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Density of Morse Functions on a Complex Space

Riccardo Benedetti
Department of Mathematics, University of Pisa, Via Derna 1/1, I-56100 Pisa, Italy

1. Introduction

Theorem 1 fills a gap, pointed out by Fischer in [2], in the proof of a theorem of
Andreotti and Grauert in [1].

Let X be a reduced, Hausdorff, g-convex complex space, with countable basis.
&(X) denotes the set of real valued, infinitely differentiable functions on X. Let K be
the compact set of X and ¢ the continuous function on X, strongly g-convex on
X —K, respectively, as stated in the definition of [1] and [2]; we can suppose
that ge £(X). We shall prove the following:

Theorem 1. There exist a compact set K¥ CX and ¢*e &(X), such that:

1. @* is strongly g-convex in X — K* and B,={xeX ; ¢*(x)<c}C CX for every
celR

2. The set {local minima of @* on X} is discrete in X.

Actually we shall prove a density property of the functions satisfying property 2
of Theorem 1. We note that (iii) in the definition of the Espaces fortement (p,q)-
convexes-concaves in [5] is, by means of Theorem 1, needless.

2.

Let {V2} e (Vi duens (V2 Hnens be locally finite (hence countable) open coverings of
X such that

1. For all i, j, VjC CX.

2. {Vi*1},  is a shrinking of {V/},.n, i=0, 1.

3. For every j, there is an analytic isomorphism h;:V?—A} of ¥ onto an
analytic set A} of a domain D C CCYV.

4. For every j, there are domains D7 C C D} C CD{ such that

DinA%=h(V)=4} i=1,2.

5. For every j, there is ® € (DY) such that ®|4?=¢h; ';if V? ~ K=0 then
@, is strongly g-convex.
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Set, for allj, D} =D;, V! =V;, Aj = A;. We choose on every (D) a metric d; that
induces the usual Fréchet space topology on it. Furthermore we consider on

E= H &(D;) the topology determined by the following basis of neighbourhoods of

J
0=(0,0,...): for every e={e,},n, €€R, >0, Ule,0)={f=(f;, f},...)€E;
di(f;;0)<e;,je N}. We define: S={feE; for all i,j flh(VinV)=f]h,(V.nV))}.
S is not empty. For every feE and for every ¢, set: U'(e, /)=Ule, f/)nS. For

e (g &
every e, set - = (%,;‘-,...),te]R—{O}.

Proposition 1. S is a Baire space.

Proof. Let {C,},.n be a countable family of dense open sets in S. It is enough to
prove that, for every f€S, for every e=(gg, &,,...), U'(e, )N(nC,) 0. Let {r,}, be
a sequence of real numbers r;>0, r,—0. Set fO=/, e=(eJ, €}, €,...)=¢.

0 0
U’(%,f”) NC,is open and =@. Hence there exist f1e U’ <%,f°> NnCyande! =(g},

e},...) such that: U'(e!, fHCU'(®, ) C,. €0
We can choose ¢' satisfying moreover : ¢} < min (ro, )for allj. U'( i f 1)(\C L

i
is open and #+@. Hence there exist f2e U’ ( fl)m C, and ¢*=(e3, ¢2,...) such
that: U'(e?, f)CU(s Inc,. gl
We can choose &? satisfying moreover: 8j < min rl,i—) for all j. We thus

construct inductively a countable family {U’(¢", f")},.n Such that:

n—1
(i) &} <min (rn_ 1,%—) for all j.

() df 7+, f7)< % for all .
(i) U'e", MU', HnC,_,

Hence: nU'(e", fMCU'(g, /)(NC,); so, if we prove that nU'(e", f*)+# we are
done. Now, for all j, { '} ,n s 2 Cauchy sequence in £(D). Since it is a Fréchet space
{f7'} has a limit F; and clearly F=(F,, F,,...)eS.

Moreover, using the inequalities (i) and (ii) it is easy to prove that Fe U'(¢", ™),
for every n. This completes our proof.

Let 4'(D,)C&(D,) the set: {fe&(D,); suppfC CD,}.

Proposition 2. There is a continuous map s: A (D;)—8, such that p,-s=1d, where p,
is the projection on the i- factor of S.

Proof. Let @ be an element of A(D,). We will determine the corresponding
S=Ufo, f1,--.)eS. If V. V;=0, we put f;=0. Let V,nV,+0. We can consider ® as an
element of A'(D{) and h{V;AV)) in D} is compact. For every xeh(V;nV)) there are
an open neighbourhood U, C CD} of x such that U,nA?=U,nh(V°nV)and a

holomorphic map with image in €', g=(g,, ..., gy,), defined on a neighbourhood
of U, in DY, such that:

AV AVOINU =hiohy V2NV,
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Let us select a finite covering {U,,..., U,} of h(V,nV)) and let ¢'=(g},..., gy,
t=1,...,k, be the corresponding holomorphic maps. Let {x},_¢,, ..« be an
infinitely differentiable partition of unity subordinate to {U,, U,,..., U,}, where U,
=D —h{V,AV). For every t=1,..., k the function: @,(y) = x,(y)®(g'()) for yeU,,
®(y)=0 for yeDY—U,, is infinitely differentiable. For yeD; we put: f(y)

= ) @(y). Repeating this for every j such that V,nV, =+ (this is a finite set) we

1=tk
obtain an element of S; clearly this correspondence is continuous and verifies the
statement of the proposition.

We fix now A=A4; (D=D;, C"V). Let W' >W?>...DW" where W'=4 and
Wil =Sing. W' The following properties hold:

1. The family of W is locally finite.

2. W'is a complex space in D, for all i.

3. Si=Wi—W'*! is a complex manifold, for all i.

Moreover, if we call stratum (of complex dimension n; ;) every connected
component S’ of §' we have:

4. 98} is a union of strata of dimension <, ;.

5. The family of all strata is locally finite.

We observe that for our purpose it is enough to use the natural stratification of
A without refering to Whitney’s theory.

Definition 1. We say that §% < §7if §% C9S%. Now, let S%, §7 be strata such that §% <SJ.
Then, we define: T(S%, §1)= {He G(n,;, N); there are xe S} and {y,},.nC ST such
that: y,—x and T(y, $7)—H in G(n,; N)}, where: G(n,;, N) is the Grassman
manifold of complex n, -planes through the origin in €; T{(y,, S%) is the tangent
vector space to S?in y,.

Definition 2. We say that @e£(D) is a Morse function on 4 if:

1. @|S? has no degenerate critical points for all p,j such that: n, ;>0.

2. For all i, j, p, q (such that: §f <SY), for all He T(S%, 8%), the linear form d®(x)
is not null on H.

Note. If @ is a Morse function on 4 then the set of local minima of @{4 is discrete in
A; indeed a non degenerate critical point is isolated ; moreover 2. of Definition 2
says that there are no sequences of critical points of @[S7 converging to a point of an
SE<SE.

Proposition 3. For every @e &(D) and for every ¢ >0, there exist We A (D) such that :
(i) d(P,0)<e. (ii) @+ ¥ is a Morse function on A>.

Proof. We identify €V with R*Y:
(z45 25, ) =00 iV, X +1Y5,00 )2 (X Y1 X5, V25000 )

Now, we consider: h:D—R2¥*! where h(x)=(h,(x), h,(x),...) =(D(X), X, V5 ... )
Let pe R*¥* 1. Wedefine L, : D->Rby L (s)= | p— h(s)||*, where || - || is the Euclidean
norm.

Forall g,j, the set of pe RV * ! such that L |S? has degenerate critical points is of
measure 0 in R?V* ! ([3]). Since the $% are a countable set, the set of peIR*¥*! such
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that L,|S? has degenerate critical points on at least one $%is of measure 0 in R?¥* 1.
We call this set B. Let $"=S§7 and §"=S§] be such that S’ < §" We can suppose that
dimgS"=n. §" and § (in D) are complex analytic subspaces of D ([4] Chapter IV,
Theorem 1). Calling W the set: {(x, H); xeS", HeT(x, S"}, W in §" x G(n, N} is an
analytic subspace of §* x G(n, N) ([4] Chapter IV, Proposition 4'). Moreover W is
irreducible of dimg =n (W is a connected set of regular points and dimg W=n). If
(x, HYe WnS" x G(n, N), then He T(S", S").

O ={(x,H)e W; xe§} is an analytic subspace of W and dim¢® Sn—1. For
every (x, H)e §" x G(n, N) we call H,= J(x)H, where J(x) is the Jacobian matrix of h
in x (we consider H as a real 2n-plane). In § x G(n, N) x R?¥*! let @’ be the set @’
={(x,H,y);(x, H)e®, ye {(H,)* +h(x)}}, where (H,)* is the orthogonal space to H,,
in R2¥* 1 with respect to the usual scalar product. By means of the restriction to '
of the projection § x G(n, N) x R*¥*1 - §" x G(n, N) we obtain an infinitely differ-
entiable fiber bundle on every stratum of any stratification of @. The fiber is a real
(2N +1 —2n)-plane. Then @’ is (as set) a countable union of differentiable manifolds
of dimg 2N — 1. Hence, by Sard’s theorem, the image of ® in R*¥ * ! with respect
to the projection §" x G(n, N) x R*¥*1 > R?¥* ! has measure 0 in RV * !, Repeating
it forevery couple of strata of A4 like $" and S {this couple set is countable), the union
of images of ®”s in R*¥*1! is of measure 0 in R*M* ', We call this set C. Now,
Q=R *'—(BuC)is adense set in R>"* ' and for every peQ we have: 1. L|S? has
no degenerate critical points for every j, q. 2. L, has the property 2 of Deﬁnmon 2.
Let U an open set, D>C cUC ¢D. Let XE./V(D) be such that y]U=1. Let ceR
be and choose p=(—c+e,,&,,...,&,54)€Q. & can be arbitrarily small. Set:

L,—¢? .
= (L, 3 ¢ ); g has property 1 and property 2 of Definition 2. A short computa-
c
tion shows that
g=o+ .}:l_‘z“ — Z %‘.
15i£38+12C  1gifan+1 €

g2
+ - = —&.
1 §i§22N+ 12
If ¢; are small and ¢ is large we have: for ¥ =y(g— @), d(¥,0)<¢; indeed for

feé(D), if ,—0 then d(4,,f,0)—0. This concludes our proof.

Proposition 4. For every i, M;={feS; f, is a Morse function on A?} is an open and
dense set in S.

Proof. It is clear that M, is an open set. Density follows by means of Proposition 2
and Proposition 3.

Now, we have proved Theorem 1. We put: K*=U¥?, where V°nK +0.
Proposition 1 and Proposition 4 say that M =~ M, is a dense set in S. It is enough to
choose £={¢,},.n, 50 small such that a function &*=(9}, 9%,...)eMnU'(e, D),
where §=(P,, P,,...) has the following properties: (i) &} is strongly g-convex on
D?( if @, had same property). (ii) Noting ¢* the function on X that we obtain by
pulling back to X, we have B,C CX, for every ceR. Every f on X that we obtain by
pulling back to X an element F e M has the property 2 of Theorem 1. (with respect to
local maxima too).
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