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1. Introduction and statements of the main results

By a manifold we shall mean a compact connected smooth manifold
without boundary; by an algebraic variety an affine real algebraic variety.
An algebraic manifold will be a compact connected non-singular algebraic
variety. Of course we may consider any algebraic variety endowed with
the fine (Euclidean) topology and an algebraic manifold simply as a
manifold.

For any topological space X let us denote by H*ch(X) the graded
subring of H*(V) corresponding to H(a)*(V) by the Poincaré duality D:
H*(V)~H*(V).

For any manifold M let us denote by T*(M) the graded subring of
H*(M) generated by the union of H*ch(M) and the set of classes

representable by submanifolds of M.
Finally, for any algebraic manifold V let us denote by H(a)k(V) the

subgroup of Hk(V)=Hk(V; Z2) generated by the set of algebraic sub-
varieties of V of dimension k (see [BH]) and by H*(a)(V) the graded
subring of H*(V) corresponding to H(a)*(V) by the Poincaré duality D:
H*(V) ~ H*(V).

The main result of this note is the following:

THEOREM 1: For each d11, there exists a manifold V of dimension d and
a class a E H2(V) such that for every homeomorphism h : V’ ~ V between
V and an algebraic manifold V’, the class h*(a) does not belong to
H2(a)(V’).

By Tognoli’s proof of the Nash conjecture ([Tl]), every manifold M is
diffeomorphic to an algebraic manifold M’. It is then a natural problem
to study which smooth (or continuous) extra-structures over M can be
realized algebraically with respect to a suitable choice of M’. There are
several positive results in this direction (see [T2] for general references
about these topics); for example:
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(a) It is true a covariant version of the Nash conjecture with respect to
any smooth action of a compact Lie group on M (Palais).

(b) There exists M’ such that every continuous vector bundle over M’
is isomorphic to a strongly algebraic one (that is, an algebraic vector
bundle with A-coherent sections sheaf) (see the number 3 below).

(c) There exists M’ such that T*(M’) is in fact a subring of H*(a)(M’).
Notice, in particular, that this implies H*(a)(M’) = H*(M’) if dim M’

 6 (see [Tm]) and, in general, H/a)( M’) = H1(M’). On the other hand,
there are examples of algebraic manifolds V such that H1(a)(V) ~ H1(V)
([BT]). Theorem 1 says that, in general, there does not exist an M’

homeomorphic to a given M such that H*(a)(M’)=H*(M’). Actually, a
direct proof of this result, which is less precise than theorem 1 but in fact
motivated this note, is slightly simpler (see Remark 3.3).

The following Theorem 2 is an analogue of Theorem 1 in terms of
smooth unoriented bordism:

THEOREM 2: For each d11, there exist a manifold V of dimension d, a
manifold N and a map f : N - V such that for every homeomorphism g:
V ~ V’ between V and an algebraic manifold V’, g 0 f : N~ V’ does not

represent the same smooth unoriented bordism class of a regular rational
map r: P ~ V’, P being a non singular algebraic variety.

Recall that, on the other hand, every manifold is cobordant to a

non-singular algebraic variety. Then, a fortiori, we are able to produce
counterexamples to the following problem: Let N - M be a (smooth)

f
map between manifolds. Does there exist a diagram

such that: (i) f ’ is a regular rational map between algebraic manifolds;
(ii) h and g are homeomorphisms; (iii) f’ approximates go fo h -1 ?

Notice that a positive answer to this last question would have been
crucial to solve completely (in some sense) the problem of giving a
topological characterization of real algebraic sets (see [AK1], [AK2]). In
fact, the strongest result about this problem at the moment (see [AK2])
asserts roughly speaking that a (compact) polyhedron of dimension n is
homeomorphic to a real algebraic set if it admits a "good" topological
resolution of singularities and, moreover, the above approximation prob-
lem has positive answer at least for all manifolds of dimension  n.

Unfortunately it is false for n  11.
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Section 3 is largely inspired to the results and the methods of [BS],
[BH] and [G]; for this reason, whenever the proof of any statement of
this section is simply obtained by adapting one of these quoted papers,
we shall only sketch it and give precise reference.

The result of this paper has been announced in [BD].

2. A topological result

It is rather easy to see that, in general, for a given manifold M,
H*ch(M) ~ H*(M) (see, for example, M = S3). Actually, for our purpo-
ses, we need such examples for the second cohomology group.

2.1. PROPOSITION: For each d  Il there exist a manifold V of dimension d
and a class a E H2(V) which does not belong to H2ch(V).

Let K = K( Z2, 2) be an Eilenberg-McLane space, A its 5-skeleton,
u ~ H2(K) the fundamental class, v = i*(u), where i : A - K is the
inclusion.

2.2. LEMMA : v does not belong to H?h(A).

PROOF: First of all recall that i * : Hl(K) ~ H’(A) is an isomorphism for
i  4 and is injective for i = 5. Assume that v G H2ch(A). Since H1(A) = 0,
it is necessarily of the form v =f*(w2), where f is a continuous map f:
A ~ BO( k ) and wj denotes the j-th Stiefel-Whitney class of the universal
bundle. By an iterated application of the Wu formulas, one has

By applying f * to both sides of this equality, one obtains

Note that Sq1(f*(w4)) = 0; in fact, H4(A) = Z2 is generated by V2;
hence, if f*(w4) = v2, then Sqlv2 = 0 (by the Cartan’s formula for Steen-
rod squares). At last, by using the injectivity of i * : H5(K) ~ H5(A), we
have the relation

This is impossible, because we know after Serre’s computation ([S])
that H*(K) is the polynomial ring over Z2 generated by all the SqI(u),
where 1 = (i1, ... , ik) is an admissible sequence of excess e(I) less than 2
(that is ij  2ij+1 1 for j  k and e(I)=2i1-03A3JiJ2). Note that in

particular Sq2Sq1u, Sq1 u and u belong to that set of generators. The
lemma is proved. D
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PROOF oF 2.1: We shall use a standard trick (see, for example, [Tm]).
Realize the 5-skeleton A of K as a subpolyhedron of IR d (this is possible
since d  11). Let Q be any closed neighbourhood of A in Rd such that Q
is a smooth manifold with boundary and A is a retract of Q (note that A
can be assumed to be connected). Take the smooth double V of Q; a
retraction r: Q - A induces naturally a map p: V ~ A, such that j* o p*
is the identity on H*(A) ( j is the inclusion of A in V); V and a = p*(v)
satisfy the statements of 2.1. D

3. A theorem of Grothendieck

Let X be a complex nonsingular connected quasi projective variety. Let
K(X) be the Grothendieck group constructed with the coherent (alge-
braic) sheaves over X and Kl(X) be that constructed with the locally free
sheaves over X (that is, the "algebraic vector bundles over X ") (see [BS],
pag. 105). The natural homomorphism e: Kl(X) ~ K(X) is in fact an
isomorphism (Theorem 2 of [BS]), so that it is possible to extend the
definition of the Chern classes to any coherent sheaf (naturally consid-
ered as an element of K(X)) and, moreover, every such a class cl()
belongs to the Chow ring A(X) of algebraic cycles of X up to rational
equivalence (see [BS] and [G]).

Associate to every subvariety Y of X: (i) 03B8Y ~ K(X); (ii) the class
ClX(Y) in A(X). A very useful theorem of Grothendieck asserts: If p is
the codimension of Y in X, then cp( Dy) = (-1)p-1( p - 1)!ClX(Y). (For
the proof see [G] p. 151 or [H] p. 53.) We want to outline a similar theory
in the real case.
A good category of sheaves for this purpose is that of A-coherent

sheaves. These are defined in [T3] (Section 4) and [BrT], to which we
refer for their basic properties.

By definition, An A-coherent sheaffiover an algebraic manifold is a
coherent algebraic sheaf such that there exists an exact sequence of
sheaves

In the complex case the category of A-coherent sheaves coincides with
that of coherent sheaves (by the theorem A of Cartan-Serre). On the
contrary, in the real case, there exist even locally free sheaves (over R",
n  2) which are not A-coherent (see [T3], pp. 40-41).

Let us denote by W the set of all A-coherent sheaves over V (up to
isomorphism) and by Y the set of all locally free A-coherent sheaves over
V. By the usual construction (see [BS], p. 105) we can define the
Grothendieck groups K(V) of V with basis  and K(V) with basis Y.
The inclusion  ~  induces a natural homomorphism E : K(V) ~
K(V). Our first claim is the following:
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Claim: E is an isomorphism

One can prove this claim by following step by step that of [BS] in the
complex case (pp. 105-108). For the sake of clarity we shall use the
convention that, in the following, lemma n’ will be the analogue of
lemma n in [BS].

LEMMA 8’ : Let 0 ~  ~ L’ - L - 0 be an exact sequence, where 9 ~ 
and L’, L EY. Then 9 c- Y.

LEMMA 9’ : Let 0 ~  ~ Lp ~ ... ~ L0 ~  ~ 0 be an exact sequence
where , ~ and LJ~. If p  dim V - 1, then 9 (-=Y.

The proofs of these lemmas, that is of the fact that 9 is in both cases
locally free, can be achieved by repeating " verbatim" the proofs of the
corresponding Lemmas 8 and 9 of [BS].

LEMMA 10’ : Every f E dis a quotient of a sheaf L E Y.

PROOF: Since any OP is clearly A-coherent, the lemma follows trivially
from the definition of A-coherent sheaves.

LEMMA 10’ bis: Every ~ has a exact resolution (a priori not finite)
... ~Lq~Lq-1 ~...~L0~~0 where LJ ~ .

PROOF: It follows from Lemma 10’ and the fact that, if  is any

morphism of A-coherent sheaves, then ker ~ (and also ~() and coker
T) belongs to (see [T3], p. 44).

As an immediate consequence of the previous lemma we get:

COROLLARY: Every ~ admits an exact sequence L: 0 ~ L,, ... - Lo
~~ 0 where Lj EY.

For every sequence L as before, define y( L) = 03A3(-1) pL p E K!e(V), In
order to prove that y actually induces the inverse of E we must prove:

LEMMA 11’: 03B3(L) depends only on .

LEMMA 12’: 03B3(L) is an additive function of .

The proof of these lemmas works formally as in [BS]. It is enough to
notice that the direct sum of sheaves in  (resp. in Y) clearly belongs to
 (resp. to A and to apply several times the properties of morphisms
between A-coherent sheaves recalled in the proof of Lemma 10’bis. In
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particular this implies that the sheaf (a, c) of the technical Lemma 13 of
[BS] belongs to W (here we assume that a, , c ~  and we look for
L E 2).

Thus the claim is proved and we are able (by the Whitney sum
formula) to extend the definition of the Stiefel-Whitney classes to any
A-coherent sheaf over V.

Recall that, if Y is a subvariety of V, then Oy belongs to  (see [T3] p.
44, Corollary 4 and [BrT] Theorem 1 and Lemma 2 of Section 2); then in
particular we can define the Stiefel Whitney classes wJ(03B8Y).
We recall now some further properties of W, concerning the good

behaviour of  with respect to the operation of complexification.
(a) Assume V c R" and let V c C n be the complexification of V (that

is the smallest complex affine subvariety of C n containing V).

CONVENTION: By an open neighbourhood U of V in Ù we mean an open
non singular neighbourhood of the form U =  - S, where S is a closed
set of h (in the Zariski topology) defined over R.
Let ~; then for any exact sequence 0 "v’ 0’ v -,î- 0 there exist an

open neighbourhood U of V- in V and an exact sequence of coherent
algebraic sheaves over U 0’ - 03B8rU~~ 0, where à extends a. Any such

 is called a complexification of . Two such complexifications of 
coincide over an open neighbourhood of V in Ù and for each x E V we
have X 0 C (see [T3] Section 4b, or [BrT] Section 3).

«,

(b) For every exact sequence of A-coherent sheaves over fI ~ 2

~ 
... îp (eventually p = 2) there exist an open neighbourhood U of V

in h and an exact sequence 1~2~ ... - îp, where J is a complexi-
fication of J defined over U and à. extends a. (the references are the
same as the previous point (a)).
We can state now the main result of this section.
Let Y be a subvariety of V ; let us associate to Y Oy E K(V) and the

homology class [Y] ~ H(a)*(V).

3.1. PROPOSITION: If the codimension of Y in V is 2, then D([Y]) = w2(03B8Y).

As an immediate corollary one gets

3.2. COROLLARY: For every algebraic manifold V, if z E H2(a)(V), then
z C- H2ch(V).

PROOF OF 3.1: Apply the proof of the Grothendieck theorem as devel-
oped in [H] p. 53 to a suitable open neighbourhood U of V in V (in the
sense of the previous remark (a)) and to the complexification Y of Y in
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U. By using the results of [H] it is not hard to see that in our hypothesis
we can construct a Koszul resolution defined over Il (in particular we
can choose the hypersurfaces f involved in the proof to be defined over
R). This means that we can find a non singular open neighbourhood U of
V in Ù and an A-coherent locally free resolution of 8Y:

which extends (in the sense of the properties of A-coherent sheaves
recalled above) to a locally free resolution of sheaves defined over U:

such that Grothendieck’s formula ClU()= -c2(03B8), if computed by
means of ( E ), actually holds in AR(U), that is in the Chow ring of the
cycles of U defined over R, up to rational equivalence over R. Recall that
every Chern class cl(LJ) lies in AR(U) and in particular also c2(03B8) (see
[BH] pp. 495, 498). On the other hand, let 03C1(c2(03B8)) and p( 1) = [ Y be
the classes of Hd-2(V) defined by the real parts of c2(03B8) and Y
respectively ( d = dim V). Since the Grothendieck’s formula above holds
in AR(U), we have 03C1(c2(03B8))=[Y] (see, for instance, Proposition 5.13 of
[BH]). Finally, it follows immediately from the proposition of p. 498 in
[BH] that W2( Oy) = D03C1(c2(03B8)). The proposition is proved.

3.3. REMARK : If we assume that H2(V)=H(a)2(V), the proof of the
above proposition becomes slightly simpler, because we can avoid to
consider the details of the proof of Grothendieck’s theorem; let (E) be
any resolution of Oy and () any extension of ( E ) in the sense of the
above remarks (a) and (b). Z = c2(03B8) + ClU() can be considered as an
algebraic cycle of U defined over R which represents the zero of A(U).
Let z be the class defined by the real part of Z, z = 03C1(Z) = D-1w2(03B8Y) +
[Y] ~ Hd-2(V); in order to prove that z is zero, it is enough to show that,
for every c E Hd-2(V), Dz U c = 0; moreover, we can assume that c =
D-1([C]), where C is an algebraic subvariety of V of dimension 2. Let C
be the complexification of C in U. By the Chow’s moving lemma (see for
instance [R]) there exists C’ representing the same class as C in AR(U)
such that the intersection Z’C’ (in the sense of algebraic cyles) is
defined. Since Z is zero in A ( U ), Z · C’ = 0; hence Dz U c = D03C1(Z) U
D03C1(C’) = D(03C1(Z · C’)) = 0 (see the proposition of p. 494 in [BH]; actu-
ally, this remark is a particular case of Proposition 5.14 (2) of [BH]).

4. Proof s of the main results and f inal remarks

PROOF OF THEOREM 1: Take V and a as in the proposition 2.1 and apply
2.1 and 3.2.
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PROOF oF THEOREM 2: Take V and a as before and let /3 = D-1a; by
[Tm] /3 = 03B21 + ... + 03B2k, where each 03B2J is represented by a (smooth) map
1;: NJ ~ V and NJ is a manifold. Recall that, for every algebraic manifold
M, a homology class of M is represented by an algebraic subvariety if
and only if it is represented by a regular rational map r: P ~ M, where P
is a (non singular) algebraic variety (see [BT]). If, for every j, there exists
a homeomorphism hJ: V ~ V’J such that hj 0 1;: NJ ~ V’J represents the
same smooth unoriented bordism class of a regular rational map 1j:
PJ ~ Jj’, then a would be in H2ch(V). We end this section with two

conjectures :

CONJECTURE 1: Theorem 1 holds for d  7.

CONJECTURE 2: For every algebraic manifold V, H*(a)(V)=T*(V)~
H*(a)(V).

Note that this last conjecture would imply the following:

for each k  2, there exist a manifold V of dimension d = d(k) and a class
a E Hk(V) such that for every homeomorphism h : V’ ~ V between V and
an algebraic manifold V’, the class h*(03B1) does not belong to Hk(a)(V’).
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