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Analytic families of quantum hyperbolic invariants

STÉPHANE BASEILHAC

RICCARDO BENEDETTI

We organize the quantum hyperbolic invariants (QHI) of 3–manifolds into sequences
of rational functions indexed by the odd integers N � 3 and defined on moduli
spaces of geometric structures refining the character varieties. In the case of one-
cusped hyperbolic 3–manifolds M we generalize the QHI and get rational functions
H hf ;hc ;kc

N depending on a finite set of cohomological data .hf ; hc ; kc/ called weights.
These functions are regular on a determined Abelian covering of degree N 2 of a
Zariski open subset, canonically associated to M , of the geometric component of the
variety of augmented PSL.2;C/–characters of M . New combinatorial ingredients
are a weak version of branchings which exists on every triangulation, and state sums
over weakly branched triangulations, including a sign correction which eventually
fixes the sign ambiguity of the QHI. We describe in detail the invariants of three
cusped manifolds, and present the results of numerical computations showing that
the functions H hf ;hc ;kc

N depend on the weights as N !1 , and recover the volume
for some specific choices of the weights.

57M27, 57Q15; 57R56

1 Introduction

In the series of papers [3; 4; 5], we defined a family of complex-valued quantum
invariants HN .P/ of patterns P of geometric nature, called quantum hyperbolic
invariants (QHI) and indexed by the odd integers N � 3. Roughly, a pattern consists of
a compact oriented 3–manifold equipped with a representation of the fundamental group
in PSL.2;C/, plus some compatible cohomological data (see the next subsections for
a complete definition). The QHI generalize the Kashaev invariants of links in S3 [6],
subject to the celebrated volume conjecture. They define a .2C1/–dimensional quantum
field theory and, when applied to mapping cylinders of surface diffeomorphisms,
they coincide with the invariants derived from the local version of finite-dimensional
quantum Teichmüller theory (see Bai [1], Bai, Bonahon and Liu [2], and Baseilhac and
Benedetti [5]).
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In [3; 4; 5], we prove the invariance of the QHI only up to sign and multiplication by
N th roots of unity. The eventual existence and the meaning of such a phase anomaly, as
well as the determination of the asymptotic behavior of HN .P/ as N approaches C1,
are two main open issues of the theory. In order to tackle them, it seemed necessary
to develop a functional approach that would clarify the intrinsic nature of the various
combinatorial and geometric ingredients involved in the definition of the QHI. To this
end, we achieve the following goals in this paper.

QHI of cusped manifolds We extend the QHI of any one-cusped hyperbolic 3–
manifold M to invariants defined on the geometric component X0.M / of the variety
of augmented PSL.2;C/–characters of M . In [4; 5], the QHI of cusped hyperbolic
manifolds were defined only at the hyperbolic holonomy.

State sums over weakly branched triangulations To achieve the previous goal it is
necessary to introduce state sums over triangulations that do not support any branching,
replaced by relaxed structures called weak branchings. These state sums give rise to
QHI generalizing all the previously defined ones.

Analytic families of QHI We recast all the QHI into sequences fAN .Y /g of families
of complex analytic spaces and maps, indexed by the odd integers N � 3. Each family
AN .Y / is associated to a topological support Y , and provides concrete models of
geometric structures over Y called patterns. Patterns over cusped manifolds have an
intrinsic meaning in terms of the PSL.2;C/–version of the A–polynomial, and natural
relationships with Chern–Simons theory.

Fixing the sign ambiguity We include a sign correction in the state sum formulas
of the QHI, which removes their sign ambiguity under a mild assumption on the bulk
c–weight; see below. The sign correction depends on the combinatorics of the weak
branching and is a byproduct of Bendetti and Petronio [9]. It becomes trivial when
dealing (when possible) with branched triangulations, so that the QHI of [3; 4; 5] are
eventually defined up to multiplication by N th roots of unity.

In a sequel to this paper (in collaboration with C Frohman), we will develop our
approach concerning the asymptotic behavior of the QHI. Basically, given a topological
support Y and a sequence fPN g of patterns over Y , we study the limit of the family
fAN .Y /g as N approaches C1, instead of fHN .PN /g for a single sequence fPN g.
Then, assuming that

H1.fPN g/ WD lim sup
N!1

.log jHN .PN /j=N /

is finite (this is the case for all natural sequences fPN g), we consider the following
problems:
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(1) Determine the nature (regularity) of H1.fPN g/ as a function of the patterns
over Y .

(2) Describe the asymptotic behavior of fHN .PN /g as N approaches C1 in
terms of classical geometric invariants of Y : Chern–Simons invariants, torsions,
twisted cohomology etc.

The Kashaev–Murakami–Murakami volume conjecture is a particular case of (2), for
constant sequences of patterns associated to links in S3 (see Theorem 1.2 below).

In the rest of this introduction we describe with more details the content of the paper.

1A QHI of cusped manifold patterns

In this paper we define a cusped manifold to be an oriented, connected, noncompact
complete hyperbolic 3–manifold of finite volume with exactly one cusp. Hence a
cusped manifold M is diffeomorphic to the interior of a compact 3–manifold denoted
by V , with one torus boundary component.

A pattern P D .YP ; �; .h; k// over M consists of a topological support YP together
with additional geometric structures determined by the couple .�; .h; k//. The topo-
logical support takes the form YP D .V; .hc ; kc//, where

.hc ; kc/ 2H 1.V IZ=2Z/�H 1.@V IZ/

is a so-called c–weight, defined by a bulk c–weight hc and a boundary c–weight kc

satisfying

(1) r.kc/D �
�.hc/;

where r W H 1.@V IZ/ ! H 1.@V IZ=2Z/ is the reduction mod 2, and the function
��W H 1.V IZ=2Z/! H 1.@V IZ=2Z/ is induced by the inclusion map �W @V ! V .
The pattern P is obtained by completing YP with a couple .�; .hf ; kf //, where �
is a PSL.2;C/–character of V , ie a conjugacy class of representations of �1.V /

in PSL.2;C/, and .hf ; kf / 2 H 1.V IZ=2Z/�H 1.@V IC/ is a so-called f–weight
(relative to �), defined by a bulk f–weight hf and a boundary f–weight kf satisfying
the following constraint. Up to conjugacy the restriction of � to the torus @V is valued
in the group of complex affine transformations of the plane; the linear part of this
restriction defines a class in H 1.@V IC�/. Let d 2H 1.@V IC=2i�Z/ be the log of
this class, with imaginary part in ���; ��. One requires that for all a 2H1.@V IZ/,

(2) kf .a/D d.a/ mod i� and .kf .a/� d.a//= i� D ��.hf /.a/ mod 2:

Collecting the bulk and boundary weights we will often write P as .V; �; .h; k//, where

.h; k/D ..hf ; hc/; .kf ; kc//:

Algebraic & Geometric Topology, Volume 15 (2015)



1986 Stéphane Baseilhac and Riccardo Benedetti

Notation For every n 2 N , we write a�n b to mean that a and b are equal up to
multiplication by a power of exp.2i�=n/. If n is odd, then a �2n b if and only if
a�n˙b . We denote �n the group of nth roots of unity, acting on C by multiplication.

In [4; 5], for every cusped manifold M and odd N � 3, we defined quantum hyperbolic
invariants

(3) HN .M / WDHN .V; �hyp; .0; 0// 2C=�2N ;

that is, for the pattern P D .V; �hyp; .0; 0//, where �hyp is the hyperbolic holonomy
of M and all weights vanish. The following theorem summarizes our new results for
patterns over M (all terms are defined in Section 4).

Theorem 1.1 Let M be an arbitrary cusped manifold, X.M / the variety of aug-
mented PSL.2;C/–characters of M , and X0.M /�X.M / the irreducible component
of �hyp . There is a canonical nonempty Zariski open subset �.M / of X0.M / contain-
ing �hyp such that:

(1) For every odd integer N �3 and every pattern .V; �; .h; k// such that �2�.M /,
there is a quantum hyperbolic invariant HN .V; �; .h; k// 2 C=�2N satisfying
HN .V; �hyp; .0; 0//DHN .M /.

(2) (Analytic families) Fix a topological support .V; .hc ; kc// and an element hf
in H 1.V IZ=2Z/. For every odd integer N � 3, the invariants HN .V; �; .h; k//

define a regular rational function H hf ;hc ;kc
N

W z�.M /N ! C=�2N on a deter-
mined .Z=N Z/2 –covering space z�.M /N of �.M /.

(3) (Resolution of the sign ambiguity) If N � 1 mod 4, or N � 3 mod 4 and
hc D 0, then .1/ and .2/ above hold true when �2N is replaced by �N .

Comments (a) X.M / is a complex algebraic variety and �hyp a regular point of
X.M /. Hence there is a unique irreducible component X0.M / of X.M / containing
�hyp . As M has only one cusp, X0.M / is an algebraic curve and �.M / is the
complement of a finite set of points.

(b) Theorem 1.1(2) is a rough qualitative formulation of the N th analytic family
AN .Y / associated to the topological support Y D .V; .hc ; kc// of M .

(c) The arguments of Theorem 1.1(1)–(2) apply verbatim to prove the invariance
of simplicial formulas defining the PSL.2;C/–Chern–Simons section, realized as an
analytic equivariant function h�HFEP;hf

1
W z�.M /1!C on a Z2 –covering z�.M /1

of �.M /; see Section 4D.
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1B QHI of other patterns

In order to explain the nature of the QHI in Theorem 1.1(1), and why this result is not
straightforward, it is useful to recall a few general facts from [3; 4; 5].

QHFT partition functions The QHI of quantum hyperbolic field-theoretic (QHFT)
patterns have been defined in [5]. The topological supports of QHFT patterns have the
form .V;L; .hc ; kc//, where:
� V is a compact oriented connected 3–manifold with (possibly empty) boundary
@V made by torus components; if @V D∅ we will write W instead of V .

� L is a nonempty link in the interior of V .
� The bulk and boundary c–weights .hc ; kc/ 2H 1.V IZ=2Z/�H 1.@V IZ/ sat-

isfy (1).

The QHFT patterns are obtained by completing .V;L;.hc ; kc// with a pair .�;.hf ; kf //,
where � is any PSL.2;C/–character of V and .hf ; kf / are bulk and boundary f–
weights satisfying (2) with respect to � .

When V D W is a closed 3–manifold, .kc ; kf / disappears so that h D .hc ; hf / 2

H 1.W IZ=2Z/2 . In [3; 4] we defined the QHI HN .W;L; �; h/ in that situation for
every character � and weight h. A specialization is HN .S

3;L/ WDHN .S
3;L; �triv; 0/,

where �triv is the trivial character of S3 . In [6] we obtained the following result, which
establishes a connection with Jones invariants.

Theorem 1.2 For every link L in S3 and every odd integer N � 3,

HN .S
3;L/�N †L †N D JN .L/.e

2i�=N /;

where †L †N is the link invariant defined by the enhanced Yang–Baxter opera-
tor extending the Kashaev R–matrix, and JN .L/.q/ 2 ZŒq˙1� is the colored Jones
polynomial, normalized so that JN .KU /.q/D 1 on the unknot KU .

Remark 1.3 The second equality is due to Murakami and Murakami [30]. In [3; 4;
5] we quoted occasionally the first one as a motivating fact. Later we realized that
we were unable to derive a complete proof from the existing literature (in particular
Kashaev [23; 24]), so we provided an independent one in [6], under the ambiguity �2N .
The above statement with �N follows from the state sum sign correction introduced
in the present paper (see also Remarks 2.11 and 5.5).

When @V ¤ ∅ the QHFT partition functions are more sophisticated; see [5]. In
particular the link L contains an essential simple closed curve on each boundary
component which actually encodes a Dehn filling instruction. Anyway, also in this case
the invariants HN .V;L; �; .h; k// are defined for arbitrary characters and weights.
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Relation with the QHI of cusped manifolds The patterns over cusped manifolds
and the QHFT patterns are complementary in the sense that the link L is empty in the
former. In [4; 5] the proof of invariance of HN .M /DHN .V; �hyp; .0; 0// differs to
many extents from the one for the QHFT partition functions. It uses the volume rigidity
for cusped manifolds (see Francaviglia [19], for example), Thurston’s hyperbolic Dehn
filling theorem, a construction of certain auxiliary invariants HN .V; �hyp; .0; 0/; a/

that depend a priori on an additional datum a, and finally a surgery formula. Set
HN .W;L; �/ WDHN .W;L; �; 0/, where W is closed (see our notations above). By
combining all these results we proved the following.

Theorem 1.4 [5, Section 6.2] Let Wn be a sequence of closed hyperbolic Dehn
fillings of M whose holonomies �n (considered as PSL.2;C/–characters on M)
converge to �hyp in X.M /. Denote by Ln the geodesic core of the solid torus that
fills V to produce Wn . For every odd N � 3 and every additional datum a we have

(4) lim
n!1

HN .Wn;Ln; �n/�2N HN .V; �hyp; .0; 0/; a/:

Hence a is eventually immaterial, and the limit defines HN .M / 2C=�2N .

The normalization .h; k/D .0; 0/ on the right side of (4) is a byproduct of the proof.
Under some additional assumptions on M (for instance if M is very gentle according
to [4; 5]; then a D ∅), we can avoid the delicate surgery argument and define the
invariants HN .V; �hyp; h; k/ for arbitrary weights relative to the hyperbolic holonomy.

1C State sums over weakly branched triangulations

One complication with the construction of the QHI of cusped manifolds in [4; 5]
depends on a technical difficulty that we overcome in the present paper.

For every topological support YP , denote by yV the compact space obtained by filling
each boundary component of @V with the cone over it. If @V D ∅ then yV D W ;
yV has a finite set of nonmanifold points, the vertices of the filling cones. For every
pattern P supported by YP , HN .P/ is computed by state sums over certain decorated
triangulations T of yV , depending on the choice of a point z� in the associated gluing
variety G.T / such that z� represents the character � (see Section 2), and on a suitable
encoding of the weights .h; k/. Moreover, T is equipped with a branching; equivalently,
T carries a structure of �–complex in the sense of Hatcher [21].

In the case of QHFT partition functions this is not so demanding: T can be a quasireg-
ular triangulation (every edge has distinct endpoints), a branching b can be induced,
for example, by a total ordering of the vertices, and z� can be realized by means of a
so-called idealization of PSL.2;C/–valued 1–cocycles on .T; b/.
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On the other hand, for a cusped manifold M we use ideal triangulations T of yV
such that the gluing variety G.T / contains a point zh representing the hyperbolic
holonomy �hyp , and having coordinates with nonnegative imaginary part (we say that
zh is nonnegative). Such triangulations exist for every M , for instance any maximal
subdivision of the canonical Epstein–Penner cell decomposition has this property.
However we do not know if every cusped manifold has such a triangulation T admitting
a branching b . For instance, the canonical Epstein–Penner decomposition of the figure-
eight knot sister (m003 in SnapPea’s census) is made of two regular hyperbolic ideal
tetrahedra and does not carry any branching. The very gentle manifolds M mentioned
after Theorem 1.4 admit by definition a branched triangulation .T; b/ with a nonnegative
point zh in G.T /.

In order to get Theorem 1.1(1) we relax branchings to weak branchings, which exist
on every triangulation, and this leads us to include 2–face tensors in the state sum
formulas. In this setup, as well as to cover arbitrary characters of M in �.M /, the
proof of the state sum invariance requires additional arguments with respect to [4; 5].

1D Plan of the paper

Let V be as in Section 1B and yV as in Section 1C.

In Section 2 we recall a few general facts about triangulations endowed with prebranch-
ings, weak branchings or branchings, and the associated gluing varieties of M .

In Section 3 we construct the analytic configuration AN .T; zb; c/ for every odd inte-
ger N � 3, weakly branched triangulation .T; zb/ of yV , and rough charge c on T

(suitably specialized global charges will eventually encode the c–weights below). In
particular AN .T; zb; c/ contains an infinite Abelian covering of the gluing variety,
p1W G.T; zb/1! G.T /, and an analytic function HN .T; zb; c/W G.T; zb/1! C . In
the case of QHFT patterns it is described qualitatively by the following proposition.

Proposition 1.5 For every topological support .V;L; .hc ; kc// there is a weakly
branched triangulation .T; zb/ of yV and a global charge c on T such that:

(1) c encodes the c–weight .hc ; kc/.

(2) For any QHFT pattern .V;L; �; .h; k// with topological support .V;L; .hc ; kc//,
there is a point u 2G.T; zb/1 such that p1.u/ represents the character � and
for every odd N � 3 the scalar HN .V;L; �; .h; k//�2N HN .T; zb; c/.u/ does
not depend on the choice of .T; zb; c/ and u.

In the case of patterns over a cusped manifold M , the following holds.
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Proposition 1.6 For every topological support Y D .V; .hc ; kc// over M , there is a
determined Zariski open subset �.M / of X0.M / containing the hyperbolic holonomy
�hyp , and there is a weakly branched ideal triangulation .T; zb/ of yV , and a global
charge c on T such that:

(1) c encodes the c–weight .hc ; kc/.

(2) The gluing variety G.T / contains a nonnegative point zh representing �hyp .

(3) There is an irreducible component Z of G.T /, a Zariski open subset �Z

of Z containing zh , and a homeomorphism �W �Z ! �.M / extending a
regular rational isomorphism between Zariski open subsets, such that �.z/ is the
holonomy of V represented by z .

(4) For every pattern .V; �; .h; k// over M with topological support Y and for
every � 2�.M /, there is a point u 2Z1 WD p�1

1 .Z/ such that �D �.p1.u//,
and for every odd N � 3 the scalar HN .V; �; .h; k//�2N HN .T; zb; c/.u/ does
not depend on the choice of .T; zb; c/ and u.

We will use concrete models of the finite coverings and regular rational maps in
Theorem 1.1(2) by considering a suitable factorization of HN .T; zb; c/W Z1!C .

In Section 4 we develop the content of Proposition 1.6 and prove Theorem 1.1(1)–(2)
and the analogous result when N D 1 (see comment (c) and Corollary 4.17). In
Section 5 we indicate briefly how to deal with QHFT partition functions. In Section 6
we collect a few facts about a diagrammatic calculus for weakly branched triangulations.
This calculus is used in Section 7, which contains the invariance proof of the state sums
defined over such triangulations.

In Section 8 we prove Theorem 1.1(3) and the analogous result for QHFT partition
functions. As a byproduct we show that global compensations of the local sign ambi-
guities imply that the QHI HN .P/ defined by means of branched triangulations have
no sign ambiguity. This applies to QHFT partition functions and to very gentle cusped
manifolds.

In Section 9 we describe the quantum hyperbolic invariants of three cusped manifolds:
the figure-eight knot complement, its sister, and the complement of the knot 52 . We
present the results of numerical computations showing that the functions H hf ;hc ;kc

N

depend on the weights as N approaches C1, and recover the volume for some specific
choices of the weights.

Notation In general we denote by N the odd integers � 3, including the case N D 1

when specified, and we put m WD .N � 1/=2 and � WD exp.2� i=N /. The set IN D

f0; : : : ;N�1g is identified with the group Z=N Z and Œn�N 2IN denotes the remainder
modulo N of n 2N . We let ıN .n/ WD 1 (resp. 0) if Œn�N D 0 (resp. Œn�N ¤ 0).
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2 Structured triangulations and gluing varieties

Triangulations Let V be as in Section 1B, that is, a compact oriented connected
3–manifold with (possibly empty) boundary @V made by toric components. Denote
by yV the space obtained by taking the cone over each boundary component of @V .
A triangulation T of yV is a collection of oriented tetrahedra �1; : : : ; �s together
with a complete system � of pairings of their 2–faces via orientation reversing affine
isomorphisms, such that the oriented quotient space

T WD

sa
iD1

�i=�

is homeomorphic to yV , preserving the orientations. We will distinguish between the
2–faces, edges and vertices of the disjoint union

`s
iD1�i , and the ones of T after the

2–face pairings. In particular we denote by E.f�ig/ and E.T / the set of edges of`s
iD1�i and T respectively, and we write E! e to mean that an edge E 2E.f�ig/

is identified to e 2E.T / under the 2–face pairings. The 2–faces of each tetrahedron�i

have the boundary orientation defined by the rule: first the outgoing normal. When
@V ¤∅, the nonmanifold points of yV are necessarily vertices of T . A triangulation
T of yV is called ideal if the set of vertices of T coincides with the set of nonmanifold
points of yV .

Gluing varieties Let T be as above. For every tetrahedron �j choose a vertex vj .
Order the edges of the opposite 2–face Fj so that the induced cyclic ordering is the
opposite of the boundary orientation. Denote these edges by Ej

0
;Ej

1
;Ej

2
. Give a label

uj
r 2C� to Ej

r and the opposite edge, where C� WDCnf0; 1g and r 2Z=3Z. The gluing
variety of T is the algebraic subset of C3s

� with coordinates .u1
0
;u1

1
;u1

2
; : : : ;us

0
;us

1
;us

2
/

and defining equations, for all j 2 f1; : : : ; sg, r 2 Z=3Z and e 2E.T /,

u
j
rC1

.1�uj
r /D 1;

Y
E!e

u.E/D 1:
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By the first set of s tetrahedral relations, we see that the gluing variety is the graph of an
explicit regular rational map defined on an algebraic subset of Cs

� defined by the second
set of edge relations. The auxiliary choices of ordered edges Ej

r being immaterial,
these algebraic varieties are canonically isomorphic. We denote them by G.T /.

Every point u 2G.T / represents a PSL.2;C/–character �.u/ of V . Its components
uj

0
, uj

1
, uj

2
can be interpreted as the cross ratio parameters of an isometry class of

oriented hyperbolic ideal tetrahedra associated to �j , that we denote by .�j ;u
j /.

Their imaginary parts have a same sign �j 2 f�1; 0; 1g (by convention �j D 0 if the
imaginary parts are zero). By a classical result of Schläffli, the algebraic volume of
.�j ;u

j / is given by

(5) Volalg.�j ;u
j / WD �.uj /Vol.�j ;u

j /D D2.u
j
0
/;

where Vol is the geometric positive volume and D2 the Bloch–Wigner dilogarithm.
When the components uj

r are real, .�j ;u
j / is degenerate and both sides of (5) vanish.

By summing the algebraic volumes of the .�j ;u
j /s we get a volume function

(6) VolW G.T /!R:

If G.T / is nonempty, for every point u2G.T /, Vol.u/ coincides with the (intrinsically
defined) volume Vol.�.u// of the character �.u/. In general G.T / might be empty,
but yV always has triangulations T such that G.T / is nontrivial. A first general result
concerns its dimension.

Theorem 2.1 [31; 33; 7] Assume that V has one torus boundary component. Let
T be an ideal triangulation of yV . If the gluing variety G.T / is nonempty, then it is a
complex algebraic set of dimension � 1.

This result depends on the combinatorial properties of T . If the interior of V is a
cusped manifold M , then it has the canonical Epstein–Penner (EP) cell decomposition
by embedded convex hyperbolic ideal polyhedra; see for instance [7].

Proposition 2.2 The maximal subdivisions of the EP cell decomposition of M define
a finite set TEP.M / of ideal triangulations of yV , such that for every T 2 TEP.M / the
gluing variety G.T / contains a nonnegative point uh 2G.T / such that �.uh/D �hyp

and Vol.uh/D Vol.M /.

Every nondegenerate hyperbolic ideal tetrahedron of .T;uh/ has strictly positive
(geometric) volume, but in general one cannot avoid some degenerate tetrahedra.

For other manifolds the nature of G.T / is not so well known. For instance consider
the case of a closed 3–manifold W . A triangulation T of W is called quasiregular if
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every edge of T has distinct vertices in T . It is clear that every triangulation has a
quasiregular subdivision. Take one, and fix a total ordering of the vertices. For every
edge e with endpoints v and v0 , orient e from v to v0 if v < v0 . Every simplicial
PSL.2;C/–valued 1–cocycle z on T , defined by using this edge orientation, represents
a character �.z/ of W . Then to any sufficiently generic cocycle z one can associate a
point u 2G.T / such that �.z/D �.u/, which leads to the following.

Proposition 2.3 [3] Let T be a quasiregular triangulation of W . For every charac-
ter � of W there is a point u 2G.T / such that �D �.u/.

Clearly, the point u is far from unique. For instance, if W D S3 every point of G.T /

represents the trivial character. A similar, slightly more elaborated result holds for all
other topological supports of QHFT patterns; it uses triangulations of yV obtained from
quasiregular relative triangulations .T; @T / of .V; @V / by adding a cone over each
component of @T .

The method used to prove Proposition 2.3 is reminiscent of Thurston’s spinning con-
struction, and is strictly related to it when W is hyperbolic. In that case, the following
result, which is proved by using the spinning construction, agrees with Proposition 2.3
in the case of quasiregular triangulations.

Proposition 2.4 [28] Let T be a triangulation of a closed oriented hyperbolic 3–
manifold W such that no edge is a null-homotopic loop in W . Then there exists u 2

G.T / such that Vol.u/D Vol.W /, and moreover its holonomy �.u/ is the hyperbolic
holonomy.

Variations on branched triangulations Define a prebranched tetrahedron .�; �/ as
an oriented tetrahedron � with a choice � of coorientations of the 2–faces, such that
two coorientations are ingoing and two are outgoing. As every 2–face has the boundary
orientation, by duality � can be interpreted as a system of 2–face orientations.

A

B

A

B

Figure 1: Prebranched tetrahedron

Figure 1 shows a prebranched tetrahedron .�; �/ embedded in R3 , with coordinates
.x1;x2;x3/ such that the plane of the picture is fx3D 0g. We put on � the orientation
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induced from R3 , and assume that the two 2–faces above (resp. below) the plane are
those with outgoing (resp. ingoing) coorientations. This specifies two diagonal edges
and four square edges. Every square edge is oriented as the common boundary edge
of two 2–faces with opposite coorientations. So the square edges form an oriented
quadrilateral. Using the orientation of �, one can also distinguish among the square
edges two pairs of opposite edges, called A–edges and B–edges. The orientation of
the diagonal edges is not determined.

A B

Figure 2: Branched tetrahedra inducing the same prebranched tetrahedron

An oriented tetrahedron � becomes a 3–simplex by ordering its vertices. This is
equivalent to a system b of orientations of the edges, called (local) branching, such
that the vertex vj has j incoming edges, j 2 f0; : : : ; 3g. The 2–faces of .�; b/ are
ordered as the opposite vertices, and b induces a branching bF on each 2–face F .
The branchings b and bF define orientations on � and F , respectively: the b– and
bF –orientations. The b–orientation may coincide or not with the orientation of �. We
encode this by a sign, �b 2f�1;C1g. The boundary orientation and the bF –orientation
agree on two 2–faces. Hence b defines a prebranching �b . On the other hand, given a
prebranching � on � there are exactly four branchings such that �b D � . They can be
obtained by choosing an A (resp. B ) edge, reversing its orientation, and completing
the resulting square edge orientations to define a branching b (this can be done in a
single way; see Figure 2). Note that �b D 1 (resp. �b D�1) if and only if we have
chosen an A (resp. B ) square edge, and the square edge is Œv0; v3�. The diagonal
edges are Œv0; v2� and Œv1; v3�.

One can extend these notions to triangulations T of yV :

� A prebranched triangulation .T;�/ is formed by prebranched tetrahedra .�j ;�j /

such that the 2–face coorientations match under the 2–face pairings.
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� A weakly branched triangulation .T; zb/ is formed by branched tetrahedra
.�j ; bj / such that the induced prebranched tetrahedra .�j ; �bj / form a pre-
branched triangulation .T; �/.

� A branched triangulation .T; b/ is formed by branched tetrahedra .�j ; bj / such
that the branchings (ie the edge orientations) match under the 2–face pairings.

Remark 2.5 Branched triangulations of yV and �–complexes over yV [21] are equiv-
alent notions. In particular the simplicial 3–chain

P
j �bj .�j ; bj / represents the

fundamental class in H3. yV IZ/.

Let T be a triangulation of yV . Denote by xV the compact 3–manifold with boundary
obtained by removing a small open 3–ball around every vertex of T which is a manifold
point. Clearly, V D xV if and only if T is an ideal triangulation. A prebranched
triangulation .T; �/ of yV can be described in a very concrete way in terms of the
standard spine P of xV dual to T .

Lemma 2.6 There is a one-to-one duality correspondence between the sets of pre-
branchings of T and those of P , where a prebranching of P is defined as an orientation
of the singular locus Sing.P / such that every vertex has two outgoing and two ingoing
edges.

The proof is evident, as every edge of Sing.P / is dual to a 2–face of T . The notion
of (weakly) branched triangulation .T; zb/ has a natural dual counterpart as (weakly)
branched spine .P; xb/.

The branched boundary of a prebranched triangulation The triangulation T of
yV yields a decomposition of xV into truncated tetrahedra. Their triangular 2–faces
form a triangulation @T of @ xV . If .T; �/ is a prebranched triangulation, then @T has
a branching b@� defined on the 2–faces of @T as in Figure 3.

The corners of every 2–simplex of .@T; b@� / have a label in fA;B;∅g, and a sign
˙1 obtained by comparing the boundary and the b@� –orientations. Such a fA;B;∅g–
labeling may be defined more generally for any branched triangulation of a closed
oriented surface.

Lemma 2.7 Each vertex of a branched triangulation of a closed oriented surface has
an even number of adjacent corners with the empty label ∅. Hence every edge e

of a prebranched triangulation .T; �/ of yV has an even number of diagonal edges
E 2E.f�ig/ such that E! e .
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A

A

B B

AB

�1

A B
1

Figure 3: Branched boundary of prebranched triangulations

Proof For each 2–face the edges adjacent to the corner with label ∅ have opposite
b–orientations, while they agree elsewhere. The existence of an orientation on any
transverse loop implies the first claim. The second follows by considering the triangu-
lation @T .

Remark 2.8 Give the labels 1 2 Z=2Z to the diagonal edges and 0 2 Z=2Z to the
square edges of every prebranched tetrahedron .�; �/ of .T; �/. Then Lemma 2.7 and
Lemma 2.10 below imply that Z2 –valued taut structures on T always exist (a notion
borrowed from F Luo’s work).

Networks and N–graphs Consider an oriented graph .Sing.P /; x�/ as in Lemma 2.6.
Put around every vertex v the dual branched tetrahedron .�v; bv/ so that its 2–faces
intersect transversely the edges of Sing.P /. Thus each edge connects a 2–face F i

of the initial branched tetrahedron .�vi
; bvi

/ with a 2–face Ff of the final one
.�vf ; bvf /, identified in T . The gluing map �eW F

i ! Ff is determined by a color
r.e/ 2 Z=3Z defined as follows. Set J3 D f0; 1; 2g. Denote by S.J3/ the symmetric
group on J3 , by A.J3/ the subgroup of even permutations, and by ui

j and u
f
j the

vertices of F i and Ff , with j 2 J3 . The map �e is determined by the permutation
�e 2A.J3/ such that �e.u

i
j /D u

f

�e.j/
. Then we set

r.e/ WD ˛�1.�e/ 2 Z=3Z;

where ˛W Z=3Z! A.J3/ is the isomorphism given by ˛.j / D .012/j . We define
N .T; zb/ as the oriented graph .Sing.P /; x�/ endowed with the Z=3Z–edge colors r.e/,
and with the correspondence, for every vertex v , between the 2–faces of .�v; bv/ and
the germs of edges adjacent to v . Clearly we have the following.

Lemma 2.9 A weakly branched triangulation .T; zb/ is branched if and only if all the
Z=3Z–edge colors r.e/ are equal to 0.
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Lemma 2.10 Any triangulation T of yV admits prebranchings and hence compatible
weak-branchings.

We stress that this is no longer true for genuine branchings; see an example in Figure 7.
If T is quasiregular, then every total ordering of the vertices induces a branching of T .

It is useful to represent N .T; zb/ by an N–graph � , defined as follows. Basically � is
a planar immersion of .Sing.P /; x�/ with normal crossings. It has two kinds of vertices:
essential crossings, represented by a solid dot, corresponding to the vertices of P and
connected by the oriented edges of � , and nonessential (“immaterial”) crossings due
to the immersion. An essential crossing encodes a branched tetrahedron .�v; bv/ as
shown in Figure 4; the labels on the arc endpoints correspond to the bv–ordering of
the dual 2–faces of .�v; bv/. A full decoding is provided by Figure 5 in the case
�b D 1, showing a branched tetrahedron, the dual “butterfly” with cooriented (hence
oriented) wings, and its conversion into a portion of an oriented branched surface. An
arc of � corresponding to an edge e of .Sing.P /; x�/ inherits the Z=3Z–color r.e/.
If r.e/D 0 we omit it.

1

2

3

0 1

2

3

0

C1 �1

Figure 4: N–graph crossings for �b D˙1

0

1

2

3

Figure 5: Decoding of an N–graph crossing (�b D 1)
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Given � , an easy decoding procedure (extending the one of Figure 5) produces an
embedding in R3 of a closed regular neighborhood N.P / of Sing.P / in the standard
spine P . We believe that it is enough to show this in the case of the simplest cusped
manifolds: M0 , the figure-eight-knot complement in S3 , and its sister M1 , which is
the complement of a knot in the lens space L5;1 ; see [29]. In both cases the Epstein–
Penner decomposition is an ideal triangulation made by two regular hyperbolic ideal
tetrahedra. Denote by T0 and T1 the corresponding triangulations of yV0 and yV1 .
Figure 6 (resp. Figure 7) shows an N–graph and its decoding for a branching b of T0

(resp. weak branching zb of T1 ). It is not hard to verify that T1 does not carry any
branching.

Figure 6: A N–graph of .T0; b/ and its decoding

12

Figure 7: A N–graph of .T1; zb/ and its decoding

Edge decorations We will use several labelings of the edges E 2 E.f�ig/ of a
weakly branched triangulation, called decorations, such that for every tetrahedron,
opposite edges have the same label. An example is the decoration of the square
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d1 d1

d2

d2

A A

B B

d1 d1

d2

d2

B B

A A

Figure 8: Edge decorations on N–graphs

edges with A or B according to the prebranching, and of the diagonal edges with ∅.
Every decoration d is determined on each tetrahedron �j by the triple .d0; d1; d2/ WD

.d.Ej
0
/; d.Ej

1
/; d.Ej

2
//. In terms of decoded N–graphs, they are placed as in Figure 8,

where we understand that the over/under crossing arcs are labeled by d0 , and we show
also A, B , ∅.

Remark 2.11 In the case of genuine branchings, N–graphs were used in [6] under
the name of normal o-graphs, with the opposite convention for the sign �b (in accor-
dance with the usual crossing signs of link diagrams). This choice gives the equality
HN .S

3;L/ �N JN .xL/, where xL is the mirror image of the link L. The present
convention yields the statement of Theorem 1.2.

The model G.T; zb/ of the gluing variety If .T; zb/ is a weakly branched triangula-
tion, we can use the weak branching zb to fix the auxiliary choices used in the definition
of the gluing variety G.T /. On every branched tetrahedron .�j ; bj / let vj D vj

3
,

and order the edges of Fj
3

as Ej
0
D Œvj

0
; vj

1
�, Ej

1
D Œvj

1
; vj

2
�, and Ej

2
D Œvj

0
; vj

2
�. If

�bj DC1, this ordering is compatible with the cyclic ordering induced by the opposite
of the boundary orientation of Fj

3
. If �bj D�1 this is no longer true, and since the

coordinates uj
r , r 2Z=3Z, of G.T / are the cross ratio moduli of an isometry class of

oriented hyperbolic tetrahedron associated to �j , uj
r should be replaced by .uj

r /
�1 in

order to compensate the choice of opposite orientation. Hence we define a new system
of coordinates .wj

r / 2C3s
� of G.T / by labeling Ej

r with wj
r , setting

(7) .w
j
0
; w

j
1
; w

j
2
/D

�
.u

j
0
;u

j
1
;u

j
2
/ if �bj DC1;

.1=u
j
2
; 1=u

j
1
; 1=u

j
0
/ if �bj D�1:

This gives the model of G.T / we are going to use. We denote it by G.T; zb/. The
defining equations of G.T; zb/ are the edge relations, for all edges e of T , given by

(8)
Y

E!e

w.E/�E D 1;
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where if E is an edge of .�j ; bj / we have w.E/Dwj
i if and only if E is E

j
i or the

opposite edge, and �E WD �bj . The volume function on G.T; zb/ takes now the form
Vol.w/D

P
j �bj D2.w

j
0
/. Clearly Vol.u/D Vol.w.u//.

Example 2.12 It is easy to recover the edge equations of G.T; zb/ from a decoded
N–graph representing it: at each essential crossing one places the cross ratio variables
.w0; w1; w2/ like the decorations .d0; d1; d2/ in Figure 8, and take the products of
cross ratio variables along the boundary lines of N.P /. For example, consider the
cusped manifold M1 and .T1; zb/. Assign .w0; w1; w2/ to the top crossing of Figure 7,
and .W0;W1;W2/ to the bottom one. Note that �b DC1 for both of them. Then we
get the equations

(9) w0w
2
1W0W 2

1 D 1; w0w
2
2W0W 2

2 D 1:

Using the relation wjC1 D 1=.1�wj / and the similar one for Wj , (9) reduces to the
unique quadratic equation

w1.w1� 1/W1.W1� 1/D 1:

The parameter space of positive solutions is the half plane Imw1 > 0 with the ray
0:5C si removed, where

p
15=2 � s < C1 [29]. The complete hyperbolic struc-

ture is realized at w1 D W1 D exp.i�=3/ (two regular ideal tetrahedra). Similarly,
using .T0; b/ one recovers Thurston’s celebrated treatment of the figure-eight knot
complement M0 .

3 Analytic configurations

3A Local analytic configurations

Take an oriented 3–simplex .�; b/. As in the previous section the 2–face F3 is
opposite to the vertex v3 , and the edges of F3 are ordered as

E0 D Œv0; v1�; E1 D Œv1; v2�; E2 D Œv0; v2�:

3A1 Quantum hyperbolic 3–simplices Recall that the edge decorations of .�; b/
are equal on opposite edges, and hence specified by triples d D .d0; d1; d2/, where
dr D d.Er / (r 2 Z=3Z). A quantum hyperbolic 3–simplex is a tuple .�; b; w; f; c/,
where:
� w D .w0; w1; w2/ is the system of cross ratios (7).
� f D .f0; f1; f2/ 2 Z3 is such that lk D log.wk/C ifk� , k 2 Z=3Z, satisfy

l0C l1C l2 D 0.
� c D .c0; c1; c2/ 2 Z3 satisfies c0C c1C c2 D 1.
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Here, log is the branch of logarithm with imaginary part in .��; ��. For every
k 2 Z=3Z set

(10) lk;N;�b;c D
1

N

�
log.wk/C i�.N C 1/.fk ��bck/

�
:

We call f a flattening, c a charge, lk a classical log branch, and lk;N;�b;c a quantum
log branch. If Im.w/ > 0 (resp. Im.w/ < 0), then c is a charge if and only if �c

(resp. c ) is a flattening.

We organize the edge decorations w , f , c as follows. Denote by p1W W1! C�
the maximal abelian covering map. We realize W1 as the quotient space W1 D
.D�Z2/=�, where D is the result of gluing two copies of .�1; 0/ and .1;C1/ to
the boundary of C n ..�1; 0/[ .1;C1//, and � is the equivalence relation

(11)
.xC i0Ip; q/� .x� i0IpC 2; q/ if x 2 .�1; 0/;

.xC i0Ip; q/� .x� i0Ip; qC 2/ if x 2 .1;C1/:

Setting l.yIm/ WD log.y/C im� , m 2 Z, the bijective map

(12)
�

xI
l.xIp/� log.x/

i�
;
l..1�x/�1I q/� log..1�x/�1/

i�

�
7!
�
l.xIp/; l..1�x/�1

I q/
�

identifies W1 with the Riemann surface of the maps

(13) ��;�0 W x 7! .log.x/C i��; log..1�x/�1/C i�0�/; �; �0 2 f0; 1g:

For every sign � D ˙1 and couple c D .c0; c1/ 2 Z2 define the analytic map
lN;�;c W W1! .C�/2 by

lN;�;c.ŒxIp; q�/

D

�
1

N
.log.x/C i�.N C1/.p��c0//;

1

N
.log..1�x/�1/C i�.N C1/.q��c1//

�
:

Then:

� C� (resp. W1 ) with coordinate w0 (resp. Œw0If0; f1�) is a parametrization of
the set of edge decorations w (resp. .w; f /) of .�; b/.

� Setting c2 D 1� c0� c1 , the components of lN;�b;c.Œw0If0; f1�/ determine the
three quantum log branches lk;N;�b;c of .�; b; w; f; c/.

� Put EXP.z1; : : : ; z2s/D .exp.z1/; : : : ; exp.z2s//, s� 1. The map EXP ılN;�;c W
W1 ! .C�/2 provides a distinguished system of N th roots of the cross ra-
tios wk :

(14) w0k WD exp.lk;N;�b;c.Œw0If0; f1�//:
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The proof of this lemma is straightforward; see [4] and [5, Remarks 2.1 and 2.18].

Lemma 3.1 (1) The N th roots .w0
0
; w0

1
; w0

2
/ depend only on the remainders mod

N of the flattening f and the charge c , and satisfy the relation

(15) w00w
0
1w
0
2 D��

�bm;

where as usual N WD 2mC 1 and � WD exp.2i�=N /.

(2) For any charge c and N th roots uk of the cross ratios wk satisfying the relation
(15), there is a flattening f such that uk D w

0
k

as in (14).

(3) The image WN of W1 via the map EXP ılN;�b;c is the curve in .C�/2 with
defining equation

uN
0 C .u

�1
1 /N D 1:

(4) There is a natural N 2 –to-one rational regular map

pN W WN !C�; pN .u0;u1/ WD uN
0 :

3A2 Tetrahedral tensors Given a branched tetrahedron .�; b/ and an operator
A 2 End.CN ˝CN /, associate a copy Vj of CN to the 2–face Fj , and consider A

as a map

(16) AD

(
.A

i;j

k;l
/W V3˝V1! V2˝V0 if �b DC1;

.A
k;l
i;j /W V2˝V0! V3˝V1 if �b D�1:

Note that the pair of indices .i; j / (resp. .k; l/) corresponds to the space V2 ˝ V0

(resp. V3˝ V1 ), and to the outgoing (resp. ingoing) 2–face coorientations induced
by b if �b D 1, and the converse if �b D �1. The entries A

i;j

k;l
and A

k;l
i;j are taken

in the standard basis of CN ˝CN . Graphically this is encoded in Figure 9 (compare
with Figure 4).

i j

kl i j

k
l

C1
�1

Figure 9: Position of tensor indices

Using (16) we define the tetrahedral tensors RN .�; b; w; f; c/ of a quantum hyperbolic
3–simplex by

R1.�; b; w; f / WDR.1;�b/.Œw0If0; f1�/ if N D 1;

RN .�; b; w; f; c/ WDR.N;�b;c/ ıEXP ılN;�b;c.Œw0If0; f1�/ if N � 3 is odd;
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where R.1;�/W W1! GL.C˝C/Š C� and R.N;�;c/W WN ! GL.CN ˝CN / are
defined as follows. The map R.1;�/ is analytic. It is given by

(17) R.1;�/.ŒxIp; q�/ WD exp
�
�

2

i�

�
L.x/C i�

2
.p log.1�x/C q log.x//

��
;

where L is the Rogers dilogarithm

L.x/D�
�2

6
�

1

2

Z x

0

log.t/
1� t

C
log.1� t/

t
dt:

The maps R.N;�;c/ are regular rational maps called matrix dilogarithms. They verify
noncommutative versions of the five term relations satisfied by L. For every x 2C� ,
put x1=N WD exp.log.x/=N /, extended to 01=N WD 0 by continuity. Set

Œx� WDN�1 1�x N

1�x
; g.x/ WD

N�1Y
jD1

.1�x��j /j=N ; h.x/ WD g.x/=g.1/:

Let FN Df.u
0; v0/2C2 j .u0/NC.v0/N D1g, and !W FN �Z=N Z!C be the regular

rational map given by !.u0; v0 j 0/ WD 1 and !.u0; v0 j n/ WD
QŒn�N

jD1
v0.1� u0�j /�1 .

Define LN W FN ! Aut.CN ˝CN / by (recall that mD .N � 1/=2)

(18) LN .u
0; v0/

i;j

k;l
D h.u0/�kjC.mC1/k2

!.u0; v0 j i � k/ıN .i C j � l/:

We have �
LN .u

0; v0/�1
�k;l
i;j
D

Œu0�

h.u0/
��kj�.mC1/k2 ıN .i C j � l/

!.u0=�; v0 j i � k/
:

Define

(19)
R.N;C1;c/.u0;u1/

i;j

k;l
WD
�
u
�c1

0
u

c0

1

�.N�1/=2LN .u0;u
�1
1 /

i;j

k;l
;

R.N;�1;c/.u0;u1/
k;l
i;j WD

�
u
�c1

0
u

c0

1

�.N�1/=2�LN .u0;u
�1
1 /�1

�k;l
i;j
:

Remark 3.2 The map R.1;�/ does not depend on the charge c and R.N;�;c/ de-
pends on c only by the factor .u�c1

0
u

c0

1
/.N�1/=2 , but RN depends on c also via the

map lN;�b;c .

Definition 3.3 The local analytic configurations over .�; b; c/ are the family of spaces
and maps indexed by the odd integers N � 3, given by

AN .�; b; c/ WD fW1;WN ;p1;pN ; lN;�b;c ;R.1;�b/;R.N;�b;c/g:
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3B Globalization

In addition to the tetrahedral tensors RN , when dealing with arbitrary triangulations
we need also f ace tensors QN , defined as follows. For every odd N � 3, consider the
symmetric N �N matrices S and T with entries

S i
j DN�1=2�ij ; T i

j D �
i2.mC1/ıN .i C j /:

We show in Lemma 7.3 that S and T generate an N–dimensional projective represen-
tation of SL.2;Z/. We put QN WD S �T �1 ; see Section 7A for the � notation. This
N �N matrix has entries

.QN /
i
j D

N�1X
kD0

Sk
j .T

�1/ik DN�1=2��ij�.mC1/j2

;

and is projectively of order 3, namely Q3
N
D ��1

N IN with �N D .
mC1

N
/ if N � 1

mod 4, and �N D i.mC1
N
/ if N � 3 mod 4.

Let .T; zb/ be a weakly branched triangulation of yV made of s branched tetrahedra
.�j ; bj /. For every collection of charges cj on the �j and every point

ŒwIf � WD .Œw1
0 If

1
0 ; f

1
1 �; : : : ; Œw

s
0If

s
0 ; f

s
1 �/ 2W

s
1;

we call c a rough global charge and call .T; zb; w; f; c/ a rough QH triangulation. Work-
ing dually, consider the oriented graph N associated to .T; zb/ as before Lemma 2.9.
For every odd N � 1 define a QH tensor network over N as follows:

� Associate RN .�j ; bj ; w
j ; f j ; cj / to the structured vertex vj of N dual to

.�j ; bj /.

� If N � 3, associate Qr.e/
N

to each edge e of N with Z=3Z–color r.e/, so the
domain and target of the linear map associated to Qr.e/

N
correspond respectively

to the initial and final endpoints of e ; if N D 1, replace Qr.e/
N

by the scalar
1 2C� .

Next we define a normalization factor aN .T; zb/. Formally put a1.T; zb/D 1. Denote
by q.T; zb/ the number of edges e of Sing.P / such that r.e/ D 2 2 Z=3Z. Fix an
auxiliary orientation on every edge e of T . Let nC.e/ (resp. n�.e/) be the number of
abstract diagonal edges E! e such that the zb–orientation of E agrees (resp. does
not agree) with the orientation of e . By Lemma 2.7, nC.e/� n�.e/ is an even integer.
Set �N WD .�1/.N�1/=2 . For every odd N � 3 define

(20) aN .T; zb/ WDN�v�
�q.T;zb/
N

cN .T; zb/; cN .T; zb/ WD �
vCl� 1

2

P
e.nC.e/�n�.e//

N
;
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where �N is as above, and l , v are respectively the number of edges and the number
of vertices of T which are manifold points.

Remark 3.4 Clearly cN .T; zb/ does not depend on the choice of the auxiliary edge
orientations, and cN .T; zb/D 1 if N � 1� 0 mod 4. If zb is a branching b , using the
edge b–orientation we see that l� 1

2

P
e.nC.e/�n�.e//D l�t D�. xV /D�.P /D�v ,

where � denotes the Euler characteristic and t the number of tetrahedra of T . Hence
in this case cN .T; b/D 1, and aN .T; b/DN�v .

A N–state of N is an assignment of a label in f0; : : : ;N � 1g to each edge; every N–
state � determines a matrix element, denoted by RN .�j ; bj ; w

j ; f j ; cj /� or Qr.e/
N;�

,
of each tensor of the QH tensor network.

Definition 3.5 The QH state sum function HN .T; zb; c/W Ws
1! C is the total con-

traction of the QH tensor network over N , normalized by aN .T; zb/:

(21) HN .T; zb; c/.ŒwIf �/ WD aN .T; zb/
X
�

Y
j

RN .�j ; bj ; w
j ; f j ; cj /�

Y
e

Qr.e/
N;�

:

Sometimes we denote HN .T; zb; c/.ŒwIf �/ by HN .T /, where T WD .T; zb; w; f; c/,
and when what is meant is clear from context, HN .T; zb; c/ by HN . Note that H1

is a product of analytic scalar functions and does not depend on c . When N � 3,
HN .T; zb; c/DH0

N
.T; zb; c/ ı .EXP ılN;�b;c/, where H0

N
.T; zb; c/ is a rational regular

function defined on the algebraic variety Ws
N

.

In order to make (21) an actual invariant state sum, we need to restrict ŒwIf � 2Ws
1 to

a suitable subspace, which we denote by G0.T; zb/1 below (later we will do similarly
for charges, see Definition 4.7 and 5.1). Consider the model G.T; zb/ of the gluing
variety and the products of the maps of Section 3A over the �j (keeping, with slight
abuse, the same notations):

p1W Ws
1!Cs

�; pN W Ws
N !Cs

�;

lN;�;c W Ws
1! .C�/2s; EXP ılN;�;c W Ws

1!Ws
N � .C

�/2s:

Set

G.T; zb/1 WD p�1
1 .G.T; zb// and G.T; zb; c/N WD EXP ılN;�b;c.G.T;

zb/1/:

The restrictions of p1 and pN to these spaces are covering maps of G.T; zb/, that
make a commutative diagram with EXP ılN;�b;c ; G.T; zb/1 is a closed analytic
subset of Ws

1 , G.T; zb; c/N an algebraic subset of Ws
N

, and Sing.G.T; zb/�/ D
p�1
� .Sing.G.T; zb//.
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Define the total cross ratio of an edge e of T by (see the notations at the end of
Section 2)

W .e/ WD
Y

E!e

w.E/�E ;

so that ŒwIf � 2G.T; zb/1 if and only if W .e/D 1 for all e . Similarly, define the total
log branch, total N th root modulus, and total charge at e by

(22) L.e/ WD
X

E!e

�El.E/; W 0N .e/ WD
Y

E!e

w0.E/�E ; C.e/ WD
X

E!e

c.E/;

where l.E/D log.wj
k
/C if j

k
� , w.E/D wj

k
and c.E/D cj

k
if and only if E is an

edge of .�j ; bj ; w
j /, E is either Ej

k
or the opposite edge, and �E D �bj . Fix an

auxiliary ordering of the, say n, edges of .T; zb/. We have analytic maps

tLW Ws
1!Cn; tL.ŒwIf �/ WD .L.e1/; : : :L.en//;

tN;W 0;c W Ws
1!Cn; tN;W 0;c.ŒwIf �/ WD .W

0
N .e1/; : : :W

0
N .es//;

the dependence of L.ek/ (resp. W 0
N
.ek/) on ŒwIf � (resp. ŒwIf � and c ) being under-

stood. The following lemma is evident.

Lemma 3.6 The restriction of tL to G.T; zb/1 takes values in .2i�Z/n and the
restriction of tN;W 0;c takes values in the set �N of N th roots of unity. Both maps are
discrete-valued, hence constant on the closure of each connected component of the set
of nonsingular points of G.T; zb/1 . Moreover, the restriction of tN;W 0;c factorizes as

tN;W 0;c D t 0N;W ı .EXP ılN;�b;c/;

where t 0
N;W

is a rational regular map defined on G.T; zb; c/N and constant on irre-
ducible components.

Finally define the analytic subset

G0.T; zb/1 D t�1
L .0; : : : ; 0/�G.T; zb/1

and, for every N , the algebraic subvariety

G0.T; zb; c/N D EXP ılN;�b;c.G0.T; zb/1/�G.T; zb; c/N :

As usual, keep the same notation for the restriction of any map already defined.

Definition 3.7 The N th analytic configuration over .T; zb; c/ is the family of spaces
and maps

AN .T; zb; c/ WD fG0.T; zb/1;G0.T; zb; c/N ;p1;pN ; lN;�b;c ;H1;HN g:
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We stress that every map tN;W 0;c is constant on G0.T; zb/1 , and its value depends on
the fixed rough charge c , precisely on the total edge charges .C.e1/; : : : ;C.en//.

4 Cusped manifolds

Let M be a cusped manifold, and V be as in Section 1A, that is, a compact ori-
ented connected 3–manifold with one torus boundary component such that M is
diffeomorphic to the interior of V . We use the notation yV as in Section 2.

4A The augmented PSL.2 ; C/–character variety and A–polynomial

Fix a geometric basis .l;m/ of the fundamental group �1.@V /ŠZ�Z. It is given by
a couple of oriented simple closed curves on @V which meet at one point, transversely
and positively. If M is the complement of a hyperbolic knot K in S3 we can take a
canonical longitude l and a meridian m of K .

There is a conjugacy class Œ� � of representations of �1.@V / in PSL.2;C/, each one
with images isomorphic to Z=2Z�Z=2Z, acting on the Riemann sphere CP1 D @H3

without a common fixed point. The class Œ� � is obtained as follows: pick two geodesic
lines in H3 , say 
l and 
m , that meet at one point forming a right angle; then define
� by �.x/D rx , where x 2 fl;mg and rx is the rotation by � around 
x .

By definition, the PSL.2;C/–character variety of M is the algebro-geometric quotient

X 0.M / WD Hom0.�1.M /;PSL.2;C//==PSL.2;C/;

where PSL.2;C/ acts by conjugation, and

Hom0.�1.M /;PSL.2;C//� Hom.�1.M /;PSL.2;C//

is the subset of representations that do not restrict to an element of Œ� � on �1.@V /.
Given a peripheral subgroup �1.@V / of �1.M /Š �1.V /, denote by

R.M /� Hom.�1.V /;PSL.2;C//�CP1

the set of couples .r; z/ such that z is fixed by r.�1.@V //. In particular, couples such
that Œr � restricts to Œ� � on @V are excluded. The augmented PSL.2;C/–character
variety of M is the algebro-geometric quotient

X.M / WDR.M /==PSL.2;C/;

where PSL.2;C/ acts by conjugation on R.M / and by Möbius transformations on
CP1 . Hence, any augmented character of M , � D Œ.�; z/� 2 X.M /, is a character
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of representations r W �1.M /! PSL.2;C/ together with a choice of fixed points of
the peripheral subgroups, invariant by conjugation. The hyperbolic holonomy of M

defines a point �hyp 2X.M /. In a similar way we can define the PSL.2;C/–character
variety X 0.@V / of @V and its augmented version X.@V /. The inclusion �W @V ! V

induces regular maps ��W X 0.M /!X 0.@V / and ��W X.M /!X.@V /.

Theorem 4.1 (1) ([10; 16]; see also [35]) Both X 0.M / and X.M / are complex
algebraic affine varieties, and the natural projection qW X.M /! X 0.M / is a
regular map.

(2) [22] �hyp (resp. q.�hyp/) is a regular point of X.M / (resp. X 0.M /). Hence it
belongs to a unique irreducible component X0.M / of X.M / (resp. X 0

0
.M / of

X 0.M /), which is a complex algebraic curve.

(3) The restriction of q to X0.M /, q0W X0.M /!X 0
0
.M /, is generically 2 W 1.

(4) [18] The restricted map ��W X 0
0
.M /!X 0

0
.@V / .resp. ��W X0.M /!X0.@V //

is generically one-to-one. Hence it is a birational isomorphism onto its image.

For any � 2 X.@V / which is nontrivial, let x� be a representative of � such that
x�.�1.@V // fixes z D12CP1 . For any nonzero class 
 2 �1.@V /, x�.
 / acts on C
as w 7! 
�wC b , where 
� 2C� and b 2C . In general 
� is a squared eigenvalue
of x�.
 / 2 PSL.2;C/; if x�.
 / is loxodromic, then 
� ¤ 1, and the two reciprocally
inverse eigenvalues are distinguished by the augmentation, which selects an endpoint,
whence an orientation, of 
 . Consider the so called holonomy map

(23) hol
 W X.@V /!C�; � 7! 
�:

By using the above cusp basis .l;m/ we get an algebraic isomorphism

holm � holl W X.@V /!C� �C�:

Define the rational map

hW X.M /!C� �C�; hD .holm � holl/ ı �
�:

Following [12; 14] and Dunfield’s appendix in [17], consider the plane curve A.M /

defined as the closure of the 1–dimensional part of the image h.X.M //. The (suitably
normalized) polynomial generating the ideal of A.M / is by definition the PSL.2;C/
A–polynomial of M . We call the closure of h.X0.M // the geometric component of
A.M /, and denote it by A0.M /. Then Theorem 4.1(4) admits a corollary.

Corollary 4.2 The restricted map hW X0.M /!A0.M / is a birational isomorphism.
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4B Rich components of G.T /

Let T be any ideal triangulation of yV such that the gluing variety G.T / is nonempty.
There is a natural regular map (see [12] or the appendix of [17])

(24) �W G.T /!X.M /:

As G.T / is a complex algebraic curve, h.�.G.T // is a union of irreducible components
of the plane curve A.M /. Assume that G.T / contains a nonnegative point zh such
that �.zh/D �hyp . Recall that nonnegative means that for every tetrahedron �j of T

the cross ratios zj
h

have nonnegative imaginary parts. The point zh is not necessarily a
regular point of the gluing variety, hence in general it could be contained in several
irreducible components of G.T /.

Definition 4.3 An irreducible component of G.T / is rich if it contains zh and an
infinite sequence of points zn that converge to zh (in the strong topology of G.T / as
an analytic space), and correspond to compact closed hyperbolic Dehn fillings of M

that converge geometrically to M .

Proposition 4.4 For every gluing variety G.T / containing a nonnegative point zh

with �.zh/D �hyp , the set of rich components of G.T / is nonempty and finite.

Proof This follows from the proof of the hyperbolic Dehn filling theorem given
in [34], and the fact that the algebraic curve G.T / has a finite number of irreducible
components.

Remark 4.5 In [33], the hyperbolic Dehn filling theorem was proved assuming that
M (allowing several cusps) has an ideal triangulation T such that G.T / contains a
strictly positive point zh representing the hyperbolic holonomy. This proof also uses
that zh is a regular point of G.T /. By elaborating on the analysis of [33], the paper [13]
has provided a proof of this regularity result, extended to every strictly positive point
of G.T /. In [7], the proof from [33] was presented with some mild modifications
avoiding the assumption that zh is regular. Unfortunately, it did not yet give a complete
proof of the hyperbolic Dehn filling theorem based on gluing varieties, since it is not
known if every M has strictly positive geometric ideal triangulations. The paper [34]
filled this gap; it uses any gluing variety G.T / with a nonnegative and possibly singular
point zh , which always exists. The proof also uses the arguments of [7]. In [27] it is
proved that strictly positive geometric ideal triangulations exist virtually, that is, every
cusped M has a finite covering zM with such an ideal triangulation. On the other hand,
passing to zM increases the number of cusps.
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Proposition 4.6 Let Z be any rich component of G.T /. Then the restricted maps
�W Z ! X0.M / and h ı �W Z ! A0.M / are generically one-to-one and hence are
both birational isomorphisms. More precisely, there are maximal nonempty Zariski
open subsets �0

Z
and �Z of Z , with �0

Z
��Z , such that:

(1) �.�Z / and �.�0
Z
/ are Zariski open subsets of X0.M / .resp. h ı �.�Z / and

h ı �.�0
Z
/ are Zariski open subsets of A0.M //.

(2) The restriction of � and hı� to �Z is one-to-one onto its image, and zh 2�Z .
The restriction of � and h ı � to �0

Z
is a regular rational isomorphism onto its

image.

Proof This goes step by step as the proof of [18, Theorem 3.1]. The key ingredients
are the Gromov–Thurston volume rigidity for closed hyperbolic manifolds, the fact
that the volume of representations yields a well defined function on the normalization
of the smooth projective model of A0.M /, and the existence on X0.M / of infinite
sequences of points corresponding to the holonomies of compact closed hyperbolic
Dehn fillings of M that converge geometrically to M . In the present situation this last
fact is ensured by the definition of a rich component, and the volume of representations
lifts to the function (6) on G.T /.

If T has a weak branching zb , the above discussion can be rephrased in terms of the
gluing variety G.T; zb/ of Section 2. Recall that a system of cross ratios wj on the
branched tetrahedra .�j ; bj / of .T; zb/ is nonnegative if zj D .wj /�j is nonnegative.

4C Refined analytic configurations for one-cusped manifolds

Let .T; zb/ be a weakly branched ideal triangulation of yV .

Definition 4.7 A global charge c on T is a rough global charge satisfying the ad-
ditional global constraint that for every edge e of T , the total edge charge C.e/ is
constant and equal to 2.

For every global charge c the variety G0.T; b; c/N has at every edge e of T the
defining equation

(25) W 0.e/D ��1;

where � WD exp.2� i=N /. Note that ��1 D �2m . We have:
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Proposition 4.8 (1) Every global charge c on .T; zb/determines a c–weight .hc ; kc/

of V .

(2) For every c–weight .hc ; kc/ of V and every ideal triangulation .T; zb/ of yV ,
there exists a global charge c on .T; zb/ with c–weight equal to .hc ; kc/.

Proposition 4.9 Assume the gluing variety G.T; zb/ is nonempty, and let �W G.T; zb/!
X.M / be as in (24).

(1) Every point ŒwIf �2G0.T; zb/1 determines an f–weight .hf ; kf / of .V; �.w//.

(2) For every point � 2 �.G.T; zb// and every f–weight .hf ; kf / of .V; �/, there
exists a point ŒwIf � of G0.T; zb/1 with f–weight equal to .hf ; kf /.

Propositions 4.8 and 4.9 are reformulations of results of Neumann [31; 32]. We recall
below the constructions underlying the statements (1), which claim the existence of the
pairs .
 .c/; 
 0

2
.c// and .L.ŒwIf �/; 
 0

2
.f // in Definition 4.10. The statements in (2)

are much more subtle. For the sake of completeness, we recall the proofs at the end of
the section (part of the material will be used in Section 4D).

Denote by T0 the cell complex obtained from T by removing an open cone neighbor-
hood of its vertex. Hence T0 is the result of gluing tetrahedra with truncated vertices,
and the polyhedron underlying T0 is homeomorphic to V . Denote by @T0 the induced
triangulation of @V . Represent any nonzero class in H1.@V IZ/ by normal loops,
that is, a disjoint union of oriented essential simple closed curves in @V , transverse
to the edges of @T0 and such that no curve enters and exits a 2–simplex by a same
edge. The intersection of a normal loop, say C , with a 2–simplex F consists of
a disjoint union of arcs, each of which turns around a vertex of F ; if F is a cusp
section of the tetrahedron � of T , for every vertex v of F we denote by Ev the
edge of � containing v , and by �v the branching sign of �. We write C !Ev to
mean that some subarcs of C turn around v . We count them algebraically, by using
the orientation of C : if there are sC (resp. s� ) such subarcs whose orientation is
compatible with (resp. opposite to) the orientation of @V as viewed from v , then
we set ind.C; v/ WD sC � s� . For every point ŒwIf � 2 G0.T; zb/1 and every global
charge c on .T; zb/, one defines cohomology classes L.ŒwIf �/ 2 H 1.@V IC/ and

 .c/ 2H 1.@V IZ/ by (C is a normal loop on @V )

L.ŒwIf �/.ŒC �/ WD
X

C!Ev

�v ind.C; v/l.Ev/(26)

D

X
C!Ev

�v ind.C; v/
�
log.w.Ev//C� if .Ev/

�
;


 .c/.ŒC �/ WD
X

C!Ev

ind.C; v/c.Ev/:(27)

Algebraic & Geometric Topology, Volume 15 (2015)



2012 Stéphane Baseilhac and Riccardo Benedetti

Additional classes 
 0
2
.c/, 
 0

2
.f /2H 1.V IZ=2Z/ are defined similarly, by using normal

loops in T and taking the sum mod 2 of the charges or flattenings, respectively, of the
edges we face along the loops. The reduction mod 2 of 
 .c/ coincides with the image
of 
 0

2
.c/ under the map induced on cohomology by the inclusion �W @V ! V . Hence

r.
 .c//D ��.
 0
2
.c//. Also, denoting by dw 2H 1.@V IC=2i�Z/ the log of the linear

part of the restriction of �.w/ to �1.@V /, for all a 2H1.@V IZ/ we have

(28)
L.ŒwIf �/.a/D dw.a/ mod i�;

.L.ŒwIf �/.a/� dw.a//= i� D ��.
 02.f //.a/ mod 2:

This proves that the following definition agrees with the defining constraints of weights
(see (1) and (2) in the introduction).

Definition 4.10 The f–weight .kf ; hf / of a point ŒwIf � 2 G0.T; zb/1 , and the c–
weight .kc ; hc/ of a global charge c on .T; zb/, are defined respectively as the pairs of
cohomology classes

.L.ŒwIf �/; 
 02.f // 2H 1.@V IC/�H 1.V IZ=2Z/;

.
 .c/; 
 02.c// 2H 1.@V IZ/�H 1.V IZ=2Z/:

Example 4.11 (Example 2.12 continued) Every point w of the gluing variety G.T1; zb/

gives rise to a class exp.dw/ 2H 1.@V IC�/. For a suitable choice of geometric basis
.�; �/ of H1.@V IZ/ we have

exp.dw/.�/D w0w1W �1
0 W �1

1 and exp.dw/.�/D w�2
1 W 2

2 :

Denote by fj and lj WD log.wj /C i�fj (resp. Fj and Lj WD log.Wj /C i�Fj ) the
flattening and log branch variables at the top (resp. bottom) crossing of Figure 7. The
equations for the log branch variables are (see (9))

(29)

l0C l1C l2 DL0CL1CL2 D 0;

l0C 2l1CL0C 2L1 D 0;

l0C 2l2CL0C 2L2 D 0:

For simplicity let us deal with the positive points w of the (unique) rich component of
G.T1; zb/ which contains the hyperbolic solution, w1 DW1 D exp.i�=3/. For every
such a positive point the equations for the flattening variables are

(30)

f0Cf1Cf2 D F0CF1CF2 D�1;

f0C 2f1CF0C 2F1 D�2;

f0C 2f2CF0C 2F2 D�2:
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Indeed, under positivity of w the pairs of first two equations in the systems (30) and
(29) are clearly equivalent to each other. Although a bit subtler, this is true also for
the remaining pairs of equations, because the consistency relations (9) imply that the
sum of the arguments of the cross ratios around edges is exactly equal to 2� ; see [7,
Lemma E.6.1].

The equations for the charge variables are formally obtained from those for the flattening
ones by replacing in (30) each fj with �cj and each Fj with �Cj . Solving the systems,
we get

f0 D�.2f1CF1�F2C 1/; F0 D�.F1CF2C 1/; f2 D f1CF1�F2;

c0 D�.2c1CC1�C2� 1/; C0 D�.C1CC2� 1/; c2 D c1CC1�C2;

l0 D�.2l1CL1�L2/; L0 D�.L1CL2/; l2 D l1CL1�L2:

Let us turn to the boundary c–weight kc 2H 1.@V IZ/ and, for every positive w as
above, the boundary f–weight kf D kf .w/ 2H 1.@V IC/. They are given by

kc.�/D c0C c1�C0�C1; kc.�/D 2C2� 2c1;

kf .�/D l0C l1�L0�L1; kf .�/D 2L2� 2l1:

At the complete solution we have

kf .�/= i� D f0Cf1�F0�F1; kf .�/= i� D 2F2� 2f1:

Hence kf = i� 2H 1.@V IZ/, and kf .�/= i� D 0 mod 2. Moreover

f0 D kf .�/= i��kf .�/=2i��2f1�1; F0 D kf .�/= i� � 3kf .�/=2i��2f1�1;

F1 D kf .�/= i� � kf .�/= i� Cf1;

f2 D f1C kf .�/=2i� � kf .�/= i�; F2 D f1C kf .�/=2i�:

Hence for any given boundary f–weight kf , there is a one-parameter family of
flattenings that realize kf , depending on the free parameter f1 . Similarly for the
charges we have

c0 D kc.�/� kc.�/=2� 2c1C 1; C0 D kc.�/� 3kc.�/=2� 2c1C 1;

C1 D kc.�/� kc.�/C c1;

c2 D c1C kc.�/=2� kc.�/; C2 D c1C kc.�/=2;
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where the free parameter is now c1 . By taking f1 D c1 D 0, the relevant pairs of
parameters that enter the formulas of the tensors RN are

.f0; f1/D .kf .�/= i� � 1� kf .�/=2i�; 0/;

.F0;F1/D .�1C kf .�/= i� � 3kf .�/=2i�; kf .�/= i� � kf .�/= i�/;

.c0; c1/D .kc.�/C 1� kc.�/=2; 0/;

.C0;C1/D .1C kc.�/� 3kc.�/=2; kc.�/� kc.�//;

stressing in this way a pure dependence on the weights. Finally, the state sums are

HN .T1; zb; w;W; f;F; c;C /

D

N�1X
i;j ;l;k;I;JD0

RN .1; w; f; c/
i;j

k;l
RN .1;W;F;C /

I;J
j ;i .Q

2/lI .Q/
k
J ;

where we quoted that �b D 1 for both tetrahedra. �

Now let Z be a rich component of G.T; zb/. Denote Z1 WD p�1
1 .Z/ (an analytic

subspace of G0.T; zb/1 ), and let Z1;0 be the union of connected components of Z1
made of points ŒwIf � such that

(31) ��.
 02.f //D 0 2H 1.@V IZ=2Z/:

Recall the basis .l;m/ of �1.@V /. Because of (28), for every point ŒwIf � 2Z1;0 ,

(32) .eL.ŒwIf �/.l/; eL.ŒwIf �/.m//D h ı �.w/;

and for every global charge c on .T; zb/, the formula

(33) LN;c.ŒwIf �/.C /

WD

X
C!Ev

�v ind.C; v/lN;�v;c.Ev/

D

X
C!Ev

�v

N
ind.C; v/

�
log.w.Ev//C� i.N C 1/.f .Ev/��vc.Ev//

�
D

1

N

�
L.ŒwIf �/.ŒC �/�� i.NC1/
 .c/.ŒC �/

�
C� i

X
C!Ev

�v ind.C; v/f .Ev/„ ƒ‚ …
22Z

yields a cohomology class LN;c.ŒwIf �/ 2H 1.@V IC=2� iZ/ such that

(34) ..eLN;c.ŒwIf �/.l//N ; .eLN;c.ŒwIf �/.m//N /D h ı �.w/:
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If we allow ŒwIf � to live in Z1nZ1;0 , the sum in (33) can be odd, and the equalities
(32) and (34) hold true only up to signs in each component. More precisely, for all
ŒwIf � 2Z1 the sum in (33) is an integer expression of the residue class 
 0

2
.f /.ŒC �/ 2

Z=2Z, so that we have a well-defined cohomology class

(35) LN;c.ŒwIf �/ 2H 1.@V IC=2� iZ/

such that

LN;c.ŒwIf �/D
1

N

�
L.ŒwIf �/�� i.N C 1/
 .c/

�
C� i ��.
 02.f // mod 2� iZ;

where, as usual, ��W H 1.V IZ=2Z/!H 1.@V IZ=2Z/ is induced by the inclusion map
�W @V ! V . The spaces Z1;0 and A0.M / are related as follows (see Proposition 4.6).
Let

A0.M /1 WD �
�1
1 .A0.M // and A0.M /N WD EXP ılN;kc

.A0.M /1/;

where

(36) �1W zC
2
! .C�/2; .Œ�Ip�; Œ�I q�/ 7! .�; �/

is the universal covering map, and for every integral class kc 2 H 1.@V IZ/, define
lN;kc
W zC2!C2 by

(37) lN;kc
.Œ�Ip�; Œ�I q�/ WD

�
1

N

�
log.�/C 2� ip�� i.N C 1/kc.l/

�
;

1

N

�
log.�/C 2� iq�� i.N C 1/kc.m/

��
:

The restricted map �1W A0.M /1!A0.M / and the map �N W A0.M /N !A0.M /,
.u; v/ 7! .uN ; vN /, define respectively a Z �Z– and a Z=N �Z=N –covering of
A0.M /.

Definition 4.12 The classical and quantum log holonomies are the maps on Z1;0
defined by the components of the classes

L.ŒwIf �/2H 1.@V IC/ and exp ıLN;c.ŒwIf �/2H 1.@V IC�/; ŒwIf �2Z1;0;

in the basis .l;m/ of �1.@V /:

loghol1W Z1;0!A0.M /1;

ŒwIf � 7! .L.ŒwIf �/.l/;L.ŒwIf �/.m//;

logholN;c W Z1;0!A0.M /N ;

ŒwIf � 7! .eLN;c.ŒwIf �/.l/; eLN;c.ŒwIf �/.m//:
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Note that (32) and (34) imply that loghol1 (resp. logholN;c ) maps into A0.M /1
(resp. A0.M /N ). The identification (12) of Ws

1 as a product of Riemann surfaces,
and the fact that Z1 �G0.T; zb/1 is an analytic subspace imply that both loghol1
and logholN;c are analytic maps.

Remark 4.13 If one removes the assumption (31), the maps loghol1 and logholN;c
extend to the whole of Z1 . Then loghol1 maps Z1 to the union of four con-
nected components A0.M /

�;�0

1 WD .�
�;�0

1 /�1.A0.M //, where ��;�
0

1 W
zC2 ! .C�/2 ,

.Œ�Ip�; Œ�I q�/ 7! .��; �0�/, �; �0 2 f�1;C1g. The target of logholN;c becomes the
union of the spaces EXP ılN;kc

.A0.M /
�;�0

1 /. The component A0.M /1DA0.M /
0;0
1

is a natural one: we explain in Section 4D its relation with the Chern–Simons line
bundle over @V .

We deduce a lemma immediately from the formulas (26) and (37).

Lemma 4.14 For every N and every global charge c on .T; zb/ we have a commutative
diagram:

A0.M / A0.M /N
�N

oo

Z

hı�

bb

hı�

||

Z1;0
p1

oo

logholN;c
ee

loghol1yy

A0.M / A0.M /1

e
lN;kc

OO

�1
oo

Here lN;kc
is defined by (37), using the charge boundary weight kc , and we denote

EXP ılN;kc
by elN;kc .

Let F be any finite family of rich components, possibly contained in different glu-
ing varieties associated to different weakly branched triangulations of yV . Recall
Proposition 4.6. Define the following nonempty Zariski open subsets of X0.M /:

�F D
\

Z2F

�.�Z /; �0
F D

\
Z2F

�.�0
Z /:

If Z 2 F is a rich component of G.T; zb/, define

�F .Z/ WD �
�1
jZ .�F /; �0

F .Z/ WD �
�1
jZ .�

0
F /

and

�F .Z/1;0 WD p�1
1 .�F .Z//\Z1;0; �F .Z/N WD EXP ılN;�b;c.�F .Z/1;0/:
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We have:

� �0
F ��F .

� The restriction of � to �F .Z/ is a rational regular map which is one-to-one
onto �F . Moreover, the nonnegative point wZ

h
2Z such that �.wZ

h
/D �hyp

belongs to �F .Z/.

� For every component Z 2F , the restriction of � to �0
F .Z/ is a rational regular

isomorphism onto �0
F .

The following lemma is an immediate consequence of Proposition 4.9.

Lemma 4.15 Let F be any finite family of rich components of gluing varieties associ-
ated to weakly branched ideal triangulations of yV . For every component Z in F , every
point � 2�F , and every f–weight .kf ; hf / of .V; �/ such that ��.hf /D 0, there is a
point ŒwIf �Z 2�F .Z/1;0 such that .L.ŒwIf �Z /; 
 02.f //D .kf ; hf /.

Define
A0;F .M / WD h.�F /

and

A0;F .M /1 WD �
�1
1 .A0;F .M //; A0;F .M /N WD EXP ılN;kc

.A0;F .M /1/:

Replacing G.T; zb/ with �F .Z/�Z �G.T; zb/, and G0.T; zb/1 with �F .Z/1;0 �

Z1;0 � G0.T; zb/1 , and taking the restrictions of each of the spaces and maps that
form the sequence of analytic configurations fAN .T; zb; c/g, one obtains a sequence of
subconfigurations

AN .c;Z;F/ WD f�F .Z/1;0; �F .Z/N ; p1; pN ; lN;�b;c ; H1; HN g:

By Lemma 4.14 it fits into a commutative diagram:

�F .Z/N
H0

N

$$
A0;F .M / A0;F .M /N

�N
oo C

�F .Z/

hı�

ee

hı�

yy

�F .Z/1;0
p1

oo

logholN;c
gg

loghol1ww

HN

::

H1

$$

e
lN;�b ;c

OO

A0;F .M / A0;F .M /1

e
lN;kc

OO

�1
oo C
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The following two results show that if we fix the bulk weight hf together with the
c–weight .hc ; kc/, then H1 and HN factor through loghol1 and logholN;c , and
hence induce maps on A0;F .M /1 and A0;F .M /N , respectively.

Theorem 4.16 Let F be any finite family of rich components Z of gluing varieties
G.TZ ; zbZ / associated to weakly branched ideal triangulations .TZ ; zbZ / of yV . Let
� 2�F , the f–weight .hf ; kf / and ŒwIf �Z 2�F .Z/1;0 be as in Lemma 4.15, and
.hc ; kc/ be any c–weight realized on the triangulation TZ by a global charge cZ .
Then:

(1) For every odd N � 3 the scalar HF
N
.P/ WD HN .TZ ; zbZ ; cZ /.ŒwIf �Z / is an

invariant of the pattern P D .V; �; hf ; kf ; hc ; kc/ up to multiplication by 2N th

roots of unity, and depends on kf mod � iN only.

(2) The scalar HF
1
.P/ WDH1.TZ ; zbZ /.ŒwIf �Z / is an invariant of PD .V; �; hf ; kf /

up to multiplication by 6th roots of unity, and is defined exactly if zbZ is a
branching.

Proof We have to show that, up to the phase ambiguities, HF
N
.P/ and HF

1
.P/ do not

depend on the encoding of P , ie the choice of .TZ ; zbZ ; cZ /, Z and ŒwIf �Z . For that
we use the QH transits of [3; 4; 5], that we adapt to weakly branched triangulations
in Section 7, in the case N � 3; for N D 1 this adaptation follows easily from
[4, Sections 4.2–4.3] and the argument of Proposition 8.2. As a result, given two
realizations of the pattern P , say

� ŒwIf �Z 2�F .Z/1;0 included in some configuration AN .cZ ;Z;F/,

� Œw0If 0�Z 0 2�F .Z
0/1;0 included in another configuration AN .cZ 0 ;Z

0;F/,

there exists a finite sequence of QH transits relating ŒwIf �Z to Œw00If 00�Z 0 2�F .Z
0/1;0

included in a configuration AN .c
0
Z 0
;Z0;F/ differing from AN .cZ 0 ;Z

0;F/ at most
by the global charge, and such that

HN .TZ ; zbZ ; cZ /.ŒwIf �Z /�2N HN .TZ 0 ; zbZ 0 ; c
0
Z 0/.Œw

00
If 00�Z 0/:

It follows from the definition of �F �X0.M / that w00Dw0 . A further transit argument
for flattenings and charges finally shows that

HN .TZ 0 ; zbZ 0 ; c
0
Z 0/.Œw

0
If 00�Z 0/�2N HN .TZ 0 ; zbZ 0 ; cZ 0/.Œw

0
If 0�Z 0/:

Since the QH state sums (21) depend only on the reduction mod N of flattenings, the
dependence of HF

N
, N � 3, on kf mod � iN follows immediately.
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The above constructions depend on the choice of F . A canonical choice is the fam-
ily FEP of rich components Z contained in any weakly branched EP–triangulation
of yV (see Proposition 2.2). By definition, the analytic configuration AN .Y / of
Y D .V; .hc ; kc// is the family of analytic subconfigurations AN .c;Z;FEP/ for varying
charges and rich components Z 2 FEP .

Corollary 4.17 The invariants HFEP
1
.P/ and HFEP

N
.P/ of patterns P over M , such

that P D .V; �; hf ; kf ; hc ; kc/ with � 2�FEP , fixed c–weight .hc ; kc/, and fixed bulk
f–weight hf 2 H 1.V IZ=2Z/ such that ��.hf /D 0, define respectively an analytic
function

HFEP;hf
1 W A0;FEP.M /1!C

and a regular rational function

HFEP;hf ;hc ;kc
N W A0;FEP.M /N !C=�2N

that give rise to a commutative diagram:

�FEP.Z/N
H0

N

&&

A0;FEP.M / A0;FEP.M /N
�N

oo
HFEP;hf ;hc ;kc

N
// C=�2N

�FEP.Z/

hı�Z

ff

hı�Z

xx

�FEP.Z/1;0
p1

oo

logholN;c
gg

loghol1ww

HN

88

H1

&&

e
lN;�b ;c

OO

A0;FEP.M / A0;FEP.M /1

e
lN;kc

OO

�1
oo

HFEP;hf
1

// C

Proof Any point x in the image of loghol1 or logholN;c determines a unique point
� D h�1.�1.x// or h�1.�N .x// in �FEP . If x 2 Im.loghol1 ), by Definition 4.10
it determines also a boundary f–weight kf , and by Lemma 4.15 any boundary f–
weight kf for � such that .kf �d�/= i� is the zero class in H 1.@V IZ=2Z/ is realized
by a point of ��1

1 .h.�// in the image of loghol1 (see (28)). Hence the tuples .x; hf /
and .�; hf ; kf / with ��.hf /D0 are in one-to-one correspondence. If x2 Im.logholN;c )
and a boundary c–weight kc is given, x determines the reduction mod � iN of kf .
Hence the tuples .x; hf ; hc ; kc/ and .�; hf ; kf mod � iN; hc ; kc/ with ��.hf /D 0 are
in one-to-one correspondence. From this and Theorem 4.16, it follows that H1 and
HN descend to maps HFEP;hf

1
and HFEP;hf ;hc ;kc

N
defined on the image of loghol1

and logholN;c respectively. Since H1 is analytic and �1 and p1 are covering maps,
HFEP;hf

1
is analytic too and it extends uniquely to an analytic function on A0;FEP.M /1 .
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Similarly HFEP;hf ;hc ;kc
N

can be extended in an unique way to a regular rational function
on A0;FEP.M /N .

Remark 4.18 The Epstein–Penner family FEP of rich components is only one of the
possible choices. For instance, for every M and m� 2 we can consider the family Fm

of rich components of gluing varieties of weakly branched triangulations of yV with no
more than m tetrahedra, or the family Fm0

, where m0 is the minimum m such that
Fm ¤∅. For example if M is the complement of the knot 52 in S3 , then m0 D 3,
while the Epstein–Penner subdivision is a triangulation made by 4 hyperbolic ideal
tetrahedra. In practice, any rich component is suited to study the asymptotic behavior of
the QHI at small deformations of the point zhyp representing the complete hyperbolic
structure.

Proof of Theorem 1.1(1)–(2) For the first two statements, apply Theorem 4.16 to the
family F DFEP , set �.M / WD�FEP , and use Corollary 4.17 to pull back the covering
�N via h. As explained in Remark 4.13, the assumption ��.hf /D 0 is not necessary;
in general we get functions A0;FEP.M /

�;�0

N
!C=�2N , where �; �0 2 f˙1g.

Proof of Proposition 4.8(2) and 4.9(2) Let .T; zb/ be a weakly branched ideal trian-
gulation of a pattern .V; �; .h; k// over M . Denote by .�j ; bj /, j 2 f1; : : : ; sg, the
3–simplices of .T; zb/. We need to review the Neumann–Zagier theory (see [31; 32]),
that we will apply to the weakly branched triangulation .T; zb/. Let

� C1.�j / be the Z–module freely generated by the edges e
j

k
and .e0

k
/j , k 2

Z=3Z, of �j ;

� xJj be the quotient module of C1.�j / by the relations e
j

k
D .e0

k
/j , k 2 Z=3Z;

� Jj be the quotient module of xJj by the relation e
j
0
C e

j
1
C e

j
2
D 0.

Let C1 be the Z–module freely generated by the edges of T , and define E.T / WDL
j C1.�j / (the Z–module of abstract edges of T ), xJ WD

L
j
xJj , and J WD

L
j Jj .

Consider on theses spaces the following 2–forms: the standard inner product . ; /
on C1 , E.T / and xJ , each defined with respect to the natural basis given by (cosets
of) edges, and the signed antisymmetric bilinear form h ; i on J given by

(38) h ; i D
M

j

�j h ; ij ;

where h ; ij is the standard antisymmetric bilinear form on Jj , defined in the basis
fe

j
0
; e

j
1
g by

(39) he
j
0
; e

j
1
ij D 1; he

j
0
; em

1 ij D 0 for m¤ j:
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Hence fej
0
; e

j
1
g is a symplectic basis of h ; i restricted to Jj when �j has positive

branching orientation �j DC1, and is an antisymplectic basis of Jj otherwise. Equiva-
lently, fej

0
; e

j
1
g is symplectic if the edges e

j
0

, .e0
1
/j , e

j
2

have positive cyclic ordering as
viewed from their common endpoint v0 in �j (in [31], the branchings are not needed
and not used; one fixes positively cyclically ordered edges e

j
0

, .e0
1
/j , e

j
2

independently
for all �j , so that the signs �j occurring here are systematically replaced by C1).
Define linear maps ˇW C1!E.T / and ˇ�W E.T /! C1 by

ˇ.e/D
X

E!e

E and ˇ�.e
j

k
/D�j

�
p.e

j

kC1
/�p.e

j

kC2
/Cp..e0kC1/

j /�p..e0kC2/
j /
�
;

and the same for ˇ�..e0
k
/j /, where indices are regarded mod 3 and pW E.T /! C1 is

the identification map assigning to an abstract edge its coset in T . They induce maps
(we keep the same notations)

ˇW C1! J; ˇ�W J ! C1:

Clearly, for any edge e of T we have

(40) .ˇ�.e
j

k
/; e/D he

j

k
; ˇ.e/i:

Also, ˇ� splits as ˇ�W J
ˇ1
�! xJ

ˇ2
�! C1 , where

ˇ1.e
j

k
/ WD �j .e

j

kC1
� e

j

kC2
/ and ˇ2.e

j

k
/ WD p.e

j

k
/Cp..e0k/

j /:

Similar to (40), ˇ1 and the natural projection qW xJ! J are adjoint maps: for all x 2 xJ

and a 2 J we have

(41) .ˇ1.a/;x/D ha; q.x/i:

Denote by C0 the Z–module freely generated by the vertices of T , and by ˛�W C1!C0

the map which assigns to an edge the sum of its vertices. One has Im.ˇ�/� Ker.˛�/,
and interpreting the elements of Ker.˛�/ as unoriented 1–cycles in T , there is an
isomorphism

(42) Ker.˛�/= Im.ˇ�/ŠH1.T IZ=2Z/:

It is not hard to see that Im.ˇ/� Ker.ˇ�/. Put H WD Ker.ˇ�/= Im.ˇ/. The 2–form
h ; i on J descends to H . Since Ker.ˇ�/ D Im.ˇ/? , h ; i is nondegenerate on
H=Tors.H /. In fact, it is shown in [31] that there is an exact sequence

(43) 0!H
.
 0;
 0

2
/

����!H 1.@V IZ/˚H 1.V IZ=2Z/
r���

���!H 1.@V IZ=2Z/! 0:
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Moreover, denoting by � the intersection product on H1.@V IZ/, and by 
 D PD ı
 0

the map 
 0 followed by the Poincaré duality isomorphism, for all a; b 2H we have

(44) 
 .a/ � 
 .b/D 2ha; bi:

The map 
 is defined as follows. Recall the notations introduced before Definition 4.10.
For any 2–face F of @T0 which is a boundary section of the truncated tetrahedron
of T0 corresponding to �j , let us write F !�j , and denote by sj ;F

k
the edge of F

which is opposite to the vertex of F that belongs to the edge ej
k

or .e0
k
/j , with the

positive orientation as viewed from that vertex. Then the linear map

(45) x
 W xJ ! C1.@T0/; e
j

k
7!

X
F!�j

s
j ;F

k

descends to

(46) 
 W H !H1.@V IZ/:

Conversely, let qW xJ ! J be the natural projection. Denote by @T 0
0

the cellulation of
@V dual to @T0 . Represent classes in H1.@V IZ/ by simplicial loops in @T 0

0
. For all

faces F!�j , denote by a
j ;F

k
the simplicial arc in @T 0

0
\F which faces the vertex of

F that belongs to the edge ej
k

or .e0
k
/j , with the positive orientation as viewed from

that vertex. Define a linear map

xıW C1.@T
0
0/!

xJ ; a
j ;F

k
7! e

j

k
:

Then qxı descends to a map ıW H1.@V IZ/! H . Moreover, for all x 2 H1.@V IZ/
we have

(47) 
 ı ı.x/D 2x:

The identity (44) follows from (47), together with the simple fact that for any simplicial
loop C in @T 0

0
, we have

(48) C � x
 .e
j

k
/D �j hxı.C /; e

j

k
ij ;

where the sign �j comes from the orientation induced by the basis fej
0
; e

j
1
g of Jj , as

discussed after (39). Hence 
 and ı are adjoint maps with respect to the form h ; i
on J and the intersection form on H1.@V IZ/: for all x 2H1.@V IZ/ and a 2H ,

(49) 
 .a/ �x D ha; ı.x/i:

Taking coefficients in Z=2Z and simplicial loops in T 0
0

in normal position with respect
to T0 , one defines similarly to ı a map ı2W H1.V IZ=2Z/!H˝.Z=2Z/. The map 
 0

2
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in the above exact sequence is defined for all a 2H ˝ .Z=2Z/ and c 2H1.V IZ=2Z/
by


 02.a/.c/D ha; ı2.c/i:

With this material in hand, we can show that the maps 
 0 and 
 0
2

produce the boundary
and the bulk weights of V . This is done for the charge weights in [31, Section 6],
and for the flattening weights in [32, Section 9], with the further constraint that the
weights are taken equal to 0. For the sake of completeness, let us explain the case of
the flattening weights; the adaptation to the charge weights is not difficult.

Consider the weakly branched ideal triangulation .T; zb/ of .V; �; .h; k//. By assump-
tion, there is a point w 2 G.T; zb/ with � as holonomy. Take for each 3–simplex
.�j ; bj / the (local) flattening of the form

. l
j
0
; l

j
1
; l

j
2
/ WD

�
log.wj

0
/; log.wj

1
/; log.wj

2
/C �i�

�
; � 2 f�1;C1g;

and set l WD . l
j
0
; l

j
1
; l

j
2
/j . Consider the vector

(50) v l WD

sX
jD1

l
j
1
e

j
0
� l

j
0
e

j
1
2 J ˝C:

We have

ˇ1.v l /D

sX
jD1

�j . l
j
0
e

j
0
C l

j
1
e

j
1
�. l

j
0
C l

j
1
/e

j
2
/D

sX
jD1

�j . l
j
0
e

j
0
C l

j
1
e

j
1
C l

j
2
e

j
2
/2 xJ˝C:

So ˇ1.v l / represents the map assigning the value �j l
j

k
to the abstract edges e

j

k
and

.e0
k
/j of T . Recall that for every xa 2 xJ , ˇ2.xa/ computes at every edge e 2 C1 the

sum of the coefficients of xa attached to the abstract edges having coset e . Then,
ˇ� D ˇ2 ı ˇ1 , the gluing Equation (8), and the argument of Lemma 2.7 imply that
ˇ�.v l /2 2� iC1 (note that in the lemma the label ∅ is attached to edges of the type ej

2

and .e0
2
/j ). By (42) we deduce that ˇ�.v l /=� i represents the 0 class in H1.T IZ=2Z/,

and so there exists f 2 J such that ˇ�.f /D ˇ�.v l /=� i . Put vl WD v l �� if , and
write its coefficients as

vl D

sX
jD1

l
j
1

e
j
0
� l

j
0

e
j
1
D

sX
jD1

.log.wj
1
/C� if

j
1
/e

j
0
� .log.wj

0
/C� if

j
0
/e

j
1
:

Since ˇ�.vl/D 0, the collection l WD .l
j
0
; l

j
1
; l

j
2
/j satisfies the edge relations L.e/D 1

(see (22)). The tetrahedral relations are satisfied because any element of Im.ˇ1/ has
coefficient sum equal to 0 in each module xJj . So l defines a flattening of w . Consider
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the class Œvl � 2H ˝C . One can see that 
 0.Œvl �/DL.ŒwIf �/ as follows. Consider
the map

x
 00W xJ ˝C! C 1.@T 00IC/; x 7! .C 7! .x; xı.C ///:

Denote by A 2 J ˝C a representative of a 2H ˝C . Then x
 00 induces a map


 00W H ˝C!H 1.@V IC/; a 7! x
 00.ˇ1.A//:

Using successively (41) and (49), we get

(51) 
 00.a/.ŒC �/D .ˇ1.A/; xı.C //D ha; qxı.ŒC �/i D 
 .a/ � ŒC �:

Hence 
 00 D 
 0 . Clearly, 
 00.Œvl �/ D x

00.ˇ1.vl// is given by (26). This proves


 0.Œvl �/ D L.ŒwIf �/. The collection f WD .f
j

0
; f

j
1
; f

j
2
/j satisfies also the edge

relations mod 2, hence it defines a class 
 0
2
.f /2H 1.V IZ=2Z/ as explained after (26).

By construction we have the compatibility relations (28), so the pair .L.ŒwIf �/; 
 0
2
.f //

is a flattening weight of .V; �/. Finally, take any other flattening weight .k 0
f
; h0
f
/ of

.V; �/. Comparing (2) and (28) we see that k 0
f
� L.ŒwIf �/ 2 H 1.V I� iZ/ and

.k 0
f
�L.ŒwIf �//=� i D ��.h0

f
� 
 0

2
.f // mod 2. By the exact sequence (43), there

exists a 2H such that 
 0.a/D .k 0
f
�L.ŒwIf �//=� i and 
 0

2
.a/D h0

f
� 
 0

2
.f /. Then

the vector ˇ1.vlC� ia/2 xJ˝C represents a flattening of w with weight .h0
f
; k 0
f
/.

4D Relation with Chern–Simons theory

Recall that V is the compact 3–manifold obtained by completing the cusp of M

with a torus. Chern–Simons theory with gauge group PSL.2;C/ associates to @V
the Chern–Simons bundle L@V ! X.@V /, which is a C�–bundle with canonical
connection 1–form and canonical inner product, and to V the parallel Chern–Simons
section sV W X.V /! ��L@V , where �W X.V /!X.@V / is the restriction map [19; 25].

We are going to show that when the bulk f–weight hf is 0, the bottom row of the
diagram of Corollary 4.17 encodes the restriction of the pair .��L@V ; sV / to �FEP �

X0.M /, identified as a component of X.V /. For arbitrary hf one gets a twisted
version of .��L@V ; sV /. The proof relies on a certain number of results that we need
to recall. Denote by CS.M 0/ 2R=Z the Chern–Simons invariant of the Levi-Civita
connection of a closed Riemannian 3–manifold M 0 , and by CS.M / Meyerhoff’s
extension to cusped hyperbolic manifolds M . By definition, CS.M / is the limit of
CS.M 0

n/ for any sequence .M 0
n/ of closed hyperbolic Dehn fillings of M converging

to M in Dehn surgery space. In [32, Corollary 14.6 and Theorem 14.7], Neumann
proved the following, translated to the notations of the present paper.
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Theorem 4.19 Let Y be M or a closed hyperbolic Dehn filling M 0 of M . Denote
by �Y the hyperbolic holonomy of Y , identified as a character of V �M 0 in the case
Y DM 0 . If Y DM , put kY D 0, and if Y DM 0 , let kY be any boundary f–weight
of V relative to �Y such that kY vanishes on the meridian of the added solid torus.
Then

H1.V; �Y ; .0; kY //D exp
�

2

�
Vol.Y /C 2� i CS.Y /

�
:

The expression on the right-hand side is related to the Chern–Simons section sV as
follows. To any compact closed oriented 3–manifold Y , PSL.2;C/–Chern–Simons
theory associates a function sY W X

0.Y / ! C� defined on the variety X 0.Y / of
PSL.2;C/–characters of Y . If Y is hyperbolic with holonomy �Y , a classical result
of Yoshida [37] gives

(52) sY .�Y /D exp
�

2

�
Vol.Y /C 2� i CS.Y /

�
:

Assume that Y D V [� .D
2 �S1/ is a closed hyperbolic Dehn filling of M whose

holonomy �Y lies in a sufficiently small neighborhood D of �hyp in X.V /DX.M /

(here we identify �.Y / with an augmented character of V ). Then Kirk and Klassen
[25, pages 554–556] showed that

(53) sY .�Y /D hsV .�Y /; sD2�S1.�Y /i;

where h ; i is the canonical inner product of ��L@V , and on the right-hand side �Y

denotes also the augmented character induced on the glued solid torus D2 � S1 .
Explicitly, if we fix the gauge on ��L@V by taking as coordinates on D the ones
corresponding under the map h to the standard logarithms log.�/ and log.�/, which
are equal to 0 at �hyp , we have

(54) sV .�hyp/D exp
�

2

�
Vol.M /C 2� i CS.M /

�
:

Then, if the Dehn filling instruction � maps the meridian @.D2 ��/ to lqmp and the
longitude ��S1 to lsmr (so ps� qr D 1), the formula (53) splits as

(55) sY .�Y /D sV .�hyp/ exp
�
�

1

2� i

Z �Y

�hyp

.log.�/ d log.�/� log.�/ d log.�//
�

� exp
�
�.s log.�/C r log.�//

�
:

The first exponential gives the variation of sV between �hyp and �Y (sV being a
parallel section of ��L@V , this exponential is the holonomy of the connection 1–form
of ��L@V between the two points); the product with sV .�hyp/ is thus the value of
sV .�Y / at the chosen gauge. The second exponential is the value of sD2�S1.�Y / in the
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gauge corresponding to the Dehn filling: log.hol@.D2��//Dq log.�/Cp log.�/D2� i ,
log.hol��S1/D s log.�/Cr log.�/. Its argument is �.lengthCi rotation angle/ of the
geodesic core of the surgery torus. The arguments of both exponentials can be collected
in a single integral by changing the coordinates log.�/, log.�/ on D to log.�/C2� i r ,
log.�/� 2� is , that is, by working on a different leaf of the Riemann surface of these
maps. Then the gauge log.hol@.D2��// vanishes, like kY in Theorem 4.19.

We will show that .��L@V ; sV /j�FEP
is determined by HFEP;0

1
W A0;FEP.M /1 ! C .

Because of Theorem 4.19 and (54), it is enough to identify the variation of HFEP;0
1

with
the one of sV , given by (55). This is the content of the following result.

Proposition 4.20 The function HFEP;0
1

descends to a parallel section S0 of a flat
trivial C�–bundle L.M /!A0;FEP.M / with canonical connection 1–form and inner
product, such that h�.L.M /;S0/ is isomorphic to .��L@V ; sV /j�FEP

.

Proof We define L.M / from the variation of the invariant HFEP
1

of Theorem 4.16,
like the Chern–Simons line bundle is defined from the Chern–Simons action [19; 25].
Hence L.M / is the quotient of A0;FEP.M /1 �C� under the action of Z2 given by

(56) .a; b/ � .Œ�Ip�; Œ�I q�; z/ WD .Œ�IpC a�; Œ�I qC b�; zeb log.�/�a log.�//

for all a; b 2 Z. We have a C�–bundle projection

� 01W L.M /!A0;FEP.M /; ŒŒ�Ip�; Œ�I q�; z� 7! .�; �/:

Denote by L.M /�1 the inverse C�–bundle, which is the same as LFEP.�M /, where
�M denotes M with reversed orientation. An inner product is defined by the bundle
map

h ; iW L.M /�L.M /�1
!C�;�

.Œ�Ip�; Œ�I q�; z1/; .Œ�Ip�; Œ�I q�; z2/
�
7! z1z2;

where C� is regarded as the bundle over a point. Also, a flat analytic connection
1–form is defined by the restriction to A0;FEP.M /1 of the 1–form on zC � zC given
by (we put la.�/ WD log.�/C 2� ia)

(57) � WD �
1

2� i

�
lp.�/dlq.�/� lq.�/dlp.�/

�
:

By Lemma 4.15, given any even class � 2 H 1.@V I 2Z/ and any point ŒwIf �Z 2
�FEP.Z/1;0 , the flattening f can be modified to a flattening f 0 such that ŒwIf 0�Z 2
�FEP.Z/1;0 and the corresponding boundary weights satisfy

L.ŒwIf 0�Z /�L.ŒwIf �Z /D � i�:
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As in the proof of Proposition 4.8(2) and 4.9(2), denote by vl (resp. vl 0 ) the vector in
H˝C associated to the classical log branch at ŒwIf �Z (resp. ŒwIf 0�Z ), and similarly
denote by vd 2H˝.C=2� iZ/ the vector associated to .log.wj

0
/; log.wj

1
/; log.wj

2
//j .

Recall the class dw 2H 1.@V IC=2� iZ/ in (28). Then dw D 

0.vd / and

� i� D 
 0.vl 0 � vl/D 

0

�
� i

sX
jD1

..f 0/
j
1
�f

j
1
/e

j
0
� ..f 0/

j
0
�f

j
0
/e

j
1

�
:

Hence, denoting HFEP
1
WDHFEP

1
.TZ ; zbZ /,

(58) HFEP
1
.ŒwIf 0�Z /HFEP

1
.ŒwIf �Z /

�1

D exp
� sX

jD1

�j

�
..f 0/

j
1
�f

j
1
/ log.wj

0
/� ..f 0/

j
0
�f

j
0
/ log.wj

1
/
��

D exp
�
�

1

� i
hvl 0 � vl ; vd i

�
D exp

�
�

1

2� i
hh
 0.vl 0 � vl/; 


0.vd /ii
�

D exp
�

1
2

�
�.m/ log.holl.�.w///� �.l/ log.holm.�.w///

��
;

where the map holC , C a curve in @V , is defined in (23), and hh ; ii denotes the cup
product followed by the evaluation on the fundamental class. The first equality follows
from (17) and (21), the second is by the definition (38) of the symplectic pairing on
H ˝C , the third follows from (44) and Poincaré duality, and the last one uses that the
symplectic basis of H1.@V IZ/ is .l;m/. By setting �.m/ WD 2b and �.l/ WD 2a, we
see from (56) and (58) that the function HFEP;hf

1
(with arbitrary bulk weight hf for

the moment) descends from A0;FEP.M /1 to a section of L.M /. Denote it

Shf W A0;FEP.M /! L.M /:

We show that this section is parallel with respect to the connection � by a computation
similar to (58). As remarked in [31, Lemma 10.2], for any Q–vector space E , the
skew symmetric bilinear form h ; i on J induces a symmetric bilinear map

BW .H ˝E/˝ .H ˝E/!E ^E;

.a˝ v/˝ .b˝w/ 7! ha; biv^w:

Consider the map �E on H1.@V IE/DH1.@V IZ/˝E induced by the intersection
product on H1.@V IZ/:

�E W H1.@V IE/˝H1.@V IE/!E ^E;

.x˝ v/˝ .y˝w/ 7! .x �y/v^w:
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Denote again by 
 the map 
 ˝ IdW H ˝ E ! H1.@V IE/. By (44) we have a
commutative diagram:

.H ˝E/˝ .H ˝E/
B

//


˝


��

E ^E

2�
��

H1.@V IE/˝H1.@V IE/
�E
// E ^E

In particular, let E D C1.W1/ and denote by l
j
0

, l
j
1
2 E the classical log branch

functions at the edges e
j
0

, e
j
1

of �j . Put

aD

sX
jD1

e
j
0
˝ l

j
1
� e

j
1
˝ l

j
0
2H ˝E:

For any point ŒwIf �Z 2�FEP.Z/1;0 we have 
 .a/.ŒwIf �Z /D l˝L.ŒwIf �Z /.m/�

m˝L.ŒwIf �Z /.l/; dually the class 
 0.a/ 2H 1.@V IE/, 
 0.a/D PD ı
 .a/, is given
by 
 0.a/.ŒwIf �Z /DL.ŒwIf �Z / 2H 1.@V IC/. Moreover, in E ^E we have

2

sX
jD1

�j .l
j
0
^ l

j
1
/D B.a; a/D 1

2

 .a/ �E 
 .a/DL. � /.l/^L. � /.m/:

Applying the homomorphism E^E!�1.W1/, f ^g 7! f dg�g df , we deduce

2

sX
jD1

�j .l
j
0

dl
j
1
� l

j
1

dl
j
0
/DL. � /.l/ dL. � /.m/�L. � /.m/ dL. � /.l/:

For any two points ŒwIf �Z , Œw0If 0�Z connected by a continuous path .
 1; : : : ; 
 s/

in �FEP.Z/1;0 we thus get

(59) HFEP
1
.Œw0If 0�Z /HFEP

1
.ŒwIf �Z /

�1
D exp

�
2

sX
jD1

�j

Z

 j
�

�
D exp

�Z



�

�
;

where 
 �A0;FEP.M /1 is the image of .
 1; : : : ; 
 s/ under the map loghol1 . Hence
Shf is a parallel section of L.M /. Multiplying coordinates by 4� i identifies h�L.M /

with the restriction of ��L@V to �FEP ; see [25, end of Section 3 and pages 555–556].
Finally, as described before the claim, from (55) and (59) we get h�S0D .sV /j�FEP

.

Remark 4.21 (1) In [25] the Chern–Simons bundle is defined over the variety of
characters X 0.@V / instead of the variety of augmented characters X.@V /; the coor-
dinates on X 0.@V / are 1=2� i times the logarithms of the eigenvalues at a pair of
meridian and longitude curve on @V . A fundamental domain for the action of Z�Z
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on coordinates is .Œ0I 1=2��R/� .Œ0I 1��R/. The rescaling factor 4� i at the end of
the proof replaces these coordinates by the logarithms of the squared eigenvalues, so
that a fundamental domain for the action of Z�Z on A0;FEP.M /1 is .Œ0I 2i���R/2 .

(2) L.M / is the restriction to A0;FEP.M / of a bundle L.T 2/ over X.T 2/DX.@V /

defined by the action (56). Of course L.T 2/ is isomorphic to L@V . Its connection
1–form (57) has curvature F� D .�1=.i�//d log.�/ ^ d log.�/, its Euler class is
represented by .�1=.2.i�/2//d log.�/^ d log.�/, and its Euler number is �2.

Remarks 4.22 Problems and perspectives

(a) The Z2 –equivariant analytic function HFEP;0
1

defined on A0;FEP.M /1 is the
classical analog of the regular rational functions HFEP;0;hc ;kc

N
on A0;FEP.M /N . One

expects that a refinement of the Z2 –action appears in the quantum world, involving the
quantum torus algebra generated by yl , ym such that yl ymD � ymyl , where � is a primitive
N th root of 1 and .l;m/ a geometric basis of H1.@V IZ/:

Problem 4.23 Lift the functions HFEP;hf ;hc ;kc
N

WA0;FEP.M /N!C=�2N to C–valued
functions defined on some covering space of A0;FEP.M /N .

(b) By Theorem 1.1(2), the functions HFEP;hf ;hc ;kc
N

yield C=�2N –valued rational
functions on a covering space zX0.M /N of X0.M /. On the other hand, the field
C. zX0.M /N / is a finite extension of C.X0.M //, and C.X0.M // is generated by the
functions of augmented characters associated to holl and holm by pull-back via the
map hW X0.M /!A0.M /.

Problem 4.24 Describe HFEP;hf ;hc ;kc
N

in terms of functions of augmented characters,
or as a meromorphic function on the smooth projective model of zX0.M /N .

For instance, a property that is obvious from the state sum formulas is that the poles of
HFEP;hf ;hc ;kc

N
cover ideal points of X0.M /.

By a theorem of Bullock [11], the ring of SL.2;C/–characters CŒX.M /� is isomor-
phic to K�1.M /=

p
0, where K�1.M / is the Kauffman bracket skein module of M

specialized at AD�1, with its natural algebra structure, and
p

0 its nilradical.

Problem 4.25 Find skein-theoretic constructions of HFEP;hf ;hc ;kc
N

.
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5 QHFT partition functions

For simplicity we consider only the QHFT patterns with topological support .W;L; hc/,
where W is a closed oriented connected 3–manifold. In that case only the bulk c–
weight hc occurs. In order to build the analytic configurations of .W;L; hc/ we
consider quasiregular triangulations T of W (see Proposition 2.3), and we require
that L is realized by a Hamiltonian subcomplex H of the 1–skeleton of T . Such a
pair .T;H / is called a distinguished triangulation of .W;L/.

Definition 5.1 A global charge c on .T;H / is a rough global charge on T satisfying
the following additional global constraint on the total edge charges: C.e/D 0 if e is
an edge of H , and C.e/D 2 otherwise.

Note that any global charge on .T;H / encodes H , ie the link L. Let us turn to the
combinatorial encoding of .W;L; hc/. Similarly to Proposition 4.8 and 4.9 we arrive
at the following proposition; see [3; 4; 5].

Proposition 5.2 (1) Every pair .W;L/ has quasiregular distinguished triangula-
tions .T;H /.

(2) Every global charge c on .T;H / determines a bulk c–weight hc of W .

(3) For every bulk c–weight hc of W and every distinguished triangulation .T;H /

of .W;L/, there is a global charge c on .T;H / with bulk c–weight equal to hc .

Let us fix a quasiregular distinguished triangulation .T;H / of .W;L/, a global charge c

on .T;H /, and a branching b on T (it exists).

Proposition 5.3 (1) Every point ŒwIf � 2G0.T; b/1 determines a character �D
�.w/ and a bulk f–weight hf , so that .W;L; �; hf ; hc/ is a pattern with topo-
logical support .W;L; hc/.

(2) For every pattern .W;L; �; hf ; hc/ there is a point ŒwIf � 2 G0.T; b/1 with
holonomy � and bulk f–weight hf .

The construction of the QHI of .W;L; hc/ is achieved by the following proposition,
which is improved in Section 8 with respect to the QHI sign anomaly. The proof is sim-
ilar to that of Theorem 4.16. For every odd N � 3 consider the analytic configurations
AN .T; b; c/. The defining equations of the algebraic variety G0.T; b; c/N are:

� W 0.e/D ��1 for every edge e of T not contained in H .

� W 0.e/D 1 for every edge e of T contained in H .
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Proposition 5.4 For every pattern PD .W;L;�; hf ; hc/, every distinguished branched
quasiregular triangulation .T; b;H / of .W;L/, every global charge c on .T;H / with
bulk c–weight equal to hc , and every point ŒwIf � 2G0.T; b/1 with holonomy � and
bulk f–weight hf , the scalars

� H1.P/ WDH1.T; b/.ŒwIf �/

� HN .P/ W�2N HN .T; b; c/.ŒwIf �/

do not depend on the choice of .T; b; c/ and ŒwIf �, and hence define invariants of P .

By definition, the analytic configuration AN .W;L; hc/ is the family of analytic con-
figurations AN .T; b; c/ over the triples .T; b; c/ as in Proposition 5.4.

Remark 5.5 The state sum normalization factor aN .T; zb/ includes a term N�v .
Other choices are possible. In [6] we used instead N 2�v in order to get Theorem 1.2.

For general QHFT patterns the constructions are more elaborated; in particular, one
requires that H is Hamiltonian in the 1–skeleton of T from which the nonmanifold
vertices have been removed, and that in the normalization factor N�v , v is the number
of manifold (ie internal) vertices. Anyway, the results have the same flavor.

6 N–graph calculus

As every QH state sum is the total contraction of a tensor network supported by a
N–graph, one needs to describe the main features of a calculus based on such diagrams.

6A N–graphs representing the same weakly branched triangulation

Using the N–graph decoding of Section 2 it is easy to see that two N–graphs � and � 0

encode the same weakly branched triangulation .T; zb/ if and only if they are equivalent
under the relation generated by:

� Plane isotopy.

� Switching the over/under arcs at an accidental crossing.

� The N–graph versions of oriented Reidemeister moves, called R–moves (ie
formally the usual ones if only accidental crossings are involved, or the Reide-
meister move of type III shown in Figure 10 (the orientation being understood)
when a dotted crossing is involved).
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Figure 10: Some Reidemeister moves of type III for N–graphs

6B Changing the weak branching

Given a N–graph � representing a weakly branched triangulation .T; zb/, and an
arbitrary change of weak branching .T; zb/! .T; zb0/, we want to describe a systematic
way to modify � to a N–graph � 0 representing .T; zb0/. We begin with the local
changes of branching on a given tetrahedron.

6B1 The S4 action .�; b/! .�; bˇ/ Consider a branched tetrahedron .�; b/ with
b–ordered vertices v0; v1; v2; v3 and 2–facets F0;F1;F2;F3 , as usual. Let S.J4/

be the symmetric group on the set J4 D f0; 1; 2; 3g. There is a natural one-to-one
correspondence between the elements ˇ 2 S.J4/ and the branchings bˇ on � such
that b D bId . The branching b induces a branching b.j / on each facet Fj , that is a
labeling of the vertices of Fj by elements of J3 D f0; 1; 2g. For every ˇ 2 S.J4/,
also the branching bˇ induces a branching bˇ.j / on Fj (note that these facets are still
ordered with respect to b , not bˇ ), and the transition from b.j / to bˇ.j / is encoded
by a permutation �ˇ.j / 2 S.J3/. Clearly the following holds.

Lemma 6.1 (1) The branching signs �bˇ and �b coincide if and only if ˇ 2A.J4/.

(2) The 2–facet Fj has the same b– and bˇ –transverse coorientations if and only if
�ˇ.j / 2A.J3/.

Let C.b/ denote a dotted N–graph crossing that encodes .�; b/ as in Figure 4. We call
C.b/ a 2–2 N–tangle; we consider it as a planar tangle properly embedded in a 2–disk
D , with endpoints on @D labeled by J4 . One can assume that the crossing is central to
D , and that the arcs joining it to the endpoints are contained in two oriented diameters
of D . We want to describe an algorithm that produces, for every ˇ 2 S.J4/, a new
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decorated 2–2 N–tangle C.bˇ/ in D , with the same unoriented arc-germs as C.b/ at
@D . Hence the arcs of C.b/ and C.bˇ/ will be in natural one-to-one correspondence
and oriented by b and bˇ respectively. The tangle C.bˇ/ will verify the following
properties:

� C.bˇ/ contains one dotted crossing. According to the last lemma, �bˇ D �b if
and only if ˇ 2A.J4/. Hence, given ˇ , we know the sign �bˇ .

� C.bˇ/ can replace C.b/ in every N–graph � 0 obtained after a change of weak
branching zb! zb0 acting as b! bˇ on the corresponding branched tetrahedron
.�; b/ of .T; zb/.

� Each of the four arc-germs of C.bˇ/ at @D are labeled by an element of S.J3/,
which will eventually contribute to the edge coloring of � 0 .

An auxiliary construction Consider the two basic 2–2 tangles in a 2–disk D0 , made
by two oriented simple arcs a, a0 that either are disjoint or intersect transversely at
one point, without any over/under information at the crossing point. A J4 –labeling of
the 4 free endpoints of a[ a0 is admissible if it respects the following conditions:

(a) The endpoints labeled by 1; 3 (resp. 0; 2) belong to different arcs and are both
either the initial or the final endpoint of the corresponding arc.

(b) 3; 2 (resp. 1; 0) label the endpoints of the same arc.

These conditions are satisfied by the labels of the tangles of Figure 4; recall that in this
figure, �b D 1 (resp. �b D�1) if and only if 1; 3 label initial (resp. final) endpoints.
By the same rule we give every basic tangle an admissible J4 –labeling, denoted by B ,
and a sign �B D˙1. Note also that in Figure 4, the arc with endpoints labeled by 0; 1

passes over the other arc. Now we convert B into a 2–2 N–tangle as follows:

0

1

2

3

0

1

2

3

Figure 11: Basic to N–tangles
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01

2

3

0 1

2

3

Figure 12: More basic to N–tangles

(c) If a\ a0 D∅, perform an oriented Reidemeister move of type II of the arc with
labels 0; 1 over the other arc, thus creating two crossings. Only one of them
can be made into a dotted crossing so that its sign �b agrees with �B (see some
examples in Figure 11).

(d) If a and a0 cross at one point, let A be the arc with 0; 1 labels, and I a small
open interval in the interior of the arc with 2; 3 labels, such that I contains the
crossing point. Let A pass over I , put a dot at the crossing point, and turn I

so that the crossing sign and �B agree. Finally complete I [A to an N–tangle
with the same endpoints as a\ a0 , by introducing 0 or 2 accidental crossings
on opposite sides of A with respect to I \A (see some examples in Figure 12).

The algorithm C.b/ ! C.bˇ/ (1) Remove the interior of a smaller concentric
subdisk D0 of D . Each endpoint of C.b/, say xj , j 2 J4 , is connected by an oriented
subarc to a point x0ˇ.j/ on @D0 .

(2) There is only one basic 2–2 tangle B in D0 such that the bˇ–labeling of the
endpoints x0ˇ.j/ is admissible and �B D �bˇ . As in the auxiliary construction, convert
B into an 2–2 N–tangle in D0 ; glue it to the four subarcs Œxj ;x

0
ˇ.j/�, and denote by

C 0.bˇ/ the resulting 2–2 N–tangle in D .

(3) The 2–2 N–tangle C.bˇ/ is obtained from C 0.bˇ/ by giving a label y�ˇ.j /2S.J3/

to each subarc Œxj ;x
0
ˇ.j/� as follows. Recall the permutation �ˇ.j / 2 S.J3/ defined

before Lemma 6.1; the b– and bˇ –orientations of Œxj ;x
0
ˇ.j/� coincide with each other

if and only if �ˇ.j / 2A.J3/). Then set

� y�ˇ.j /D �ˇ.j / if the bˇ –orientation of Œxj ;x
0
ˇ.j/� coincides with the orientation

pointing towards the center of D ;
� y�ˇ.j /D �ˇ.j /

�1 otherwise.
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6B2 Iterations Assume that ˇ D ˛ � 
 , where by definition ˛ � 
 WD 
 ı˛ . Then we
can produce C.bˇ/ by iterating the preceding algorithm twice. We get a sequence of
nested disks

D00 �D0 �D;

a subdivision of the segment Œxj ;x
00
˛�
.j/

� into subarcs

Œxj ;x
00
˛�
.j/�D Œxj ;x

0
˛.j/�[ Œx

0
˛.j/;x

00
˛�
.j/�;

and a factorization of the permutation associated to Œxj ;x
00
˛�
.j/

�:

�ˇ.j /D �˛.j / � �
 .˛.j //:

The adjacent transpositions .01/; .12/; .23/ form a standard set of generators of S4 .
Let ˇ D �1 � � � �k , where each �j is such a generator. Then we can produce again
C.bˇ/ by iterating the algorithm k times. We get a sequence of nested disks

Dk � � � � �D1 �D;

a subdivision of the arc Œxj ;x
.k/

ˇ.j/
� of C.b/ n Int.Dk/ into subarcs

Œxj ;x
.1/

�1.j/
�[ � � � [ Œx

.k�1/

�1����k�1.j/
;x
.k/

ˇ.j/
�;

and a factorization of the permutation �ˇ.j / 2 S3 associated to the arc Œxj ;x
.k/

ˇ.j/
�:

�ˇ.j /D ��1
.j / � � � ��k

.�1 � � � �k�1.j //DW f1 � � � fk :

Lemma 6.2 Every transposition fi 2 S3 belongs to the set fId; .01/; .12/g.

Proof It is enough to check the case ˇ D �j (see Figure 13).

For future application, it is convenient to associate a symbol to each subarc of C.bˇ/,
that indicates its label f 2 fId; .01/; .12/g and depends on its b–orientation:

� If the b–orientation is outgoing (ie opposite to the one pointing towards the
center of D ), then let this symbol be † Id† , or †f †(a source) if f is a
transposition.

� If the b–orientation is ingoing, then let this symbol be †Id †, or †f† (a
pit) if f is a transposition.

Under concatenation of subarcs, adjacent symbols are separated by †† or ††. Here
are examples:

� � � †f † †g† � � � ; � � � †f† †g †� � � ; � � � †Id † †Id †� � � ;

� � � † Id† † Id† � � � ; � � � †Id † †f† � � � ; � � � † Id† †f †� � � ; etc:
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Letting ? 2 f†† ; ††g, in the case of �ˇ.j /D f1 � � � fk we get:

� †f1? � � � ?fk† or †f1? � � � ?fk †if b and bˇ induce on Œxj ;x
.k/

ˇ.j/
� the same

orientation.
� †f1? � � � ?fk †or †f1? � � � ?fk† otherwise.

We can also make simplifications of the form

?s † †f† †f † †t ? D ?s † †t ?

and so on, so that the concatenation of symbols of subarcs eventually reduces to
†Id †, † Id† , or alternating pits and sources carrying the transpositions .01/ and

.12/. In Figure 13 we show graphically the result when �b D C1 and ˇ varies in
f.01/; .12/; .23/g; we dropped the notation Id for the symbol †Id †. The case
�b D�1 is similar.

.23/

.12/ .12/

.12/
.12/

.01/

.01/
.01/

.01/

Figure 13: C.b.ij// , �b DC1

6B3 Oriented C –moves We call C.b/! C.bˇ/ a C –move. If C.b/ and C.bˇ/

define the same prebranching then we say that it is an oriented C –move. Set

� D .0123/D .23/ � .12/ � .01/; � D .02/ � .13/:

Then � generates a subgroup G of S.J4/ isomorphic to .Z=4Z;C/ via the map
� 7! 1.

Lemma 6.3 For both �b D˙1, ˇ 2 S4 induces an oriented C –move C.b/!C.bˇ/

if and only if ˇ 2G.
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Proof Looking at Figure 2 anticlockwise from the top left, and denoting by b the first
branching (so that �bDC1), the others are successively b� , b� �� , b� �� �� , b��1�� �� ��Db .
Hence ˇ 2G. One can do similarly when �b D�1.

Figure 14 shows the oriented C –moves C.b/! C.b��1/ for �b DC1 and C.b/!

C.b� / for �b D�1.

.0321/

.01/ .12/
.12/ .01/

.12/

.01/

.0123/
.12/

.01/

.01/.12/

.01/

.12/

Figure 14: Generating oriented C–moves

6B4 Globalization Let � be an N–graph encoding .T; zb/, and zb0 another weak
branching on T . We want to produce an N–graph � 0 encoding .T; zb0/. For every
abstract branched tetrahedron .�j ; bj / of .T; zb/ there is a permutation ǰ 2 S.J4/

such that transit zb ! zb0 , restricted to to �j , is bj ! .bj / ǰ . Applying at every
crossing of � the algorithm C.bj /! C..bj / ǰ /, we get a diagram � 0 . Forgetting
the orientations, there is a natural one-to-one correspondence between the edges of �
and � 0 . Let e be an edge of � with color r.e/. Denote by xe the corresponding edge
of � 0 . According to the last step of the algorithm, xe is labeled by “initial” and “final”
permutations y�i.xe/; y�f .xe/ 2 S.J3/. There is an alternative:
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� Both y�i.xe/ and y�f .xe/ belong to A.J3/ (in such a case e and xe have compatible
orientations); then the color r.xe/ is defined by

y�i.xe/ � .012/r.e/ � y�f .xe/D .012/r.xe/:

� Both y�i.xe/ and y�f.xe/ do not belong to A.J3/ (in such a case e and xe have
opposite orientations); then the color r.xe/ is defined by

y�i.xe/ � .012/�r.e/
� y�f .xe/D .012/r.xe/:

The oriented C –moves have the nice feature that they are local and independent of
each other. On the contrary, a family of permutations ǰ 2 S.J4/ as above must satisfy
nontrivial global constraints to induce a change of weak branching zb! zb0 . Fortunately,
the following local/global calculus on N–graphs from [9] covers the general case.

Lemma 6.4 Any change of N–graphs � ! � 0 corresponding to a change of weak
branching .T; zb/! .T; zb0/ is a composition of a finite sequence of the following moves
�j ! �jC1 :

(1) The moves of Section 6A.

(2) The oriented C –moves.

(3) A nonlocal circuit move: Let 
 be a simple circuit of �j , ie a circuit with one
component. Assume that each edge of 
 is the upper strand at each crossing
through which 
 passes. Then �jC1 is obtained by acting on each of these
crossings with the transposition .23/ 2 S4 . Equivalently, �jC1 is obtained by
reversing the orientation of 
 and keeping the Z=3Z–color r.e/ unchanged at
every edge e of Sing.P /.

Proof The equivalence between the two descriptions of the nonlocal circuit move is
clear. Let �! � 0 be as in the statement. The set S of edges of Sing.P / where the
prebranchings associated to zb and zb0 disagree is the union of nonoverlapping simple
circuits 
1 , : : : ; 
r oriented by zb . Using oriented C –moves one can modify � so
that 
1 eventually passes over at each crossing where it goes through. Then change its
orientation. Doing similarly with 
2 , : : : ; 
r , one ends up with S D∅.

6C Transits

It is well known that two naked triangulations T and T 0 of yV can be connected by a
finite sequence of 3–dimensional Pachner’s moves, also called MP and bubble moves.
The MP moves, also called 2$ 3 moves, are illustrated in Figure 15 in terms of
triangulations and dual spines. Branched versions of the bubble moves are shown in
Figure 16 in terms of N–graphs.
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T T 0

P P 0

Figure 15: The MP move

A
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B
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A

A
B

B
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B

B

A

A

B

B

Figure 16: Bubble b–transits

Definition 6.5 Let .T; �/ and .T 0; � 0/ be prebranched triangulations of yV . A move
T ! T 0 (either bubble or MP, positive or negative) lifts to a prebranching transit
.T; �/! .T 0; � 0/ if and only if � and � 0 coincide on every common 2–face of T and
T 0 . We say that T ! T 0 lifts to a zb–transit .T; zb/! .T 0; zb0/ of weakly branched
triangulations if it induces a prebranching transit .T; �zb/! .T 0; �zb0/. If .T; b/ and
.T 0; b0/ are branched triangulations, then .T; b/! .T 0; b0/ is a b–transit if b and b0

coincide on every common edge of T and T 0 .
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Figure 16 shows the different bubble b–transits in terms of normal N–graphs (recall
Remark 2.11), and the decorations A, B of the dual square edges according to Figure 8.
Figure 17 and 18 show an example of MP b–transit in terms of branched triangulations
and normal N–graphs; note that �b DC1 for all 3–simplices (resp. dotted crossings).
It is called the Schaeffer b–transit, and plays a distinguished role in the study of matrix
dilogarithms (see Section 8).

0

1

2

3

4
0

1

2

3

4

Figure 17: Schaeffer’s b–transits

Figure 18: Normal N–graph Schaeffer’s b–transit

The following lemma will be useful in applications to the QH state sums. Denote by
Špb the equivalence relation on the set of weakly branched triangulations, defined by
zb–transits .T; zb/! .T; zb0/.

Lemma 6.6 The equivalence relation Špb is generated by the following two transfor-
mations:
� Change the weak-branching .T; zb/! .T; zb0/ by moves preserving the prebranch-

ing (ie dually do oriented C –moves, see Lemma 6.4).
� Perform zb–transits .T; zb/! .T 0; zb0/ which look like b–transits at the subpat-

terns of tetrahedra involved in the move.
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Figure 19: Branched realization of MP pb–transits

Proof The proof for bubble moves is easy and basically illustrated in Figure 16 in
terms of N–graphs. Consider a positive MP zb–transit .T; zb/ ! .T 0; zb0/, and the
two tetrahedra of T modified by the transit. At their common 2–face F one of the
following possibilities is realized:

(1) There are exactly two square edges which are both not monochromatic (ie each
one inherits different A,B labels from the prebranchings of the two tetrahedra).

(2) There is exactly one square edge which is monochromatic (either A or B ), and
the other two edges are monochromatic (either B or A coupled with the empty
label).

Moreover, this information at F determines completely the coorientations of the
three 2–faces produced by the transit, and hence determines the prebranching transit
.T; �zb/! .T 0; �zb0/. Then, it is enough to realize the above possibilities by means of
b–transits (changing the weak branchings before and/or after the transit, if necessary,
by moves preserving the prebranching). Figure 19 shows it in terms of (decoded)
normal N–graphs. Clearly this realization is not unique.

7 State sum invariance over weakly branched triangulations

Let .T; zb; w; f; c/ be a weakly branched QH triangulation of a pattern P ; w and f sat-
isfy the defining equations of the spaces in Definition 3.7, and c those of Definition 4.7
(resp. Definition 5.1) if P is a pattern over a cusped manifold (resp. a QHFT pattern).
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We want to prove that HN .P/ W�N ˙HN .T; zb; w; f; c/ is an invariant of P . In the
case when .T; b/ is a branched triangulation we achieved this result in [3; 4; 5] by
introducing the notion of QH transit .T; b; w; f; c/! .T 0; b0; w0; f 0; c0/. A QH transit
is such that: .T; b/ ! .T 0; b0/ is a b–transit, the tuples .w; f; c/ and .w0; f 0; c0/

coincide on the common tetrahedra of T and T 0 , and for every common edge e we
have (see Section 3B for the notations, where WT .e/ is W .e/, and so on)

(60) WT .e/DWT 0.e/; LT .e/DLT 0.e/; CT .e/D CT 0.e/:

QH triangulations related by QH transits encode a same pattern P . Moreover:

� HN .T; b; w; f; c/ is invariant under any QH transit.

� Any two branched QH triangulations of P are related by a finite sequence of
QH transits and branching changes.

� HN .T; b; w; f; c/ is invariant under any change of the branching b .

Clearly these three facts prove the invariance of HN .P/. We follow the same strategy
when zb is an arbitrary weak branching. Since the QH transits are local transformations,
we define QH transits .T; zb; w; f; c/! .T; zb0; w0; f 0; c0/ by requiring that the zb–transit
.T; zb/! .T 0; zb0/ restricts to a genuine b–transit on the tetrahedra modified by the
move. Then, trivially HN .T; zb; w; f; c/ is again invariant under QH transits, and using
Lemma 6.6 and the results of [3; 4; 5] it is easy to see that any two weakly branched
QH triangulations of P are related by a finite sequence of QH transits and changes of
weak branching. So it remains to show:

Proposition 7.1 For any change of weak branching zb! zb0 we have

HN .T; zb; w; f; c/�N ˙HN .T; zb
0; w; f; c/:

In order to develop the proof we need to fix some conventions regarding the contraction
of tensors, and to describe the relations between tetrahedral tensors related by a change
of branching. This is the content of the two following subsections.

7A Formal conversion of tensor networks

Recall the notation V D CN . We use the canonical isomorphism V ! V � sending
the standard basis to the dual basis. Let A 2 End.CN ˝CN / be associated to a 2–2

N–tangle as in Figure 9, according to the conventions of Section 3A. Let ˇ 2 S.J4/.
Assuming that �b D 1, under the natural isomorphisms

(61) Hom.V3˝V1;V2˝V0/Š V2˝V0˝ .V3˝V1/
�
Š V2˝V0˝V �1 ˝V �3

Algebraic & Geometric Topology, Volume 15 (2015)



Analytic families of quantum hyperbolic invariants 2043

we see that A belongs to V2˝V0˝V �1 ˝V �3 , where as usual Vj is the copy of CN

associated to the j th face of .�; b/. Consider W2˝W0˝W �1 ˝W �3 if �bˇ D 1, and
W3˝W1˝W �0 ˝W �2 if �bˇ D�1, where Wj is the copy of CN associated to the
j th face according to bˇ . By using IdW Vj !Wˇ.j/ or the canonical isomorphisms
Vj !W �

ˇ.j/
, we get further canonical isomorphisms

V2˝V0˝V �1 ˝V �3 ŠW2˝W0˝W �1 ˝W �3 ;

V2˝V0˝V �1 ˝V �3 ŠW1˝W3˝W �0 ˝W �2 :

Denote by Aˇ the operator supported by .�; bˇ/, defined as the image of A via
such an isomorphism. We call Aˇ the formal ˇ–conversion of A. There are explicit
identities between the matrix elements of A and Aˇ . Following our conventions for
the index positions, we get for example

A
p;q
s;t D .A.13/.02//

q;p
t;s D .A.23//

p;t
s;q D .A.02//

s;t
q;p D .A.01//

s;q
p;t D .A.12//

s;p
t;q :

Let A be a QH tensor network supported by a weakly branched triangulation .T; zb/.
For any change of weak branching zb! zb0 , the formal conversions of the tetrahedral
tensors of A match to produce a new tensor network Azb0 , supported by .T; zb0/. The
state sums associated to A and Azb0 being total contractions, it is tautologically evident
that they take the same values.

j
M

i
M

j
M

i
Md

j
M

i
Mu

j
M t

i
M t

Figure 20: Formal conversion of a square matrix

i
A

k
B

j
D

i
AB

j

i
A

k
C

j
D

i
C

k
A

j

Figure 21: Relations for M–conversion

The formal conversion of tensors can be widely applied. Here is a second example
that we use below. Let M D .M i

j / be any N �N matrix. We interpret M as an
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endomorphism of V DCN . There are two formal conversions of M , Mu and Md ,
which are bilinear forms on V � and on V respectively, defined by:

(62) .Mu/
i;j
DM i

j D .Md /i;j :

Note that we have also .Mu/
i;j D .M t /

j
i D .Md /i;j , where M t is the transpose

matrix of M , that is, the adjoint endomorphism. Figure 20 shows a graphical encoding
of these identities. If M is symmetric, the position of the indices i; j is immaterial.
Such formal conversions satisfy a few relations shown in Figure 21, where A, B and
C denote N �N matrices and we assume that AC D CA. Note that in every case
the index k is traced out, and the top/right picture represents the matrix element of a
composite endomorphism

A �B WD B ıA:

7B The relations between RN .�; b; w; f; c/ and RN .�; bˇ; w0; f 0; c0/

Consider a change of branching b! bˇ , ˇ 2S.J4/. It is enough to treat the case where
ˇ is one of the standard generators .01/; .12/; .23/ 2 S.J4/. Consider the algorithm
C.b/! C.bˇ/ of Section 6B. Associate a tensor network to C.bˇ/ as follows:

� Associate RN .�; bˇ; w
0; f 0; c0/ to the dotted crossing of C.bˇ/.

� Using the matrices S and T of Section 3B, replace †.01/† with †T† ,
†.12/† with †S† , †.01/ †with †T �1 †, †.12/ †with †S�1 †, and
†Id †with †I †.

Contracting the tensor network we get a tensor yRN .T; bˇ; w
0; f 0; c0/ which has the

same type as RN .�; b; w; f; c/, since both have the same oriented arc-germs at @D .
The next proposition rephrases the content of [3, Lemma 3.3] and [4, Corollary 5.6].
Matrix indices are raised or lowered using the standard inner product on CN (see
Section 7A).

Proposition 7.2 If ˇ D .01/; .12/; .23/, then

RN .T; b; w; f; c/�N ˙yRN .T; bˇ; w
0; f 0; c0/:

More precisely, exchanging the roles of b and bˇ and setting �N D .�1/.N�1/=2 , we
have

RN .�; b.01/; w
0; f 0; c0/

i;l
k;j
�N �

c0

N
Tk;k0RN .�; b; w; f; c/

k0;l
i0;j .T

�1/i
0;i ;

RN .�; b.12/; w
0; f 0; c0/

i;k
j ;l
�N �

c1

N
Tl;l 0RN .�; b; w; f; c/

k;l 0

i0;j .S
�1/i

0;i ;

RN .�; b.23/; w
0; f 0; c0/

k;j

i;l
�N �

c0

N
Sl;l 0RN .�; b; w; f; c/

k;l 0

i;j 0 .S
�1/j

0;j :
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The main properties of S and T are described in the following lemma.

Lemma 7.3 (1) S4 D IN .

(2) .TS/3 D �N S2 , where �N 2 f˙1;˙ig is given by

�N D

8<:
�

mC1

N

�
if N � 1 mod 4;

i
�

mC1

N

�
if N � 3 mod 4:

(3) .S�1T /3 D �N IN .

Proof (1) is immediate. We have ..TS/2/ji DN�1��.mC1/i2�ij
PN�1

kD0 �
.mC1/.k�i�j/2.

For all nonvanishing coprime integers a, b with b > 0 set

G.a; b/D
X

x mod b

e2�iax2=b:

The sum in ..TS/2/
j
i has this form for aDmC 1, b DN . By [26, pages 86–87] we

have
G.a; b/D

�
a

b

�
G.1; b/; b odd;

where G.1; b/D
p

b if b � 1 mod 4, and G.1; b/D i
p

b if b � 3 mod 4. Hence

..TS/2/
j
i D �N N�1=2��.mC1/i2�ij ;

and (2) follows easily from this. As TS�1 D S.S�1T /S�1 , it is enough to prove the
last statement for TS�1 . We have

.TS/4 D .TS/.TS/3 D �N TS3
D �N TS�1; .�N TS�1/3 D ..TS/4/3 D �4

N IN

and finally .TS�1/3 D �N IN .

Proof of Proposition 7.1 By Lemma 6.4 we can assume that .T; zb/! .T; zb0/ cor-
responds to an oriented C –move or a circuit move on the associated N–graphs. A
circuit move preserves the Z=3Z–color r.e/ of every edge e , and produces one
extremal pit and one extremal source associated to the matrices S and S�1 at the
endpoints of each edge of the circuit. Hence HN .T; zb; w; f; c/ is preserved, as it is the
contraction of a tensor network. Consider the generating oriented C –move associated
to � D .0123/2S.J4/, and the tensor yRN .T; b� ; w

0; f 0; c0/ resulting from the formal
conversion of the sequence

C.b/! C.b.23//! C.b.23/.12//! C.b.23/.12/.01//D C.b� /
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as before Proposition 7.2. From Figure 14 we see that an edge e0 of C.b� / carries the
matrix QN DS �T �1 if r.e0/D 1C r.e/ 2Z=3Z (e being the arc of C.b/ associated
to e0 ), and that e0 carries Q�1

N
D T �S�1 if r.e0/D �1C r.e/ 2 Z=3Z. Otherwise

it carries the identity matrix. By the relation Q3
N
D ��1

N IN proved in Lemma 7.3,
the sum in HN .T; zb; w; f; c/ is changed by a factor ˙i when r.e0/D 1C r.e/ and
r.e/D 2, or when r.e0/D�1C r.e/ and r.e/D 0. The term � �q.T;zb/

N
of aN .T; zb/

compensates exactly such factors.

8 Resolution of the sign anomaly

In this Section we prove Theorem 1.1(3) and the analogous result for QHFT partition
functions:

Proposition 8.1 Let P be a QHFT pattern or a pattern over a cusped manifold. If
N � 1� 0 mod 4, or N � 1� 2 mod 4 and the bulk c–weight of P vanishes, then
HN .P/ is defined up to multiplication by N th roots of unity.

Proof We combine several results described below in Sections 8A and 8B. By
Corollary 8.6, for any odd N � 3 the invariance of HN .T / under QH transits holds
true up to multiplication by N th roots of unity. If N � 1 � 0 mod 4, we have
�N D 1, so HN .T / has no sign anomaly with respect to any change of weak branching
(Proposition 7.2). If N � 1� 0 mod 4 and hc D 0, the same is true by Lemma 8.7
and 8.8. Then the conclusion follows as explained before Proposition 7.1

Let P be a pattern for which HN .P/ can be defined by using branched triangulations,
as in [3; 4; 5]. Then aN .T; b/DN�v or 1, so we can wonder if the sign anomalies
occurring in Proposition 7.2 disappear because of global compensations. This is
eventually true.

Proposition 8.2 For any pattern P as above, HN .P/ is defined up to multiplication
by a N th root of unity, with no assumption on the weights of P .

Proof By a result of Costantino [15], any change of branching can be achieved
by means of a finite sequence of branching transits. The conclusion follows from
Corollary 8.6.

Remark 8.3 One can ask if a weakly branched version of Costantino’s result holds
true: given weakly branched triangulations .T; zb/ and .T; zb0/ of yV that differ only
by the weak branchings, are they related by a sequence of oriented C –moves and
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local b–transits? The answer is negative. In fact, we know that the state sums HN

have no sign anomaly with respect to QH transits and oriented C –moves, but there
are examples of weakly branched triangulations .T; zb/ admitting circuit moves along
circuits 
 such that hc.
 /¤ 0 2 Z=2Z.

8A Behavior of the sign anomaly under QH transits

Recall the formula (19). The matrix dilogarithms RN satisfy Proposition 7.2, whereas
the basic dilogarithms LN satisfy the following relations [4, Proposition 5.3]:

(63)

LN .�; b.01/; w
0; f 0; c0/

i;l
k;j
�N .w00/

1�N
2 Tk;k0LN .�; b; w; f; c/

k0;l
i0;j .T

�1/i
0;i ;

LN .�; b.12/; w
0; f 0; c0/

i;k
j ;l
�N .w01/

N�1
2 Tl;l 0LN .�; b; w; f; c/

k;l 0

i0;j .S
�1/i

0;i ;

LN .�; b.23/; w
0; f 0; c0/

k;j

i;l
�N .w00/

1�N
2 Sl;l 0LN .�; b; w; f; c/

k;l 0

i;j 0 .S
�1/j

0;j :

Define the transits of N th root cross ratio moduli like in (60), by replacing W .e/ with
the total N th root modulus W 0.e/ at all edges e of T and T 0 . Clearly any QH transit
induces a transit of N th root cross ratio moduli.

Theorem 8.4 [4, Theorem 5.2] The basic matrix dilogarithm identity supported by
the Schaeffer 2$ 3 transit of N th root cross ratio moduli holds true up to an N th root
of unity anomaly.

Let us recall the main ideas of the proof. The basic matrix dilogarithm identity
supported by the Schaeffer 2$ 3 QH transit is equivalent to the following equality in
Aut.CN ˝CN ˝CN /:

(64) ‰1
23.V /‰

3
12.U /D‰

4
12.U /‰

2
13.�U V /‰0

23.V /;

where U and V are explicit N 2 �N 2 matrices satisfying U N D� Id˝ Id, V N D

� Id˝ Id, and V U D �U V , � being a primitive N th root of 1, and for a tensor A

satisfying AN D� Id (on the appropriate space: CN , CN ˝CN etc) one sets

(65) ‰i.A/D

N�1X
lD0

Al
lY

sD1

..wi
0
/0/�1..wi

1
/0/�1

1� ..wi
0
/0/�1��s

:

In (64), ‰1
23
.V / means ‰1.V / acting on the second and third tensorands, ie Id˝‰1.V /

etc. One can check that ‰i is uniquely determined up to multiplication by scalars by
the functional relation

(66) ‰i.��1A/D‰i.A/

�
1�..wi

0
/0/�1..wi

1
/0/�1A

..wi
0
/0/�1

�
D‰i.A/

�
.wi

0/
0
�..wi

1/
0/�1A

�
:
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The identity (64) lifts to the algebra generated by U and V , so we have to show

(67) ‰1.V /‰3.U /D‰4.U /‰2.�U V /‰0.V /

when U N D �1, V N D �1, and V U D �U V . To do it, one uses crucially the
relations between N th root cross ratio moduli implied by the Schaeffer QH transit.
One shows that U V commutes with P .�U V / WD‰4.U /�1‰1.V /‰3.U /‰0.V /�1 ;
hence P .�U V / is a function of U V . Moreover, it satisfies

(68) P .���1U V /D P .�U V /
�
.w00/

2
� ..w01/

2/�1.�U V /
�
:

Comparing with (66) we see that P .�U V / and ‰2.�U V / are equal up to a multi-
plicative constant C WD C..w00/

2; .w01/
2/. We introduce an N th root of the recipro-

cal of det.‰i.A// in each entry of ‰i.A/ so that det.‰i.A// D 1 (this is the term
h..wi

0/
0/D g..wi

0/
0/=g.1/ in (18)). Then det.P .�U V //D 1D C N det.‰2.�U V //

and C N D 1. As a result the tensor LN .w
0
0; w

0
1/ can be expressed in terms of ‰.A/

for a suitable A; see [4, formulas (32) and (33)].

The basic matrix dilogarithm identities hold true up to an N th root of unity anomaly
only for some 2 $ 3 branching transits. From (63) one deduces Table 1 of the
anomalies produced by the symmetries of the Schaeffer 2$ 3 transit (it is enough
to consider those induced by the transpositions .01/; : : : ; .34/ on the vertex ordering
used in Figure 17). The transits of N th root moduli imply that the anomalies are
equal for the symmetries induced by .01/ and .34/, but differ for .12/ and .23/

because of the occurrence of the opposite exponents .1�N /=2, .N � 1/=2 for the
N th root moduli .wk

0 /
0 , .wk

1 /
0 respectively. For instance .w0

1/
0.w4

0/
0 D .w1

1/
0 , but we

see ..w0
1/
0/.N�1/=2..w4

0/
0/.1�N /=2 ¤ ..w1

1/
0/.N�1/=2 .

�1 �3 �0 �2 �4

.01/ 1 ..w3
0
/0/

1�N
2 1 ..w2

0
/0/

1�N
2 ..w4

0
/0/

1�N
2

.12/ 1 ..w3
1
/0/

N�1
2 ..w0

0
/0/

1�N
2 1 ..w4

1
/0/

N�1
2

.23/ ..w1
1
/0/

N�1
2 1 ..w0

1
/0/

N�1
2 1 ..w4

0
/0/

1�N
2

.34/ ..w1
0
/0/

1�N
2 1 ..w0

0
/0/

1�N
2 ..w2

0
/0/

1�N
2 1

Table 1

Replacing the tensors LN with RN we have:

Proposition 8.5 The matrix dilogarithm identities hold true up to an N th root of unity
anomaly for all QH transits.
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Proof Since we have the identity (64), in the case of the Schaeffer QH transit identity
it is enough to compare the symmetrization factors at both sides. They are (�N WD

.�1/.N�1/=2 ):

�
f 1

0
c1

1
Cf 1

1
c1

0
Cf 3

0
c3

1
Cf 3

1
c3

0

N
exp

�
N � 1

2N

�
�c1

1 l1
0 C c1

0 l1
1 � c3

1 l3
0 C c3

0 l3
1

��
and

�
f 0

0
c0

1
Cf 0

1
c0

0
Cf 2

0
c2

1
Cf 2

1
c2

0
Cf 4

0
c4

1
Cf 4

1
c4

0

N

� exp
�

N � 1

2N

�
�c0

1 l0
0 C c0

0 l0
1 � c2

1 l2
0 C c2

0 l2
1 � c4

1 l4
0 C c4

0 l4
1

��
:

A computation shows that the transits of log branches and charges imply that the two
exponentials are equal, and with the flattening transit mod 2 that the signs are equal. To
prove the claim for all others 2$ 3 QH transits we compare the anomalies resulting
from symmetries on the Schaeffer QH transit. Since all QH transits are branched, the
actions by the matrices S , T due to Proposition 7.2 cancel out along interior faces.
Table 2 shows the sign anomalies. Again, the transit of charges implies that they are
equal at both sides.

�1 �3 �0 �2 �4

.01/ 1 �
c3

0

N
1 �

c2
0

N
�

c4
0

N

.12/ 1 �
c3

1

N
�

c0
0

N
1 �

c4
1

N

.23/ �
c1

1

N
1 �

c0
1

N
1 �

c4
0

N

.34/ �
c1

0

N
1 �

c0
0

N
�

c2
0

N
1

Table 2

As usual, the identities for the bubble moves are formal consequence of those for the
2$ 3 moves. This concludes the proof.

Corollary 8.6 Let .T; zb; w; f; c/! .T 0; zb0; w0; f 0; c0/ be any QH transit of weakly
branched QH triangulations of a pattern P . Then

HN .T; zb; w; f; c/�N HN .T; zb
0; w0; f 0; c0/:

Proof If the transit is supported by a MP move it is immediate that aN .T; zb/ D

aN .T
0; zb0/, hence the conclusion follows from Proposition 8.5. If it is supported by a
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positive bubble move, spelling the contribution of each term we realize that if

aN .T; zb/DN�v�
�q.T;zb/
N

cN .T; zb/; cN .T; zb/D �
vCl� 1

2

P
e.nC.e/�n�.e//

N

then
aN .T

0; zb0/DN�.vC1/�
�q.T 0;zb0/
N

cN .T
0; zb0/;

cN .T
0; zb0/D �

.vC1/C.lC3/�.2C 1
2

P
e.nC.e/�n�.e//

N
;

and � �q.T 0;zb0/
N

D � �q.T;zb/
N

. Hence aN .T
0; zb0/DN�1aN .T; zb/, as it must be in order

to ensure the invariance under the bubble move, which increases by 1 the number of
internal vertices.

8B Behavior of the sign anomaly under a change of weak branching

A change of weak branching zb! zb0 modifies aN .T; zb/ by its subfactors ��q.T;zb/
N

and

c�N .T;
zb/ WD �

l� 1
2

P
e.nC.e/�n�.e//

N
:

By the proof of Proposition 7.1, ��q.T;zb/
N

and the unnormalized QH state sum have
reciprocal variations. So it remains to analyze the behavior of c�

N
with respect to

oriented C –moves and the circuit move of Lemma 6.4.

It is relevant here to clarify the nature of c�
N

. By extending [8, Chapter 7], the paper [9]
provides a combinatorial realization of spin structures on 3–manifolds, based on
weakly branched triangulations instead of branched ones. In particular, one associates
to every weakly branched triangulation .T; zb/ a framing �zb of the manifold defined
along Sing.P /, and computes a cellular cochain ˛zb 2 C 2.P IZ=2Z/ representing the
obstruction to extend �zb over the whole of the spine P . Consider the cellular 2–chain
R.P /D

P
R R 2 C2.P IZ=2Z/, where R varies among the 2–regions of P . It is a

fact that
l �

1

2

X
e

.nC.e/� n�.e//D ˛zb.R.P // mod 2:

How ˛zb , whence ˛zb.R.P //, varies with the weak branching is part of the theory
developed in [9]. As a consequence we get:

Lemma 8.7 For any change of weak branching zb! zb0 preserving the induced pre-
branching we have

HN .T; zb; w; f; c/�N HN .T; zb
0; w; f; c/:
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Proof It is enough to show the result for one generating oriented C –move � D .0123/.
By local inspection one checks that ˛zb0.R.P // D ˛zb.R.P //C 1, so c�

N
.T; zb0/ D

�N c�
N
.T; zb/. On the other hand, using Proposition 7.2, the factorization .0123/ D

.23/ � .12/ � .01/, and the relation c0 C c1 C c2 D 1, we see that � changes the
unnormalized QH state sum by �c1

N
�

c2

N
�

c0

N
D �N . Hence the two sign variations are

equal.

Lemma 8.8 For any change of weak branching zb! zb0 induced by one circuit move
along a circuit 
 we have

HN .T; zb; w; f; c/�N �
hc.
 /
N

HN .T; zb
0; w; f; c/;

where hc is the bulk c–weight of P . In particular, HN .P/ has no sign anomaly if
hc D 0.

Proof Let us realize the circuit move in terms of N–graphs. By the third identity of
Proposition 7.2 the move changes the state sum by one factor �c0

N
for each crossing

of 
 . It is easy to check that their product computes hc.
 /. On the other hand
˛zb0.R.P //D ˛zb.R.P //, so that c�

N
.T; zb0/D c�

N
.T; zb/.

9 Examples

In this section we describe the quantum hyperbolic invariants of the figure-eight knot
complement, its sister, and the complement of the knot 52 .

We give also some samples of numerical computations obtained by using Maple, which
are part of our current analytical and numerical exploration of the QHI. At first we
quote that they corroborate the invariance of the QH state sums with respect to the
choice of flattenings or charges having the same weights. In the case of the sister
manifold, they confirm also the invariance of the QH state sums supported by weakly
branched triangulations. Moreover, the numerical computations that we present below
are proving:

� The actual dependence of the invariants on the weights (and not only on the
characters �).

� This dependence persists as N !1.

� For some weights the invariants seem to grow exponentially with N , and yield
instances of the volume conjecture, and for some other weights they do not.
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Other interesting phenomena happen, that deserve to be understood. For instance, in
the case of the complements of the knots 41 and 52 , it appears that the asymptotic
behavior of the absolute values of the invariants do not depend on the values on the
meridian of the charge weights or the flattening weights.

9A Notations

Let .�; b; w; f; c/ be a quantum 3–simplex. Put dk WD fk ��j ck , k 2 Z=3Z. We
call dk an edge color. In order to simplify the formulas we denote the N th roots of
the cross ratios wk by bold letters wk (rather than w0

k
, as we did in (14)), and call

them q–shape parameters. So

wk WD exp
�

1

N
.log.wk/C� i.N C 1/dk/

�
:

For any cusped manifold M and any QH triangulation T of M , we have the tetrahedral
and edge relations (see (15), (22) and (25))X

kD0;1;2

.log.wk/C� idk/D��b � i;
X

E!e

�E.log.w.E//C� id.E//D�2� i;

and Y
kD0;1;2

wk D e��b� i=N ;
Y

E!e

w.E/�E D e�2�i=N ;

where, as usual, d.E/D dk and w.E/Dwk if E is the edge Ek or the opposite edge
of a quantum 3–simplex .�; b; w; f; c/ of T , and �E WD �b . We denote by GN .T; zb/

the variety thus defined by the q–shape parameters, and call it the QH gluing variety
(NB: it coincides with the variety G.T; zb; c/N of Section 3B; to simplify notations,
here we drop the reference to the charge c ).

As usual, denote by V a compact 3–manifold with one torus boundary compo-
nent such that M is diffeomorphic to the interior of V . We compute the invariant
HN .V; �; kf ; kc ; hf ; hc/ by means of the function H0

N
.T; zb; c/ on GN .T; zb/ intro-

duced after Definition 3.5. As H0
N
.T; zb; c/ is formulated in terms of q–shape parameters

and charges, we express equivalently HN .V;�; kf; kc ; hf; hc/ as HN .V;�; �; kc ; h; hc/,
using the classes � and h obtained from the flattening weights kf and hf by replacing
the flattenings fk by the edge colors dk in the respective formulas (see Definition 4.10,
and (26) for � ). Clearly �D kf �� ikc and hD hcChf . We call � and h the reduced
boundary and bulk weights. By (1) and (28) one has the compatibility relations

(69) �.a/D dw.a/ mod i�Z; .�.a/� dw.a//= i� D ��.h/.a/ mod 2Z

for all a 2H1.@V IZ/.
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We consider triangulations with ordered tetrahedra. We denote by u; v; w : : : (resp.
u; v;w : : :, resp. a; b; c : : :, resp. a0; b0; c0 : : :) the triples of cross ratios (resp. q–shape
parameters, resp. edge colors, resp. charges) of the tetrahedra, in the same order.

9B The figure-eight knot complement

The Epstein–Penner decomposition of M is an ideal triangulation T having a branching
b and two tetrahedra, with opposite b–orientations. We showed the dual spine in
Figure 6. We denote by �0 the tetrahedron with positive b–orientation. In [5] we
described the flattenings at positive points of the gluing variety G.T; b/, as well as the
charges and the QH state sums carried by .T; b/.

9B1 The QH gluing variety The gluing variety G.T; b/ is the irreducible plane
curve with coordinates .u0; v0/ and defining equation u1u2

2
v�2

0
v�1

1
D 1, which may

be written as u2
0
v2

0
D .1�u0/.1� v0/ (as usual uiC1 D 1=.1�ui/ and similarly for

the vi ). The point .e� i=3; e��i=3/ realizes the complete hyperbolic structure. Let l

and m be the canonical longitude and the meridian of the figure-eight knot, and let
.u0; v0/ 2G.T; b/. The dilation factors of the holonomy � WD �.u0; v0/ are given by

holl.�/D u2
0u�2

2 D
u4

0

.1�u0/2
; holm.�/D u2v2 D

.u0� 1/.v0� 1/

u0v0

:

The tetrahedral and edge relations between q–shape parameters are

u0u1u2 D e��i=N ; v0v1v2 D eC�i=N ;

u1u2
2v�2

0 v�1
1 D e�2�i=N ; u1u2

0v�2
2 v�1

1 D e�2� i=N :

Together with the identities .uiC1/
N D 1=.1� .ui/

N / and .viC1/
N D 1=.1� .vi/

N /,
these relations define GN .T; b/. Using the tetrahedral relations it is easy to see that
the two edge relations are equivalent. Recall the reduced weights h and � introduced
in Section 9A. By (69) we have

(70) u2
0u�2

2 D e�.l/=NC�ih.l/; u2v2 D e�.m/=NC�ih.m/:

As M is a knot complement, the bulk weight h is determined by � , and similarly
hc is determined by kc . Moreover, h.l/D 0, so h is nonzero if and only if h.m/D

a2C b2 D 1 mod 2.

Over the point .e� i=3; e�� i=3/ we have �.m/ 2 � iZ and �.l/ 2 2� iZ, and the
tetrahedral relations, the edge relations, and the compatibility relations with � imply
the following expressions of the edge colors ak and bk in terms of a0 and �W a2 D
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�2� a0� a1 , b2 D 2� b0� b1 , and

(71) a1 D�2a0C
�.l/

2� i
� 2; b0 D

�.m/

� i
� a0; b1 D 2a0�

2�.m/

� i
�
�.l/

2� i
C 2:

For points .u; v/ 2GN .T; b/ lying over a sufficiently small neighborhood of the point
.e� i=3; e�� i=3/ 2 G.T; b/, the same expressions are valid if one replaces �. � /=� i

with .�. � /� log.hol�.�///=� i .

Similarly the charges a0
k

and b0
k

are given by

(72) a01D�2a00C
kc.l/

2
C1; b00Da00�kc.m/; b01D�2a00C2kc.m/C

kc.l/

2
C1:

Let M 0 be a closed hyperbolic .p; q/–Dehn filling of M represented by .u0; v0/ 2

G.T; b/ in a small neighborhood of .e�i=3; e��i=3/. The holonomy � factors through
the quotient map �1.M /! �1.M

0/ to define the holonomy �0 of M 0 . One has

(73) p log.holm.�0//C q log.holl.�
0//D 2� i;

and letting r , s2Z be such that ps�qrD1, the reduced weight � satisfies �.mplq/D

0 if and only if

(74) a1 D r � 2� 2a0; b0 D�2s� a0; b1 D 2� r C 4sC 2a0:

Similar formulas express the identity kc.m
plq/D 0.

9B2 The state sum formulas Recall the notations of Section 3A2. For any .u; v/ 2
GN .T; b/ and any charge c on T , the QH state sum

(75) H0N .T; b; c/.u; v/

D .u
�a0

1

0
u

a0
0

1
v
�b0

1

0
v

b0
0

1
/

N�1
2
Œv0�g.u0/

g.v0/

N�1X
˛;ˇD0

�ˇ
2�˛2 !.u0;u

�1
1
jN �ˇ/

!.v0=�; v
�1
1
jN �˛/

computes the invariant HN .V; �; �; kc ; h; hc/, and defines a (nonconstant) rational
function on GN .T; b/. By a surgery theorem proved in [5], at points .u; v/ where �
and kc satisfy �.mplq/D kc.m

plq/D 0 as above, HN .V; �; �; kc ; h; hc/ coincides
with the N th quantum hyperbolic invariant of the closed manifold .M 0;L; �0/, where
L is the surgery core.

9B3 Some numerical results Denote by �.A;B/ WD �.u0.A;B/; v0.A;B// the
holonomy of M given by the shape parameter u0.A;B/ WD e�i=3CAC iB and the
solution v0.A;B/ of the gluing equation u0.A;B/

2v0.A;B/
2� .1�u0.A;B//.1�

v0.A;B// D 0 such that u0.A;B/ has positive imaginary part and v0.A;B/ has
negative imaginary part. So �.0; 0/ is the hyperbolic holonomy.
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Recall that h and hc are determined by � and kc respectively. In the following table
we present some values of jH15.V; �.A;B/; �; kc ; h; hc/j up to 4 digits, where .A;B/
and kc.l/ are as indicated on the top and the left of the corresponding column and row
(.A;B/.2;3/ WD .0:06734378 : : : ;�:42400885 : : :/ defines the holonomy of the .2; 3/–
Dehn filling of M ), and we put �.m/D kc.m/D 0 and �.l/D kf .l/�� ikc.l/, where
kf .l/DL.ŒwIf �/.l/ has the collection of shape parameters w WDw.A;B/ determined
by .u0.A;B/; v0.A;B//, and a (compatible) flattening f such that L.Œw.0; 0/If �/D

�2� i at the complete hyperbolic structure.

.0; 0/ .1; 0/ .1; 0:5/ .1; 1/ .A;B/.2;3/

6 2:5587 2:6504 2:0018 1:6118 5:0307

4 58:5466 58:3761 47:0533 39:9892 95:0326

2 2:1356 2:0279 1:9058 1:8138 2:7491

0 77:4851 77:5401 77:5885 77:6997 76:4850

�2 0:1118 0:1620 0:1672 0:1746 0:0650

�4 77:4851 77:5401 95:8738 112:7032 47:4247

�6 2:1356 2:0279 2:7647 3:5183 1:0549

�8 58:5466 58:3761 89:7752 124:5239 21:8881

�10 2:5587 2:6504 4:2536 6:1199 0:7577

�12 33:2019 33:1224 63:6250 104:4917 7:4274

Table 3: Entries accurate to four decimal places

Note that the table shows that the invariants depend on the character and the weights.
Also, the first two columns show a symmetry about kc.l/D�2 (that is, when .A;B/D
.0; 0/, about �.l/D 0), corresponding to a change of orientation of l . The dominant
rows are for kc.l/D 0 or �4 (that is, when .A;B/D .0; 0/, about �.l/D�2� i or
2� i ).

Now consider the behavior of jHN .V; �.A;B/; �; kc ; h; hc/j as N !C1. Put

GN .�.l// WD � log
�
jHNC2.V; �.0; 0/; �; kc ; h; hc/j=jHN .V; �.0; 0/; �; kc ; h; hc/j

�
;

where the arguments are as above except that we fix .A;B/ D .0; 0/ (the complete
hyperbolic structure). Let H00

N
.T; b; c/ D H0

N
.T; b; c/=.u�a0

1
0

ua0
0

1
v�b0

1
0

vb0
0

1
/.N�1/=2 ,

where the denominator is the product of the matrix dilogarithm symmetrization factors.
Note that

GN WD � log
�
jH00NC2.T; b; c/.u; v/j=jH

00
N .T; b; c/.u; v/j

�
and GN .�.l// are equivalent as N !C1. The following table gives a sample of
values of G151 , where �.l/ takes the values indicated in the first row.
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�6� i �4� i �2� i 0 2� i

G151 2:03069 �0:49036 2:02968 0:48922 2:02968

Table 4: Entries accurate to five decimal places

Note the dependence on the weights persists as N�1. Further numerical computations
show that GN .˙2� i/ converges to Vol.M /� 2:02988321 : : : as N � 1.

9C The complement of the knot 52

The ideal triangulation T of M with smallest complexity has three tetrahedra �0 ,
�1 , �2 , and it has a branching b that gives each tetrahedron the negative branching
orientation. This triangulation is the one provided by SnapPea; we keep the same
ordering of tetrahedra. The branching b is determined by the ordering it induces on the
set of vertices of �0 , which is obtained from that provided by SnapPea by applying
the permutation .v0; v1; v2; v3/ 7! .v1; v2; v0; v3/.

9C1 The QH gluing variety The edge relations of .T; b/ are u0u2v
2
0
w1w2 D 1,

u1u2v2v
2
1
w0w1 D 1, and u0u1v2w0w2 D 1. By the tetrahedral relations they reduce

to two independent relations, so the gluing variety of .T; b/ is the irreducible curve in
C3
� with coordinates .u0; v0; w0/ and defining equations

u1v
�2
0 w0 D 1; u2v

�1
2 w1 D 1:

The complete hyperbolic structure is realized by the point .uhyp; vhyp; whyp/ given up
to 8 digits by (the imaginary parts are negative since all tetrahedra have the negative
branching orientation)

uhyp � 0:21507987� i1:30714121;

vhyp � 0:33764102� i0:56227951;

whyp � 0:33764102� i0:56227951:

Since G.T; b/ is irreducible and .u�1
hyp; v

�1
hyp; w

�1
hyp/ is a positive point, it is a rich

variety. Let l and m be the canonical longitude and the meridian of the knot, and let
.u0; v0; w0/ 2G.T; b/. The dilation factors of the holonomy � WD �.u0; v0; w0/ are
given by

holl.�/D u2
1u�3

2 v2v
�2
0 w1 D

u3
0
.v0� 1/

.1�u0/2.u0� 1/3v3
0
.1�w0/

;

holm.�/D u1v
�1
0 D

1

.1�u0/v0

:
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The tetrahedral and edges relations between q–shape parameters are (note that the
exponents �1 on the left of the edge relations are due to the negative branching
orientation of the tetrahedra)

u0u1u2 D eC�i=N ; .u0u2v2
0w1w2/

�1
D e�2�i=N ;

v0v1v2 D eC�i=N ; .u1u2v2v2
1w0w1/

�1
D e�2�i=N ;

w0w1w2 D eC�i=N ; .u0u1v2w0w2/
�1
D e�2�i=N :

Together with the identity .uiC1/
N D 1=.1�.ui/

N / and the similar ones for the .vi/
N

and the .wi/
N , these relations define GN .T; b/. Using the tetrahedral relations it

is easy to see that any of the edge relations is a consequence of the other two. By
definition, the weights satisfy

u2
1u�3

2 v2v�2
0 w1 D ek.l/=NC�ih.l/; u1v�1

0 D ek.m/=NC�ih.m/:

As M is a knot complement, the bulk weight h is determined by � , and similarly hc is
determined by kc . Moreover h.l/D0, so h is nonzero if and only if h.m/Da1Cb0D1

mod 2.

At the complete hyperbolic structure we have �.m/ 2 � iZ and �.l/ 2 2� iZ, and the
tetrahedral relations, the edge relations, and the compatibility relations with � imply
the following expressions of the edge colors ak , bk and ck , in terms of a0 , a1 and � :

a2 D 2�a0�a1;

b0 D a1�
�.m/

� i
; b1 D�4C2a0Ca1C2

�.m/

� i
�
�.l/

2� i
; b2 D 2�b0�b1;

c0 D�4Ca1�2
�.m/

� i
; c1 D�a0�a1�

�.m/

� i
C
�.l/

2� i
; c2 D 2�c0�c1:

If .u; v;w/2GN .T; b/ lies over a point in a small neighborhood of .uhyp; vhyp; whyp/2

G.T; b/, then the same expressions are valid if one replaces �. � /=� i with .�. � /�
log.hol�.�///=� i .

Similarly, the charges a0
k

, b0
k

and c0
k

are given by

b00 D a01� kc.m/; b01 D�1C 2a00C a01C 2kc.m/� kc.l/=2;

c00 D a01� 2kc.m/; c01 D 1� a00� a01� kc.m/C kc.l/=2:

9C2 The state sum formulas For any .u; v;w/ 2G.T; b/ and any charge c on T

we have (here we denote by RN .�;w/ the tensor RN;�b;c.w0;w1//
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H0N .T; b; c/.u; v;w/

D

N�1X
a;:::;fD0

RN .�
0;u/

d;a
b;c

RN .�
1; v/f;be;aRN .�

2;w/
c;e
d;f

D .u
�a0

1

0
u

a0
0

1
v
�b0

1

0
v

b0
0

1
w
�c0

1

0
w

c0
0

1
/.N�1/=2 Œu0� Œv0� Œw0�g.1/

3

g.u0/g.v0/g.w0/

�

N�1X
b;c;dD0

�.bCc�d/.cCd/

!.u0=�;u
�1
1
j b� d/!.v0=�; v

�1
1
j d/!.w0=�;w

�1
1
j d � c/

:

The QH state sum H0
N
.T; b; c/.u; v;w/ computes the invariant HN .V; �; �; kc ; h; hc/

and defines a (nonconstant) rational function on GN .T; b/. As for the figure-eight knot
complement, and using the same notations, at a point .u; v;w/ such that �.mplq/D

kc.m
plq/ D 0, HN .V; �; �; kc ; h; hc/ coincides with the N th quantum hyperbolic

invariant of the triple .M 0;L; �0/ obtained by hyperbolic .p; q/–Dehn filling of M .

9C3 Some numerical results Keeping the same notations as in Section 9B3, we
present below some values of jH15.V; �.A;B/; �; kc ; h; hc/j up to 4 digits, and
some values of G121 . For each of the shape parameter u0.A;B/ WD uhyp C AC

iB that we consider, with the exception of u0.0; 0/, there are two distinct points
.u0.A;B/; v0.A;B/; w0.A;B//˙ 2G.T; b/ such that both u0.A;B/, v0.A;B/ and
w0.A;B/ have negative imaginary parts. We take again �.m/ D kc.m/ D 0, but
now kc.l/ D 0 and hence �.l/ D kf .l/ D L.ŒwIf �/.l/, where w WD w˙.A;B/ is
determined by .u0.A;B/; v0.A;B/; w0.A;B//˙ , and f is a (compatible) flattening
such that, at the complete hyperbolic structure, k0

f
WDL.Œw.0; 0/If �/ takes the value

indicated on the left of each row.

.0; 0/ .�0:5; 0:5/C .0:5; 0:2/C .0:7; 0:3/C .0:7; 0:3/�

�6� i 428:2809 437:3709 474:4262 447:6316 488:3855

�4� i 55:2674 70:5945 65:7471 90:4874 68:6357

�2� i 470:6170 487:7969 518:2639 450:2483 532:0331

0 71:9995 74:9737 76:7206 96:6462 77:9037

2� i 470:6170 494:8640 515:6044 416:9562 527:6381

4� i 55:2674 45:3442 62:4615 109:4872 65:4050

6� i 428:2809 456:9464 466:5497 356:3560 476:1700

Table 5: Entries accurate to four decimal places

Further numerical computations show that GN .˙2� i/ converges as N � 1 to
Vol.M /� 2:8281220883 : : :.
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�6� i �4� i �2� i 0 2� i

G121 2:85352 0:20745 2:83431 0:15541 2:83431

Table 6: Entries accurate to five decimal places

9D The sister of the figure-eight knot complement

This cusped manifold (m003 in SnapPea’s census) is obtained by .5; 1/ Dehn surgery
on a component of the Whitehead link; see [29; 36]. The figure-eight knot complement
and its sister M have the smallest volume of any orientable, cusped hyperbolic 3–
manifold. Hyperbolic Dehn surgery on M induced by .5; 1/ and .5; 2/ Dehn surgeries
on the Whitehead link yields the Fomenko–Matveev–Weeks manifold, which has
the smallest volume of any closed orientable hyperbolic 3–manifold (approximately
0:9427 : : :) [20].

The Epstein–Penner decomposition of M is the ideal triangulation T with two tetrahe-
dra considered in Example 2.12 and 4.11. We have already described a weak branching
zb on T where both tetrahedra have positive branching orientations, and computed the
charges, the flattenings at positive points of the gluing variety G.T; zb/, and the QH
state sums carried by .T; zb/.

9D1 The QH gluing variety The edge relations of .T; zb/ are u0u2
1
v0v

2
1
D 1 and

u0u2
2
v0v

2
2
D 1. By the tetrahedral relations they are equivalent, so the gluing variety

G.T; zb/ is the irreducible plane curve with coordinates .u0; v0/ and defining equation
u0u2

1
v0v

2
1
D 1. The point .e�i=3; e� i=3/ realizes the complete hyperbolic structure

(thus �0 and �1 are regular ideal tetrahedra, as in the case of the figure-eight knot
complement). There is a basis .l;m/ of �1.@ xM / where the dilation factors of the
holonomy � WD �.u0; v0/ are given by

(76)

holl.�/D u0u1v
�1
0 v�1

1 D
u0.1� v0/

.1�u0/v0

;

holm.�/D u�2
1 v2

2 D
.1�u0/

2.v0� 1/2

v2
0

:

The tetrahedral and edges relations between q–shape parameters are

u0u1u2 D e��i=N ; v0v1v2 D e��i=N ;

u0u2
1v0v2

1 D e�2�i=N ; u0u2
2v0v2

2 D e�2�i=N :

Together with the identity .uiC1/
N D 1=.1�.ui/

N / and the similar one for the .vi/
N ,

these relations define GN .T; zb/. Using the tetrahedral relations it is easy to see that
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the two edge relations are equivalent. The reduced weights satisfy the compatibility
relations

u0u1v�1
0 v�1

1 D ek.l/=NC� ih.l/; u�2
1 v2

2 D ek.m/=NC� ih.m/:

Here we note that H1.M IZ/ Š Z˚ Z=5Z, and that the curve m or l generates
H1.M IZ=2Z/ Š Z=2Z. So the bulk weight h is determined by � , and similarly
hc is determined by kc . Moreover h.m/D 0 mod 2, so h is nonzero if and only if
h.l/D a0C a1C b0C b1 D a2C b2 D 1 mod 2.

At the complete hyperbolic structure we see that �.l/ 2 � iZ and �.m/ 2 2� iZ, and
the tetrahedral relations, the edge relations, and the compatibility relations with � imply
the following expressions of the edge colors ak and bk in terms of a1 and � :

(77)

a0 D
�.l/

� i
�
�.m/

2� i
� 2a1� 2; b0 D

�.l/

� i
�

3

2

�.m/

� i
� 2a1� 2;

b1 D�
�.l/

� i
C
�.m/

� i
C a1;

a2 D a1�
�.l/

� i
C
�.m/

2� i
; b2 D

�.m/

2� i
C a1:

The same expressions are valid if one replaces �. � /=� i with .�. � /� log.hol�.�///=� i

for points .u; v/ 2 GN .T; zb/ lying over a small neighborhood of .e�i=3; e� i=3/ 2

G.T; zb/.

9D2 The state sum formulas For any .u; v/ 2 GN .T; zb/ and any charge c on T

we have (again we denote by RN .�;w/ the tensor RN;�b;c.w0;w1/)

H0N .T; zb; c/.u; v/

D

N�1X
i;j ;k;l;I;JD0

RN .�
0;u/

i;j

k;l
RN .�

1; v/
I;J
j ;i .Q

2/lIQ
k
J

D .u
�a0

1

0
u

a0
0

1
v
�b0

1

0
v

b0
0

1
/.N�1/=2 g.u0/g.v0/

N�N g.1/2

�

N�1X
i;j ;k;ID0

�.iCk/.jCI /�ikC.j2CI 2/=2!.u0;u
�1
1 j i � k/!.v0; v

�1
1 j I � j /:

The QH state sum H0
N
.T; zb; c/.u; v/ computes the invariant HN .V; �; �; kc ; h; hc/

and defines a (nonconstant) rational function on GN .T; zb/. As for the previous ex-
amples, at a point .u; v/ such that �.mplq/D kc.m

plq/D 0, HN .V; �; �; kc ; h; hc/

coincides with the N th quantum hyperbolic invariant of the triple .M 0;L; �0/ obtained
by hyperbolic .p; q/–Dehn filling of M .
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9D3 Some numerical results We keep the same notations as in Section 9B3 and we
take again �.m/ D kc.m/ D 0, but now both u0.A;B/ and v0.A;B/ have positive
imaginary part, and the value of �.l/ is given by kc.l/ (on the left of each row),
w.A;B/, and a flattening f such that L.Œw.0; 0/If �/ D 0. The following table
presents values of jH15.V; �.A;B/; �; kc ; h; hc/j up to 4 digits.

.0; 0/ .1; 0/ .�1; 0/ .0; 1/ .1; 1/

2 4:7755 5:4995 4:5346 3:1943 2:6295

1 173:2621 182:5736 173:3850 139:8353 126:3516

0 0:2500 0:6231 0:3624 0:2367 0:1498

�1 173:2621 114:3211 173:3850 214:7305 236:1129

�2 4:7755 6:8535 4:5346 7:3011 9:3949

Table 7: Entries accurate to four decimal places
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