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Density of Morse Functions on a Complex Space 

Riccardo Benedetti 
Department of Mathematics, University of Pisa, Via Derna 1/I, 1-56100 Pisa, Italy 

1. Introduction 

Theorem 1 fills a gap, pointed out by" Fischer in [2], in the proof of a theorem of 
Andreotti and Grauert in [1]. 

Let X be a reduced, Hausdorff, q-convex complex space, with countable basis. 
g(X) denotes the set of  real valued, infinitely differentiable functions onX. Let K be 
the compact set of X and q~ the continuous function on X, strongly q-convex on 
X - K ,  respectively, as stated in the definition of [1] and [2]; we can suppose 
that q~ 8(X). We shall prove the following: 

Theorem 1. There exist a compact set K* CX and q~*e8(X), such that: 
l. ~o* is strongly q-convex in X - K *  and Be= {x~X ; ~0*(x)<c} C CX for every 

c6N. 
2. The set {local minima of q~* on X}  is discrete in X. 

Actually we shall prove a density property o f the functions satis lying property 2 
of  Theorem 1. We note that (iii) in the definition of the Espaces fortement (p,q)- 
convexes-concaves in [5] is, by means of Theorem 1, needless. 

2 ,  

Let { V°}.~N, { V. 1 } ,~ ,  { V, 2 } .~ ,  be locally finite (hence countable) open coverings of 
X such that 

1. For all i, j, ~ C CX, 
2. {~+I}.~N is a shrinking of {K/.}.~, i=0,  1. 
3. For every j, there is an analytic isomorphism hi" o o • Vj ~ A j  of  Vj ° onto an 

analytic set A ° of a domain D ° C CtE m j). 
4. For every j, there are domains D~C CDJC CD ° such that 

i O ~  i ~ i DjnAj  - hj(Vj) = A~ i=1 ,2 ,  

5. For every j, there is q~jeg(D °) such that #jIA ° =(pohi l ;  if V~ ° c~ K = 0  then 
q~j is strongly q-convex. 
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Set, for all j, D~ = D i, Vj 1 = I~ i, A) = Aj. We choose on every g(Di) a metric d i that 
induces the usual Fr6chet space topology on it. Furthermore we consider on 
E = 11 d~(Dj) the topology determined by the following basis of  neighbourhoods of 

J 
0=(0 ,0  .... ): for every e={e,},~N, epllL e~>0, U(e,,O)={f=(fo, L .... )eE;  
d~(fj, O)<ej,jeN}. We define: S = { f ~ E ;  for all i,j f~thi(V~nVj)=f~lh~(V~nV~) }. 
S is not empty. For every f e E  and for every e, set: U'(e,f)=U(e,f)nS. For 

~ ( t  ° ~1 ) , t~ lR-{0}.  every a, set t = ' t '"" 

Proposition 1. S is a Baire space. 

Proof. Let {C,},~ N be a countable family of dense open sets in S. It is enough to 
prove that, for every f ¢  S, for every e = (e o, el,...), U'(e, f ) n ( n C , )  ~ ~. Let {r ,},~ be 
a sequence of real numbers r i>0,  r,--*0. Set f o = f ,  ~o=(eo ' co, eo .... )=e.  

U' U ' ( ~ , f ° ) n C o i s o p e n a n d * l l .  Hence there exist f l ~ ( ~ ,  f ° )  riCo and ex =(~o~, 

~ , . . . )  such that: U'(~I, f l)CU'(e °, f ° ) n C o ,  min( ro ,~) fora l l j "  U'(~-, fX)nC1 We can choose e I satisfying moreover: e) < el 

is open and #~. Hence there exist f 2eU '  nC1 and ~2=(e2o,~ ~ .... ) such 
that: U'(e 2, f2)  C U'(~ 1, f l ) n C 1 .  -4' f l  

We can choose e a satisfying moreover" e~ < min rl, for all j. We thus 

construct inductively a countable family {U'(e ~, f" )} ,~  such that: 

(i) e~ < rain r,_ 1 , - ~ ]  for all j. 

n 

(ii) d j ~  + 1, fT) < ~ for all j. 

(iii) U'(e", f") C U'(e"- 1, f , -  1)nC._ r 

Hence: n U'(e ~, f")C U'(e, f ) n ( n  C.); so, if we prove that n U'(e ~, f~)+ ~1 we are 
done. Now, for all j, {fT}.~N is a Cauchy sequence in ~f(D~). Since it is a Fr~chet space 
{f~} has a limit Fj and clearly F=(Fo,F 1 .... )eS. 

Moreover, using the inequalities (i) and (ii) it is easy to prove that Fe U'(e", f"), 
for every n. This completes our proof. 

Let ~ff(D~) C ~(D i) the set: { f e  ~(D~); s u p p f  C C Di}. 

Proposition 2. There is a continuous map s: ~ff (Di)-~ S, such that p~ os= Id, where p~ 
is the projection on the i-factor of S, 

Proof. Let q~ be an element of ~V'(Di). We will determine the corresponding 
f = ( f o ,  f~ .... )eS. If V/n V~ =~, we put f~=0. Let V~n V~elt. We can consider ~ as an 
element of X ( D  °) and ~ in D ° is compact. For every xe hj(V~n V~)there are 
an open neighbourhood U~C CD ° of x such that U~nA°= U~nh~(V~°nI~°~ )and  a 
holomorphic map with image in II~ u(i), 9 = (91,..., 9~(~)), defined on a neighbourhood 
of U~ in D °, such that: 

oth~(V~° n V~°)n U~ -- h i ohf t Ih,(V~° n V~°)n U~. 
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Let  us select a finite covering {U 1 .... , Uk} of  hj(Vi~Vj) and let gt=(g~ . . . . .  t gN(1)), 
t = l  . . . . .  k, be the corresponding ho lomorphic  maps. Let  {Zt}t=o,1 ..... k be an 
in finitely differentiable part i t ion o f unity subordinate  to { U o, U l, ..., Uk}, where U o 
_ D  s _  o hj(VinV~). For  every t =  1 .... , k the function:  ~(y)=z~(y)~(gt(y)) for y e  U t, 
~b~(y)=O for y e D ° - U t ,  is infinitely differentiable. Fo r  y e D j  we put :  fj(y) 

= ~ (~t(Y)- Repeating this for eve ry j  such that  Vv~Vj:#O (this is a finite set) we 
l<=t<=k 

obtain an element o f  S ; clearly this correspondence  is cont inuous and verifies the 
s tatement  of  the proposit ion.  

We fix now A = A j  (D=D~, tFN(J)). Let  W I ~  W 2 ~  . . .  ~ W r where W 1 = A  and 
W i + 1 = Sing. W ~. The following properties hold : 

1. The  family o f  t4 / i s  locally finite. 
2. I4 ~ is a complex space in D, for all i. 
3. Si= W i -  W i+ ~ is a complex manifold,  for all i. 
Moreover ,  if we call s t ra tum (of  complex dimension ni.s) every connected 

componen t  S~ o f  S ~ we have" 
4. OS~ is a union o f  s trata  o f  dimension < n~. s- 
5. The family of  all s trata is locally finite. 
We observe that  for our  purpose it is enough to use the natural  stratification of  

A without  refering to Whitney's  theory. 

Definition 1. We say that  S~ < S~ if S~ C t?S q. Now,  let S p, S~ be strata such that  S~ < S~. 
Then,  we define: T(S f, sq)= {HeG(nq, i, N); there are x e S  p and {y ,} ,~C S~ such 
that" y,--*x and T(y,,Sq)--,H in G(nq,i,N) }, where: G(nq,i,N) is the Grassman 
manifold  of  complex nq, i-planes through the origin in I~N; T(y,, S'[) is the tangent  
vector  space to S~ in y, .  

Definition 2. We say that  ~ e g ( D )  is a Morse  function on A if: 
1. q~IS f has no degenerate critical points for all p,j such that:  nv,j>O. 
2. For  all i,j, p, q (such that:  S p <sq), for all He T(S f, S~), the linear form dCb(x) 

is not  null on H. 

Note. I f ~  is a Morse  function on A then the set of  local minima of  4~IA is discrete in 
A,  indeed a non degenerate critical point  is isolated ; moreover  2. o f  Defini t ion 2 
says that  there are no sequences o f critical points of  ~1S7 converging to a point  of  an 

P q S s < S~. 

Proposition 3. For every cbe e(D) and for every e > 0, there exist ~ e ~M(D) such that : 
(i) d(IP,0)<e.  (ii) cb+ 7 j is a Morse function on A 2. 

Proof. We identify ~N with IR2N: 

(zl, Za .... ) = (xl + iYl, Xz + lYE .... ) ~ ( x l ,  Yl, x2, Ya .... ). 

Now, we consider:  h : D ~ 2 N  + 1 where h(x) = (hi(x), h2(x),... ) = (q~(x), x 1, Y l .... ). 
Let  pelR 2N+ 1. We define Lp : D ~ ,  by Lv(s) = l iP-  h(s)[I 2, where I[" [t is the Euclidean 
norm. 

q For  all q,j, the set o fpElR 2N÷ 1 such that  LvIS s has degenerate critical points is o f  
measure 0 in IR 2N+ 1 ([3]). Since the S~ are a countable  set, the set o f p e l R  2N+ 1 such 
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that LvIS ~ has degenerate critical points on at least one S~ is of measure 0 in ]R 2N+ 1 

We call this set B. Let S" = S~ and S ~ = S7 be such that S r < S". We can suppose that 
d imeS"=  n. ~ and ~ (in D) are complex analytic subspaces of  D ([4] Chapter IV, 
Theorem 1). Calling W the set: {(x, H); xe  S", He  T(x, S")}, 171/in ~ x G(n, N) is an 
analytic subspace of  ~ x G(n, N) ([4] Chapter IV, Proposition 4'). Moreover 17V is 
irreducible of  dim e = n (W is a connected set of  regular points and dim e W= n). If  
(x, H)e C-VowS" x G(n, N), then He T(S ~, S"). 

O = {(x, H)e ITV; x e ~ }  is an analytic subspace of  ITv and dim¢~O < n - 1 .  For  
every (x, H)e ~ x G(n, N) we call H h = J(x)H, where J(x) is the Jacobian matrix ofh  
in x (we consider H as a real 2n-plane). In S -r x G(n, N) x IR 2N + 1 let O' be the set O' 
= {(x, H, y); (x, H)e  O, y6  {(Hh) ± + h(x)} }, where (Hh) ± is the orthogonal space to H h 

in ]R2N+ 1 with respect to the usual scalar product. By means of the restriction to O' 
of the projection S -v x G(n, N) x ]R aN+ 1 __.~ x G(n, N) we obtain an infinitely differ- 
entiable fiber bundle on every stratum of any stratification of O. The fiber is a real 
(2N + 1 - 2n)-plane. Then O' is (as set) a countable union o fdifferentiable manifolds 
of  dim~ < 2 N -  1. Hence, by Sard's theorem, the image of O' in tR 2N ÷ 1 with respect 
to the projection S -7 x G(n, N) x IR 2N+ 1 __>IR2N+ 1 has measure 0 in lR 2N+ 1. Repeating 
it for every couple of  strata of A like S" and S ~ (this couple set is countable), the union 
of  images of  O"s in IR 2N+ 1 is of  measure 0 in ]RzN+ 1. We call this set C. Now, 
Q = IR2N + 1 _ (BuC) is a dense set in IR 2N + 1 and for every p e Q we have: 1. LplS~ has 
no degenerate critical points for every j, q. 2. Lp has the property 2 of Definition 2. 
Let U an open set, D2(  C U e  CD. Let Z~Jg'(D) be such that )~IU=I. Let csIR 
be and choose p=(-c+ea,e2, . . . ,e2N+OeQ, e~ can be arbitrarily small. Set: 

( L p -  c2), 
• g has property 1 and property 2 of  Definition 2. A short computa- 

9 -  2c 
tion shows that 

g = ~ +  ~, h~ eihi 
i_<_i_< 2N+ I 2c I < i N 2 N + I  C 

V 4 
+ 1_<i~+12c  el .  

If e~ are small and c is large we have: for ~=Z(9-4~) ,  d(~, 0)<e;  indeed for 
leg(D) ,  if 2,,--+0 then d(2~f,0)~0.  This concludes our proof. 

Proposition 4. For every i, M~ = { f  eS ; f is a Morse function on A~} is an open and 
dense set in S. 

Proof. It is clear that M~ is an open set. Density follows by means of  Proposition 2 
and Proposition 3. 

Now, we have proved Theorem 1. We put: K * = w ~  °, where V~°~K#:0. 
Proposition 1 and Proposition 4 say that M = nM~ is a dense set in S. It is enough to 
choose e = {e,}.~N, so small such that a function cb* = ( ~ ,  cb~ .... )eMca U'(e, c19), 
where ¢~ = (~0, @1 .... ) has the following properties: (i) ~* is strongly q-convex on 
D~( if ~ had same property). (ii) Noting ~o* the function on X that we obtain by 
pulling back to X, we have B~ C CX, for every ce IR. Every f on X that we obtain by 
pulling back to X an element F e  M has the property 2 of  Theorem 1. (with respect to 
local maxima too). 
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