩ Sh is equal to the number of negatively oriented meridians
in the same intersection.

Let us now remove the Di ’s, i = 1, . . . , l, from the interior of F ′

j . In this way, we obtain
a properly embedded surface with more boundary components. We can now glue in pairs
the added boundary components by attaching l/2 disjoint annuli parallel to Sh to l/2 pairs
of meridians in F ′

j ∩Sh having opposite orientations. After applying this procedure to every
h ≠ j , we obtain the desired Seifert surface F j that misses all the Sh, h ≠ j .

Now, if [l j ] ∈ H1(S j ) is the class of the preferred longitude of C j , then [l j ] = ∂[F j ],
so [l j ] lies in Q j and hence rank


j Q j = k + 1 = rank Ker(i∗). Then the conclusion

follows from the fact that


j Q j is a full submodule of H1(∂Ω). �

One may wonder if the Seifert surfaces of the previous lemma can be chosen to be
pairwise disjoint. A classical definition is in order (see [69, p. 137]).

Definition 6.12. A link L is a boundary link if it admits a system of disjoint Seifert surfaces
for its components.

Of course, every knot is a boundary link. Every link L with geometrically unlinked
components is a boundary link as well, since every component C of L admits a Seifert
surface contained in the 3-disk that separates C from the other components (see [69]).
However, there are boundary links that have geometrically linked components. For
example, every 2-component links given by the union of a nontrivial knot and its preferred
longitude is a boundary link (see Fig. 14).

On the other hand, the Whitehead link (see the top of Fig. 4, on the left) provides an
example of a link with algebraically unlinked components which is not a boundary link
(see again [69, p. 137], and Example 6.16 for an even stronger result). This shows that,
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Fig. 13. The boxes used in Figs. 14 and 18: the integer k denotes the number of positive or negative
half-twists.

Fig. 14. On the left, the boundary link given by the union of the trefoil knot and its preferred
longitude. On the right, a more complicated boundary link. The meaning of the labeled boxes is
explained in Fig. 13.

in general, it is not possible to remove the internal intersections of the Seifert surfaces
provided by Lemma 6.11 by local “cut and paste” operations along the intersection lines.

Let L be an r -component link. Lemma 6.2 implies that b1(C(L)) = r . Therefore, in the
case of links we may rephrase Theorem 5.4 as follows:

Corollary 6.13. A link L with r components is weakly Helmholtz if and only if there is a
surjective homomorphism from π1(C(L)) to Z∗r .

We recognize that the condition described in the last corollary is just one possible
definition of homology boundary links, so a link is weakly Helmholtz if and only if it is a
homology boundary link. More precisely, putting together Corollary 6.13 and Lemma 6.7,
we obtain the following:
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Fig. 15. A box-domain of a homology boundary link is weakly Helmholtz.

Corollary 6.14. Given a link L in S3, the following assertions are equivalent:

(1) L is weakly Helmholtz.
(2) L is a homology boundary link.
(3) B(L) is weakly Helmholtz.

Every classical boundary link is a homology boundary link. In fact, L is a boundary link
if and only if there exists a surjective homomorphism φ:π1(C(L)) −→ Z∗r that sends the
meridians of the link onto a set of generators of Z∗r . This characterization of boundary
links was originally given in [75] (see also [45]), where the definition of homology
boundary links was first introduced. The link drawn in Fig. 15 (on the left) is a homology
boundary link, which is not a boundary link (see [49, p. 170]). By Corollary 6.14, the
box-domain of such a link (see Fig. 15, on the right) is weakly Helmholtz.

Homology boundary links are an intriguing, very important class of links widely studied
in knot theory. It is a nice occurrence that the method of cutting surfaces naturally leads to
this distinguished class of links.

6.5. Other examples of weakly Helmholtz domains

Getting an exhaustive description of weakly Helmholtz domains, similar to the
characterization of Helmholtz ones given in Theorem 4.5, looks somehow hopeless. This
already holds true in the case of links. Note that, once a concrete link L is given (for
instance by means of a planar diagram), it is very easy to decide whether the components of
L are pairwise algebraically linked or not. On the contrary, answering the question whether
L is homology boundary or not is in general quite hard (for example, some nontrivial
argument is needed even for showing that the Whitehead link is not homology boundary—
see Example 6.16). The general case of arbitrary domains is even more complicated. Up
to “Fox re-embedding” (see Theorem 4.9), it is not restrictive to deal with domains Ω
that are the complements of links of handlebodies. As every handlebody is the regular
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Fig. 16. Planar handcuff graph.

neighborhood of a spine, which is a compact graph embedded in S3 (i.e. a spatial graph),
if Γ is a link of spines, then we can naturally extend our previous notation and denote by
C(Γ ) the complement-domain of Γ . In the case of a classical link L , i.e. in the case of a
link of genus 1 handlebodies, we have in some sense a “canonical” spine for C(L): the link
L itself. This is no longer true in the general case, in the sense that a link of handlebodies,
considered up to isotopy, can admit essentially different (links of) spines. This implies
further complications in the study of general weakly Helmholtz domains. The analysis of
these complications basically represents the starting point of the investigations developed
in [26].

For example, let us consider the simple case of just one genus 2 handlebody H . Every
such handlebody admits a spine Γ , which is a spatial embedding of the so-called “handcuff
graph” (a planar realization of which is shown in Fig. 16).

If we remove from Γ the interior of the edge that connects the two cycles (i.e. the
“isthmus” of Γ ), then we get a classical link LΓ with two components. We set Ω = C(Γ )
and Ω ′

= C(LΓ ). Clearly Ω ⊂ Ω ′, as Ω is obtained from Ω ′ by removing a 1-handle.
The following proposition allows us to construct many examples both of links with two

algebraically unlinked components that are not homology boundary links, and of knotted
genus 2 handlebodies having weakly Helmholtz complements.

Proposition 6.15. With the notations just introduced, the following results hold:
(1) If LΓ is a homology boundary link, then Ω is weakly Helmholtz.
(2) Suppose that H is unknotted. Then LΓ is a homology boundary link if and only if Γ is

planar. In particular, if LΓ is nontrivial, then it is not a homology boundary link.

Proof. By a general position argument, it is easy to see that every loop in S3
\ LΓ is

homotopic to a loop that does not intersect the isthmus of Γ . This implies that i∗ :

π1(Ω) → π1(Ω ′) is surjective. Then (1) follows immediately from Theorem 5.4 and
Corollary 6.13.

Let us now suppose that H is unknotted. We have to show that, if LΓ is homology
boundary, then Γ is planar, the converse implication being trivial. Waldhausen’s result
about the uniqueness of Heegaard splittings of S3 implies that Ω is an unknotted genus
2 handlebody, so π1(Ω) ∼= Z∗2. Therefore, since LΓ is homology boundary, we have a
sequence of surjective homomorphisms

Z∗2 ∼= π1(Ω) → π1(Ω ′) → Z∗2 .

But free groups are Hopfian (see [59]), which means that every surjective homomorphism
of Z∗2 onto itself is in fact an isomorphism, so all the above maps are isomorphisms,
and π1(Ω ′) is isomorphic to Z∗2. Under this hypothesis, a generalization to links (see for
instance Theorem 1.1 in [49]) of Papakyriakopoulos unknotting theorem for knots [67]
ensures that LΓ is trivial. We can now apply the main theorem of [71] and conclude that
Γ is planar. �
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Fig. 17. All the graphs described here are spines of the same unknotted handlebody. In particular,
the unknotted handlebody admits a spine whose constituent link is the Hopf link, and a spine whose
constituent link is the Whitehead link.

We stress that H may admit infinitely many handcuff spines with pairwise nonisotopic
associated links (see the examples below). Hence, if Ω is not weakly Helmholtz, point
(1) of the above proposition implies that no such link is homology boundary. However,
checking whether this last condition is satisfied seems to be very demanding.

Example 6.16. (1) In Figs. 17 and 18 we show some spatial handcuff graphs Γ that
become planar via a finite sequence of spine modifications that do not affect the isotopy
type of the regular neighborhood H .

The fact that the spines described here can be modified into planar graphs shows that,
in every case, H is unknotted, so, by point (2) of Proposition 6.15, we see that all the
corresponding nontrivial links LΓ are not homology boundary. The top part of Fig. 17
provides an example of the somewhat counterintuitive fact that H may be unknotted
even if LΓ is algebraically linked. The bottom part establishes that the Whitehead link
is not homology boundary. The examples described in Fig. 18 provide an infinite family
of links having (for k ≠ 0, 1) algebraically unlinked components that are not homology
boundary. Note that every link in the family has one unknotted component. For k = −1
(resp. k = −2), the knotted component of the link is the trefoil knot (resp. the figure-eight
knot). For k = 2 we get again the Whitehead link.

(2) If LΓ has geometrically unlinked components (i.e. if it is a split-link), then Ω =

C(Γ ) is weakly Helmholtz by point (1) of Proposition 6.15. If, in addition, we assume that
LΓ is nontrivial, then H is knotted by point (2). Remarkably, there exist also examples
where H is knotted whereas LΓ is trivial. In fact, it is proved in [58] that the handlebody
H determined by the spine Γ of Fig. 19 is knotted.

6.6. (Non)weakly Helmholtz domains with connected boundary

As a consequence of Lemma 6.6, the obstructions to be weakly Helmholtz that we have
described so far do not apply to domains with connected boundary. In fact, providing
examples of domains with smooth connected boundary which are not weakly Helmholtz is



50 R. Benedetti et al. / Expo. Math. ( ) –

Fig. 18. Spines of the unknotted handlebody. We assume that h = (−1)k2. The meaning of the
labeled boxes is explained in Fig. 13.

Fig. 19. A knotted handlebody whose complement is a weakly Helmholtz domain.

a quite challenging task. Fox Re-embedding Theorem implies that, in order to exhibit such
examples, we may restrict our attention to handlebody complements. So, let Γ ⊆ S3 be a
connected graph and let us set Ω = C(Γ ). We also denote by g the genus of ∂Ω . Alexander
Theorem implies that, if g = 0, then Ω is a ball, so in particular it is Helmholtz (whence
weakly Helmholtz). Moreover, if g = 1, then Ω is a knot complement, so Corollary 6.8
ensures that Ω is again weakly Helmholtz. However, it turns out that for every g ≥ 2 there
exists a domain Ω with connected boundary of genus g, which is not weakly Helmholtz.

The first example of such a domain is due to Jaco and McMillan [54], who constructed
a spatial handlebody of genus 3 whose complement is not weakly Helmholtz. Via a quite
sophisticated group theoretic argument, they proved in fact that the fundamental group of
the complement-domain of the graph described in Fig. 20 has corank strictly smaller than
3. Subsequently, Jaco proved in [53] that the complement-domain of the graph described
in Fig. 21 is not weakly Helmholtz, thus providing the first example of a domain with
connected boundary of genus 2 which is not weakly Helmholtz. The proof of this fact
given in [53] relies on the following (nontrivial) topological obstruction: if c(M) ≥ 2, then
every map f : M → S1

× S1 is homotopic to a non-surjective map. This obstruction turns
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Fig. 20. A graph whose complement-domain is not weakly Helmholtz.

Fig. 21. The complement-domain of this graph is the first known example of a domain with
connected boundary of genus 2, which is not weakly Helmholtz.

out to be very useful in the case described in Fig. 21, but it looks not so handy in discussing
other examples.

Another interesting example is provided by Kinoshita θ -graph ΓK , which was
introduced by Kinoshita in [57], and is described in Fig. 22. It is the spine of the spatial
handlebody HK , whose complement will be denoted by MK .

Kinoshita analyzed several interesting properties of ΓK and of MK . To this aim, he
adapted to the case of graphs the classical theory of Alexander modules for links. More
precisely, he introduced some elementary ideals Ed(Γ , z) associated to any presentation
of the Alexander module of the fundamental group of S3

\ Γ . These ideals turn out to
be isotopy invariants of the couple (Γ , z), where Γ is a spatial graph (not necessarily of
genus 2) endowed with a Z-cycle z. By means of these invariants he proved for example
that the graph ΓK is knotted. In [77] the author remarked that Kinoshita’s invariants (and
some variations of them) can be used to face questions concerning the cut number of
complements of graphs. More precisely, Kinoshita’s invariants can be used to study the
corank of the fundamental group of a given graph complement. As an application, he
proved that c(MK ) = 1.
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Fig. 22. Kinoshita’s θ -graph.

A detailed discussion about the use of Alexander ideals in the study of handlebody
complements is carried out in [26], where it is shown that there exist infinitely many spatial
handlebodies of genus 2 whose complements are not weakly Helmholtz and are pairwise
nonhomeomorphic. A comprehensive account on Alexander modules of groups and spaces
is given in [49] (which is mainly concerned with links).

We would like to stress the remarkable fact that easily computable obstructions are able
to recognize, at least in some cases, that a domain is not weakly Helmholtz. It is known
that the corank of a group G can be computed in principle from a finite presentation of
G by means of an algorithm (see Makanin’s paper [60]). Moreover, a finite presentation
of the fundamental group of the complement of a link (or of a graph) may be easily
deduced from any planar diagram of the link (or of the graph) via the Wirtinger method (see
e.g. [69]). This is an important conceptual fact, however the time of execution of Makanin’s
algorithm grows too fast with the input complexity, so this is not really helpful in practice,
even when one deals with rather simple examples. As suggested by Stallings in [76], in
some cases one can associate to the finite presentation of G some pertinent 3-dimensional
(triangulated) manifold, and try to exploit geometric/topological tools in order to reduce
the determination of the corank of G to the computation of the cut number of the related
manifold. Note that in our situation the problem is 3-dimensional from the very beginning,
and one can try to use for example the theory of normal surfaces in order to detect the
potential weak cut systems (if any). To this respect Kinoshita’s domain MK should appear
rather promising, as it admits a very simple triangulation as well as simple presentation of
the fundamental group. However, even in this case it turns out that the needed computations
cannot be carried out without the help of a computer.
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Appendix

Without aiming at being exhaustive, in this appendix we indicate to the interested reader
some more advanced topics related to the previous discussion.

Let us first deal with the case of links. As mentioned above, once a diagram of a link L
is given, one may easily produce a finite presentations of the fundamental group of S3

\ L .
Then, one may apply Fox’s free differential calculus [40] to compute, for example, the
Alexander ideals of S3

\ L . As in the case of graph complements, these ideals may provide
interesting information about the cut number of S3

\ L .
As an alternative, one may recur to certain, in principle computable, increasingly

discriminating sequence of invariants whose vanishing is a necessary condition in order to
be homology boundary. The original definition of these invariants is given in [62], so that
they are known as Milnor µ̄ invariants. Let us recall some of their properties. For every
integer q > 1, for every link L with N ordered and oriented components K1, . . . , KN , for
every (l1, . . . , lp) ∈ Np, with 1 ≤ li ≤ N , p < q, it is defined an invariant of the form

µ̄(l1, . . . , lp)(L) = [µ(l1, . . . , lp)(L)] ∈ Z/∆(l1, . . . , lp)Z,

where:

• the integer l j labels the component Kl j (note that indices may be repeated);
• the integer µ(l1, . . . , lp)(L) may be determined starting from a finite presentation of
π1(C(L)), and it is well-defined only up to multiples of ∆(l1, . . . , lp);

• the integer ∆(l1, . . . , lp) is inductively defined as the g.c.d. of the numbers
µ( j1, . . . , js)(L) where s ≥ 2 and ( j1, . . . , js) ranges over all the cyclic permutations
of the proper subsequences of (l1, . . . , lp).

• if j1 ≠ j2, the value µ( j1, j2)(L) is the linking number of the corresponding
components.

The last property shows that the obstructions to be homology boundary provided by
Milnor invariants generalize the obstruction discussed in Lemma 6.10.

Strictly speaking, Milnor invariants are isotopy invariants for ordered and oriented links.
However, their vanishing does not depend on the chosen order or orientation. The original
definition of Milnor invariants, being based on the study of the group G1 = π1(C(L)),
has a strong algebraic flavor. Roughly speaking, Milnor invariants detect whether or not
the (preferred) longitudes of the link components can be expressed as longer and longer
commutators, i.e. they detect how deep the longitudes live in the lower central series
of the link group, which is inductively defined as follows: G1 = π1(C(L)), and Gn =

[Gn−1,G1] is the subgroup of G generated by the set {aba−1b−1
| a ∈ Gn−1, b ∈ G1}.

In [68,79], an equivalent definition of Milnor invariants is given in terms of the Massey
products in the systems {S3

\ Kl j }
p
j=1. This approach makes extensive use of the cup

product on singular 1-cocycles (with coefficients in suitable quotients of the ring of
integers).

In [33], one can find a more geometric approach to these invariants, based on the
construction of “derived links”. This method is particularly suited in order to deal with
the first nonvanishing invariant (if any). In some sense, the approach via derived links
provides a geometric realization of Massey products. It makes use of relative 2-cycles and
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transverse intersection rather than of 1-cocycles and cup products. The naive idea of a
derived link is as follows. If L is a link as in Lemma 6.11, then we can construct a system
of Seifert surfaces transversely intersecting only in C(L). In fact, we can arrange things in
such a way that the intersection of each pair of surfaces is a single connected knot in C(L).
Each such knot splits in two parallel copies by slightly isotoping it inside both surfaces.
By taking all the knots obtained in this way, we get a derived link L ′ of the given link L .
One can define “higher order” invariants of L by using the linking numbers of the pairs of
components of L ′. If all these linking numbers vanish, then the procedure may be iterated.

In [33,68], one finds some examples of computations of nontrivial Milnor invariants. In
particular, when L is the Whitehead link, it turns out that µ̄(1, 1, 2, 2)(L) = 1, according
to the fact that L is not homology boundary.

Milnor invariants with pairwise distinct indices l j have a particular meaning. In fact, they
are invariant up to link homotopy equivalence (see [62]). Two links L , L ′ are link homotopy
equivalent if they may be obtained one from the other via a homotopy where self-crossings
of each link component are allowed, while crossings of different components are not. If a
link L is link homotopy equivalent to the trivial link, then Milnor invariants with pairwise
distinct indices vanish. Note, for example, that the Whitehead link becomes trivial just
by performing one crossing change on one of its components (see Fig. 4). It is known
that every boundary link is link homotopic to a trivial link (see [32] or [37]), so Milnor
invariants may be used to detect links that are not boundary links. Milnor invariants have
been widely exploited also in the study of homology boundary links (up to link homotopy)
(see e.g. [33–36,31]).

The theory of spatial graphs as well as of links of handlebodies is considerably less
developed than the classical link theory. Several equivalence relations coming from link
theory (“homotopy”, “cobordism”, “homology”, . . . ) have been extended to the context
of spatial graphs [38,78,73], and particular efforts have been devoted to detect whether or
not a spatial graph is planar (up to isotopy) [71,81]. A largely diffused approach to this
sort of problems consists in associating to every graph some invariant families of classical
links [55,56,44], in order to exploit results from the theory of links.

The theory of links of handlebodies is even less developed. A natural approach consists
in considering links of spines, up to suitable moves on spines that do not alter the carried
handlebodies. This strategy is developed e.g. in [72,51,52]. Then, every invariant of spatial
graphs that takes the same value on spines carrying the same handlebody defines an
invariant of the handlebody itself. This is the case, for example, for the invariants defined by
Kinoshita and mentioned above, or for the quandle coloring invariants recently introduced
by Ishii in [51].

Recall that a spatial handlebody is knotted if it does not admit any planar spine. However,
one could wonder whether it makes sense to state that a fixed knotted handlebody is “more
knotted” than another knotted handlebody. For example, a knotted handlebody does not
admit an unknotted (i.e. planar) spine, but may still admit a handcuff spine with associated
trivial link, so it make sense to assign a higher level of knotting to spatial handlebodies
that do not admit such a peculiar spine. Following this approach, in [26] several levels
of knotting are defined in terms of the non-existence of any spine enjoying less and less
restrictive properties. Kinoshita’s and Ishii’s invariants are extensively used in [26] in
order to investigate the relationships between these different levels of knotting, and to
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relate the level of knotting of a spatial handlebody to classical topological properties of its
complement.

Note on the bibliography. Refs. [1] to [22] form the Section A relative to electromagnetism,
hydrodynamics and elasticity on domains in R3. Refs. [24] to [81] form the Section B on
(3-dimensional) differential/algebraic/geometric topology.
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