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Abstract

We introduce the (2+ 1)-spacetimes with compact space of gegus 0 andr gravitating
particles which arise by three kinds of construction called: (a)Muekowskian suspensioaf
flat or hyperbolic cone surfaces; (b) thistinguished deformatiomf hyperbolic suspensions;
(c) the patchworkingof suspensions. Similarly to the matter-free case, these spacetimes have nice
properties with respect to the canonical Cosmological Time Function. When the values of the masses
are sufficiently large and the cone points are suitably spaced, the distinguished deformations of
hyperbolic suspensions determine a relevant open subset of the full parameter space; this open subset
is homeomorphic téf x R%~6+2", wherel/ is a non empty open set of the Teichmilller spAEeBy
patchworking of suspensions one can produce examples of spacetimes which are not distinguished
deformations of any hyperbolic suspensions, although they have the same topology and same masses;
in fact, we will guess that they belong to different connected components of the parameter space.
0 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Globally hyperbolic matter-free (2 1)-spacetimes with compact space of gegus 1

and cosmological constant = 0 have been fairly well understood. These spacetimes
can be arranged into classes with respect to the Teichmiuller equivalence which is the
equivalence up to isometry isotopic to the identity. The resulting parameter space of these
universes can be identified with the cotangent bundle of the Teichmiiller pastich is
homeomorphic ta% 6 x R6s—6 wheng > 2, whereB™ denotes the open-dimensional

* Corresponding author.
E-mail addresseshenedett@dm.unipi.it (R. Benedetti), guada@df.unipi.it (E. Guadagnini).

0550-3213/00/$ — see front mattér 2000 Elsevier Science B.V. All rights reserved.
PIl: S0550-3213(00)00484-3



R. Benedetti, E. Guadagnini / Nuclear Physics B 588 (2000) 436—450 437

ball. Two methods are particularly useful to study matter-free spacetimegetimetric-
time-freeapproach, which eventually identifies each spacetime lyeitsnetric holonomy
[9,19] and thecosmologicalapproach which is based on fibrations bgnstant mean
curvaturespace-like surfaces [1,12]. When> 2, the correspondence between these two
approaches is rather implicit. In [4] we have shown that the cano@icsinological Time
Function(CTF), that is the length of time that the events have been in existence, provides a
very good cosmological resolution of the matter-free-2-gravity. For instance, when
g > 2, the asymptotic states associated with the CTF recover and decouple the linear
Lorentz component and the translation part of the geometric holonomy; the ofitoih
the CTF is a real analytic curve connecting an interior point with a point of the Thurston’s
natural boundary of’,; the initial singularity can be accurately described in terms of the
degeneration of the geometry of the level surfaces of CTF (see Section 4 for more details).
It turns out that all matter-free spacetimes are obtained by means of two basic
constructions:
(i) The Minkowskian suspensimf flat or hyperbolic surfaces;
(ii) A distinguished kind of deformation of the hyperbolic suspensions.
The starting point of this paper is the remark that the constructions (i) and (ii) can be
extended to the case of gravitating particleg2+- 1) dimensions, as we are going to
briefly outline.
Let S = H?/G be a compact hyperbolic surface; let the hyperbolic plEfde realized
by the upper-hyperboloid embedded into the Minkowski sgeéié&l. SoG is a torsion-
free discrete subgroup &O" (2, 1) which is isomorphic to the fundamental gromS)
of S§. What we call theMinkowskian suspensioM (S) of S is sometimes also called the
Lorentzian cone of or the Lébell spacetime based 8nin fact, M (S) = I7(0)/ G, where
I7(0) is the chronological future oD} in M2t1. M(S) is a flat spacetime containirjas
a Cauchy surface. Another equivalent way to defings) is the following:S is endowed
with a Riemannian metrig/s? of constant curvature-1; then M(S) is isomorphic to
$x10, oo[ with the metrict?ds? — dr?. Let S be now a hyperbolic surface with conical
singularities (see Section 2 for the precise definition); thatighnot in general a quotient
of H?, the second description @ (S) applies also to its regular past and leads to a
spacetimeM (S) with gravitating particles corresponding to the cone pointS.df S is a
flat torus there are actually two possible notions of Minkowskian suspensi®redding
to static or non-static flat spacetimes, respectively; again these notions can be suitably
extended in the framework of flat surfaces with conical singularities (see Section 3 for
more details about the suspensions).
Let us come to the deformations of hyperbolic suspensionsSefi?/G be as above.
A deformation ofM (S) is a flat spacetime of the forvi = U/ G’ where:
(1) G’ is a subgroup ofSO" (2, 1), isomorphic tor (S), havingG as linear Lorentz
part;
(2) U is a maximalG’-invariant simply connected domain M2 on whichG’ acts
freely and properly discontinuously, is diffeomorphic toM (S) and contains a
Cauchy surface diffeomorphic t
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For a non trivial deformatioty # I+ (0), the initial singularity ofV is non trivial an so on.

It turns out (see [9] and also [4]) that any such a deformatioa M (S, F) is completely
determined by a suitable geometric objgcembedded int¢ called ameasured geodesic
lamination Measured geodesic laminations play a fundamental role in Thurston’s works
on the mapping class groups of surfaces and on the geometrization of 3-manifolds. It is a
rather sophisticated mathematical theory. A good introduction to this theory can be found
in [13]. Nevertheless the simplest measured geodesic laminations (gallédurve$ are

really very elementary objects as they consist of disjoint simple closed geodesics of
endowed with positive real weights. Multicurves are very significant because a generic
geodesic lamination can be arbitrarily well approximated by multicurves. Moreover, the
deformationM (S, F) associated to a multicurv& can be described in a very elementary
way. For the purposes of this paper it will be enough to understand this simple situation.
If S has conical singularities we can use the geodesic laminations in its reguldf pad
hence we have a corresponding notion of distinguished deformation of the Minkowskian
suspensio (S) (see Section 4 for more details about the deformations).

When gravity is coupled to particles, an explicit construction of all possible spacetimes
has not been produced. We shall be concerned with compact spaces with a finite number of
massive particles and vanishing cosmological constant. 't Hooft's approach [8] describes
these spacetimes by means of the “linear” evolution of a special kind of Cauchy surfaces
which are tiled by spatial planar polygons. The extrinsic curvature is null in the interior
of each tile and it is singular along the edges; the evolution includes the changing of
tiling combinatorics under codified transition rules. Each Cauchy surface of this type is
intrinsically a flat surface with conical singularities. Some of these singularities correspond
to the intersection with the particle world-lines; the spacetime has a concentrated curvature
along these lines. The remaining singularities are 3-dimensioapfigrent singularities
but the Gauss—Bonnet constraint implies that, in general, they cannot be avoided. Each
globally hyperbolic spacetime contains such a kind of Cauchy surface with, at least locally,
such a kind of evolution. However, it is not clear whether the evolution of a given surface
necessarily fills all the spacetime and how the evolutions of different surfaces in the same
spacetime are related each other. So, it seems hard to recover from this approach a clear
identification of the parameter space.

Another experimented approach (see [2,3,11]) is the classical ADM formalism with the
so called “instantaneous gauge”, that requires fibration by spatial Cauchy surfaces with
zero extrinsic curvature. This last requirement is technically very useful and permits to
analytically find solutions by means of classical and very elegant mathematical tools.
Unfortunately, it turns out that the only spacetimes with compact space covered by this
approach are the static ones that is, by using the terminology of the present paper, the static
Minkowskian suspensions of flat surfaces with conical singularities, that we shall describe
below.

The aim of this note is to describe the spacetimes with compact space of genQs
andr gravitating particles that one can obtain by means of three kinds of construction:

(a) TheMinkowskian suspensioms flat or hyperbolic surfaces with conical singulari-

ties;
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(b) Thedistinguished deformationsf hyperbolic suspensions (in strict analogy with

the matter-free case);

(c) Thepatchworkingof Minkowskian suspensions (this is peculiar of gravity coupled

with particles — see Section 5).

These spacetimes have very transparent structural properties and behave somewhat
similarly to the matter-free universes with respect to the CTF, its asymptotic states, the
initial singularity and so on. Moreover they form a rather wide class of spacetimes, so
that we can derive from them some non trivial information about the actual parameter
space. For example we will show that when the masses are big enough and the cone points
are suitably spaced, the distinguished deformations of hyperbolic suspensions determine
a relevant non empty open subset of the parameter space of thelfornR6s—6+2"
wherel/ is an open set of the Teichmiiller spafg~ B%~5t2". On the other hand, by
patchworking of suspensions, we will produce spacetimes with the same topology and
the same masses of certain hyperbolic suspensions but which are not equivalent to any
distinguished deformation of them. In fact we will guess that they belong to different
connected components of the parameter space. So gravity coupled to particles seems to
be much more flexible than pure gravity. In the last section we will state several related
questions and we will develop a few speculations.

2. Geometric surfaces with conical singularities

Cone points.The local models ofiat or hyperbolicsurfaces with a conical singularity are
respectively given, in complex coordinate, by the metric$|on< 1}:

2 212021 512
ds(p o) =" 12| |dz|”,

dsy o = @?[2/ (1= 1212) P 12122 dzP?,

wherea > 0. These metrics are obtained by pull-back of the standard Euclidean or
Poincaré metrics orf|w| < 1} via the mapw = z%. In both cases theoncentrated
curvatureat the conical point with coordinate= 0 is k = 27(1 — «), the cone angle

is 2r«. In order to have a genuine singularigy 1.

Geometric cone surfaceslt is convenient to adopt the formalism of geomeftic, G)-
manifolds (see, for instance, chapter B of [6]). Fik@secompact oriented surfadg, of
genusg > 0 and fixpy, ..., p, points onF,. A marked geometric (i.e., flat or hyperbolic)
surface with conical singularitie®f cone angles2«;,i =1, ..., r, is a homeomorphism

¢ (Fe. {pi}) = (S, {ai}),

such thats’ = S\ {¢;} is a(X, G)-surface whergX, G) = (R?, Isom" (R?)) or (X, G) =

(H?, Isom* (H?)), respectively and its metric completion has a conical singularity of
cone angle 2a; at ¢;. Isomt(X) denotes the group of oriented isometriesXof We
recall that a(X, G)-manifold is by definition endowed with an atl§g;, ¥;}, where the
homeomorphismg; : U; — W; C X are such that each transition mgpo w;l coincides
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with an element of the specified groudp of diffeomorphisms ofX on each connected
component of its domain of definition.

Gauss—Bonnet constraint.The classical Gauss—Bonnet formula leads to the following
relations.
Flat case:

Zki =21 Z(l — ;) =2n(2—2g) (Gauss—Bonnet equality)

Hyperbolic case:

Y ki=2r) (1—a;)=27(2—2g) +Areas),

whence:

Z(l — ;) >2—2¢ (Gauss—Bonnetinequality)
i

This implies, in any case, that when= 0, necessarily > 3, and we will make this
assumption by default. We say that

§=X, g lal) = (X g (o1,....0)).

(whereX = R2 or H2, g > 0 and they;’ satisfy the appropriate Gauss—Bonnet equality or
inequality), is avirtual type of geometric surfaces with conical singularities. We denote
by T; the Teichmuller spacef marked surfaces of typé regarded up tdleichmiller
equivalenceTwo marked geometric surfaces of typap1 and¢o are equivalent iff there
exists an isometryf : (S1, {qil}) — (S2, {qiz}) such thatqsz_1 o f o ¢1 is isotopic to the
identity of F,, relatively to{p;}.

Whenr > 0, the fundamental group(Féﬁ), wherng’ = F, \ {pi}, is a non-Abelian
free group withs = 2¢ + r + 1 generators. For eadkp] € Ts, the associatedolonomy
representation

%meamW®

is well defined up to conjugation.

The universal covering map: S* — S is, in a natural way, a local isometry so that
$* is homeomorphic t&R? and it is endowed with a geometric structure with conical
singularities.z (S) acts freely and properly discontinuously 6t and S = S*/7(S). In
general a geometric surfacgewith conical singularities cannot be realized in the form
S =X/I" whereI" is a discrete subgroup (not necessarily torsion-free) of the group of
isometries ofX. When this is the case, the surface is called an orbifold.

Orbifolds. Geometric 2-dimensional compact orbifolds with only conical singularities
make a special class of surfaces we are concerned with. Such an othifohl quotient
X/I' whereI" is a group of isometries oK acting properly discontinuously and such
that the set of points with non trivial stabilizer is made by isolated points. For a genuine
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orbifold this set is nonempty. Orbifolds might have an important role in the construction of
a quantum version of (2 1)-gravity. They are classified as follows (see [15,16]).

Proposition 2.1. A geometric cone surface is a genuine Euclidean orbifold iff it is of
one of the type€R?, 0, (1/2,1/3,1/6)), (R?, 0, (1/2, 1/4,1/4)), (R?,0, (1/3,1/3,1/3)),
(R?,0,(1/2,1/2,1/2,1/2)). A geometric cone surface is a genuine hyperbolic orbifold
iff it is of a type(H?, g, [«],) satisfying the Gauss—Bonnet inequality and such that each
a; € [o], is of the formy; = 1/n;, n; € N*.

Conformal structures. Associated to each geometric structure with conical singularities
there is a naturatonformal structure First, it is clear that any atlas of the geometric
structure on the regular past is actually a conformal atlas (use the Poincaré disk model
for H?, identify R? with C and recall that any’ € Isom" (X) is also a biholomorphism).
Then, in order to get a conformal atlas on the whole surfaoge only need to add the
chart in complex coordinates around each conical singularity defined at the beginning of
the present section.

Let 7, be the classicaleichmdller spacef conformal structures o, relatively to
the marked point$p; }; T; is homeomorphic to an open batf¢~¢t2". For each virtual
types = (X, g, [«]), if T5 is non empty, there is a natural continuous map

Ys:Ts— T,

which is obtained by associating to each geometric cone surface o8 tyyygeconformal
structure described above. In the case of flat surfaces we eliminate simple rescalings by
normalizing the area to be equal to unity. Geometric surfaces with conical singularities
are classified by the following proposition, which shows that the configurations space of
geometric cone surfaces of a given type is isomorphic with the classical Teichmiller space
Tg’.

Proposition 2.2. For any virtual types, Ts is non empty and the natural mafs is a
homeomorphism.

Sketch of proof. The flat case is due to Troyanov (see [17]). The orbifold case is treated
in [16]. Let us sketch the main steps of a proof in the general hyperbolic case.

(1) dim(Ts) = dim(7y).

Let us outline first a way to construct all hyperbolic cone surfaces(Fix{pi, ..., pr})
as before. Astandard spinef Fé is a 1-complexP embedded inF’, with only 3-valent
vertices, such thaIFé is a regular neighbourhood &f (Fg/, retracts ontaP). Associated to
such ap there is a dual (topologicaileal triangulationzp of Fy, thatis a “relaxed” (i.e.,
multiple and self adjacencies between triangles are allowed) triangulatidp, dfaving
{p1,..., pr} as set of vertices. IH(P) = |V(P)| denotes the number of vertices Bf
(i.e., the number of triangles afp), e(P) = |E(P)| the number of its edges (i.e., the
number of the edges of the dual triangulation), one ha®3= 2¢(P) so thate(P) =
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6g — 6+ 3r. Clearly spines exist. Fix a spine. For anyadmissiblemap f : E(P) — R™

(i.e., a map such that at each vertex P the values off on the three edges emanating
from v satisfy thetriangular inequalitie, we can construct a hyperbolic surface with
conical singularities. This is obtained as a geometric realization of the dual triangulation
7p, by using hyperbolic triangles with edge lengths prescribedfbyrecall that each
hyperbolic triangle is determined by the edge lengths as well as by the interior angles,
and there are classical explicit formulas relating lengths and angles. It is not too hard to
see that varying the spine and the admissible function, one can realize all the hyperbolic
virtual types. On the other hand, any cone hyperbolic surface arises in this way. In fact
let (Fg, Fé) ~ (S, S") be such a surface. Consider the sub8etf S, such that for each

x € Q there exist # j such that/(x, p;) = d(x, p;). GenericallyQ is a standard spine

of §’; the interior of an edge oD consists of the points with exactly two equidistant
marked pointg;, p;, the same along the given edge. The “axis” of each edge, that is the
geodesic arc connecting and p; and passing from the point of the edge of minimal
distance from them, are the edges of a geometric realization on the dual trianguajation

In generalQ is a spine, possibly with higher valency vertices; the same procedure produces
a dual ideal cellularization of’ by convex hyperbolic polyhedra and we eventually obtain

a geometric triangulation by subdividing without introducing new vertices. If a virtual type

8 is realized by an admissible mafy on E(P), the maps realizing the same type are
obtained by imposing independent conditions. So one can deduce, at least7ihata
topological manifold of the right dimensiorg6- 6 + 2r.

(2) The mapys is injective.
ConsiderH? in the Poincaré disk modéb = {|z| < 1}, and lete?"|dz|? be the standard
Poincaré distance. Realize a given elemewntf 7; by a smooth hyperbolic surface (with
marked pointsf = D/I". Two hyperbolic surfaces with conical singularities of the same
type, both representing, are given by two metrice®/"+4)|dz|?, i =1, 2, such that each
h; is aI'-equivariant function orD, with the same kind of singularities over the marked
points ofS. It follows thathy — A2 is a real analytid”-equivariant function oD satisfying
the Liouville equation

A(hy — hp) = (21 — ¢12),

As S is compact:1 — ho has maxima and minima. Eithér(h1 — h2) > 0 near a maximum,
or A(h1—h2) < 0 near a minimum. By the maximum princigle — k2 is constant near the
minimum or the maximum and hence it is constant (and necessarily equal to 0) everywhere.

(3) Conclusion.
By the invariance of domairtheorem,is is @ homeomorphism onto a non empty open
subset of7;. To conclude it is enough to show that the image/gfis closed. This can
be done by studying the convergence of the conformal factors (see the above step), or by
arguing (via geometric considerations) that the image of a “diverging” sequerigeisn
divergingin7,. O
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3. Minkowskian suspensions

Particle world-lines. Let us give, first, the local models of the line of universe of a
massive particle. They are obtained by “suspension” of the local models for geometric
cone surfaces. We can take indifferently, in coordinétes),

2 2 2
da(E,a) = —dt +ds(E’a),
or, assuming > 0
doly o =—dt* +1%dsl .

They are equivalerds local modelsin the sense that any poif, #1) in the first model
and any point(0, t2) in the second one have isometric neighbourhoods. They are not
equivalent as global spacetimes; for instance if we take the time orientation in accordance
with the ¢ coordinate, the CTF of the first spacetime is degenerate, constant eqgwal to
while ¢ is the CTF of the second one. We have a well defined cone angleafbng such
a universe line, which corresponds to a spacetime curvature concentrated along the line. In
accordance with [7,8], if we normalize the gravitational constant t6 ke 1, themassof
the particle is related to the cone anglerby= (1/4)(1 — «); in (2 + 1)-gravity there are
not physical constraints on the sign@fn, so that an arbitrarily big is allowed.

Spacetimes with gravitating particles. A marked globally hyperbolic spacetime (coupled
to massive particles) of type

§=(g.lalr) = (g. (@1, .... )
is an homeomorphism

suchthatM’ = M\{L;} is an oriented and time-oriented globally hyperbolic flat Lorentzian
3-manifold (i.e., aVI2*t1, Isomt (M2*+1)-manifold, wherévi?t1 is the standard Minkowski
space) and each point @f; has a neighbourhood isometric to the above local models,
with cone angle 2«;. It is convenient to restrict t&eroch markingthat is we stipulate
that the surfaceg (F, x {t}) are Cauchy surfaces. As usual we work up to Teichmdiller
equivalence and we denote bSFR the corresponding Teichmuller space for a given
type. We shall consider maximal spacetimes. Identifyfiygwith F, x {0}, we have the
holonomy representation

pig) 7T (Fy) — Isomt™ (M#H1).
We also make the usual assumption that the linear part of the holonomy takes values in
SO"(2, 1), the group of time-orientation preserving Lorentz transformations.

Minkowskian suspensions of geometric cone surface¥hese are peculiar spacetimes
such thatM’ is a (Y, G(Y))-manifold, for suitably chosen open subsgtef M?t1, G(Y)
being the group of orientation preserving Minkowskian isometries kegpingariant. As

Y we will take:

Yg = M2+1
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with metric (dx1)2 + (dx?)2 — (dx3)2, and thought fibred by the planges® = a}.
Yy = {x e M2t (x1)2 + (x2)2 — (x3)2 <0, x3 > 0}
thought fibred by the surfaces
{x e M2t (x1)2 + (x2)2 — (x3)2 = —a2, x> O}
finally
Yr = {x e M2t (xl)z — (x3)2 <0, x> O}
thought fibred by the surfaces
{x e M2+ (xl)z — (x3)2 = —a2, x> O}.
Note thatYy is the chronological future of the poif®} and thatYr is the chronological
future of the ling{x, = x3 = 0}. In both cases the square-rootﬁfis the CTF.

By the change of coordinates = tsh(u), x2 =y, x3= tch(u), we see thal'r is
isometric toP = {(u, y, ) € R?t1: 7 > 0}, with metrict2du? + dy? — dz?, and P is
fibred by the level planes of the CT=

Eachy, is oriented and time-oriented in the usual way.

The groupG (Y,) is ISO(2, 1) andSO" (2, 1) for Yz andYy, respectively; foryr it is
more convenient to considér(P) which is generated by translations parallel to the level
planes ofr and by the rotation of angle around ther-axis. Note that the foliations of
these planes by vertical and horizontal lines @eé)-invariant.

If Sis a flat cone surface of tyr(&z, g, la],), its Minkowskian suspensioM () is the
obviously associated spacetime of tyge[«],) such thatM’(S), that is the complement
of the particle world-lines in (S), is a (Yg, G(Yg))-manifold with holonomy equal to
the holonomy ofs’. If $’ has the flat metrids?, M'(S) is isometric toS’ x R with metric
ds? — dr?. M(S) is fibred by parallel copies of. The CTF degenerates as it is constant
equal toco. These are callestatic Minkowskian suspensians

If S is a hyperbolic cone surface of tyg8l?, g, [«],), its Minkowskian suspension
M(S) is the obviously associated spacetime of type[a],) such thatM’(S), that is
the complement of the particle world-lines M (S), is a (Yy, G(Yy))-manifold with
holonomy equal to the holonomy 6f. If " has the metrids? of constant curvature 1,
M’(S) is isometric toS’ x 10, oo with metricr2ds? — dr. M(S) is fibred by conformally
rescaled copies of; these surfaces are the level surfasg®f the CTF, in particular one
hasS = S1; out of the particles, these surfacgshave constant mean curvaturg:land
constant intrinsic curvature equaltdl/a?. The initial singularity consists of one point.

These suspensions are particularly nice wiseis an orbifold (and the matter-free
spacetimes are particular cases); if the orbifSle- X/I", I acts isometrically also on
the correspondingf,, andM(S) =Y, /I.

The parameter space Bf; - or Yy -suspensions of a given type coincides, tautologically,
with the parameter space of the suspended geometric cone surfaces (see the previous
section).

The Yr-Minkowskian suspensions involve the special flat cone surfacgiven by
the meromorphic quadratic differentialsith at most simple poles on Riemann surfaces.
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The flat structures on the regular paftof these cone surfaces have the peculiarity to
be defined by atlas which have only translations or the rotation by angle transition
maps. So th&r-Minkowskian suspensioi (S) is the natural spacetime such tidt(S)

is a (P, G(P))-manifold with holonomy equal to the holonomy 8f. In fact each such

a suspension is determined by a cougleq), whereF is a Riemann surface anrdis a
quadratic differential. That is, it is determined not only by the cone surface, but also by the
horizontal and vertical measured foliations of the quadratic differential. We have already
studied such spacetimes in [5] where we have shown how they “materialize” the classical
Teichmiller flow See also [4] for a description of the CTF. In fact in [5] we considered
only holomorphic quadratic differentials, but everything runs verbatim if one allows also
simple poles. Recall that in this way one can realize all the types with 2 n; 7, n; > 1,
satisfying the Gauss—Bonnet equality, with four exceptions (see [10]). Moreover, for any
given realizable type, one knows the degrees of freedom (see [18]jzif denotes the
number of cone points of cone anglgthen the degrees of freedom are

28+ Y @)+ (e —3)/2,

wheree = —1 iff there is at least one cone angle with ogddand it is equal to 1 otherwise.

For example, when the type contains omly = 3 (this corresponds to holomorphic
quadratic differentials with simple zeros), the dimension of the corresponding space of
Yr-suspensions isg— 6.

The only orbifolds which produce such a kind of suspension are the orbifolds of type
(R2,0, (1/2,1/2,1/2,1/2)). They are obtained by the natural identification of the edges
of two copies of a same “fundamental” Euclidean rectangle. The corresponding groups
I are generated by two orthogonal translations and the rotation of angkoups that
determine the samEg-suspension (up to equivalence), do determine in general different
Yr-suspensions; in fact if we look at these groups acting’othe horizontal and vertical
foliations on eachr-level plane induce different foliations on the CTF level surfaces of the
two suspensions.

4. Distinguished deformations of hyperbolic suspensions

As already mentioned in the introduction, all matter-free flat spacetimes with space
of genusg > 2 can be obtained by deformation of Minkowskian suspensions of smooth
hyperbolic surfaces. Each deformatior (S, F) is governed by a measured geodesic
laminationF on S. We refer to [13] for an introduction to the general theory of geodesic
laminations. For simplicity, we shall be concerned only with the case in wfidk a
multicurve, which is the simplest example of measured geodesic lamination. Multicurves
are dense in the space of laminations, that is by making the multicurve “complicated”
enough, we can fairly well approximate the shape of any spacetime; moreover the
deformations associated to multicurves can be described in an elementary way.

Assume for a while thatS = H?/I" is a smooth compact hyperbolic surface.

A multicurve F consists of a finite union of disjoint simple geodesics endowed with
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positive weights. Assume, for simplicity, that there is one single geodgsigth weight

s and lengthr. Consider the quotiemt’(s, r) of B'(s,r) = {(u,y,7) € P; 0< y < s}

by the group generated by the translatieny, r) — (« +r, y, 7). Actually it is better to
consider the isometric quotient(s, r) of B(s,r) C Y7, obtained via the explicit change of
coordinates given in Section 3. Then, in order to constMics, F), cut-openM (S) along

the suspension af and insertA(s, r) in the natural wayM (S, F) is, by construction,
fibred by Cl-embedded space-like surfaces made by the union of pieces of constant
negative curvature and flat annuli; these surfaces are the level susfpee$r = a} of

the CTFr.

M (S) itself can be considered as a limit case of this procedure by taking. In such
a case the level surfacés are perfectly smoothly embedded and the initial singularity of
M (S) consists of one single point. In fact the lack of smoothness of the embedd§pgsof
a “dual” large scale manifestation of the non trivial initial singularityts, 7). We shall
now elaborate on this point. Consider the universal coveyingd (S, 7)* — M (S, F); ©
lifts to the CTF<* of M (S, F)* and each level surfacg is the universal covering of the
corresponding, . Consider also the universal covering magH? — §. SetX = p~1(o);
¥ consists of infinitely many disjoint complete geodesic linesHsf called the leaves
of X. One can define the so-callefial metric tree(7, d) of ¥. T embeds inH? as
follows: the vertices ofl’ are obtained by choosing, in @-invariant way, one point in
each connected componentl@f \ . Two vertices are connected by a geodesic edge iff
the corresponding components are adjacent. The distanse¢he length-space distance
obtained by imposing that each edgeTafwhich crosses once one leaf Bf, has length
equaltos. (7, d) is endowed with a natural non trivial isometric actiomaf). In a similar
way (T, d) can ber (S)-equivariantly embedded in each level surfd¢e X is replaced by
infinitely many disjoint flat bands of thickness equatt®hena — oo, (1/a)S;; converge
to the hyperbolic plan&l? and the actions of (S) on (1/a)S} converge to the action of
I on H2. Whena — 0 the actions oft(S) on S “degenerate” to the action of(S) on
T (more details can be found in [4]). Note that in this cdses a locally finite simplicial
tree, but this is no longer true in the general case where a more complicated kind of dual
real treesdoes occur. This complication is related to the fact that the typical intersection of
a transverse interval with a generic geodesic lamination is a Cantor set.

If S is now a hyperbolic cone surface, the construction of the deformatos, F)
of M(S) can be repeated if we take a multicurve or more generally a measured geodesic
lamination F with compact support in the regular patt S* plays the role ofH?. The
resulting spacetime@/ (S, F) has the same type @f (S) because the modifications occur
far from the cone points.

Given a hyperbolic typé = (g, [«],), we denote byD(§) the subset oﬂ“BGR which is
determined by the distinguished deformations of Minkowskian suspensions of hyperbolic
cone surface of typd. Of course, a suspension is meant as the trivial deformation of
itself and there is a natural projectign D(§) — T3, obtained by associating/ (S) and
hencesS to M (S, F). The following proposition gives partial information @n§). We will
use some notations introduced in Section 2. The set of hyperb@lie f-types” can be
identified with an open set &’ .
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Proposition 4.1.

(1) For each hyperbolic typé there is an opeifpossibly empiymaximal subsetfs of
Ts such thatp~1(Us) ¢ D(8) is homeomorphic tdfs x R8-6+2 (and p becomes
the natural projection onto the first factpr

(2) For each(g,r) there is a maximal non empty open subgét, . of the space of
(g, r)-types, such that for eache W, ), Us is non empty.

(3) For anys,

12¢g — 12+ 4r >dimD(5) > 6g — 6+ 2r.

(4) If Us is non empty, thedts x R%~6+2" is an open subset gicR.

Sketch of proof. By using the result of Section 2, the first statement is equivalent to
show that the space of measured geodesic laminations with compact sup@rtfon
a given hyperbolic cone surfadein I/ (for a suitablée/{), is homeomorphic t@®%—6+2",
This fact is known in the “limit” case when eaeh = 0, that is whenS’ is a complete
finite area hyperbolic surface withcusps (see [14]). Let us denote b7, (which is
homeomorphic td’y ) the Teichmller space of such hyperbolic surfaces wittusps
and fix one surface. It is known that each geodesic lamination with compact support
on F has support contained iA” obtained by removing fron¥ all the horocycles of
length< 1 around all the cusp points (see [14, p. 72]). It turns out that any hyperbolic cone
surfaceS which is “geometrically” close t@ has, up to homeomorphism, the same space
of measured geodesic laminations with compact suppast @as F. The crucial fact is that
if S is close enough to a cuspé&y each isotopy class of essential (i.e., non contractible nor
contractible to one cone point) simple closed curves$’as represented by a simple closed
geodesic inS’ of shortest length. § geometrically close t&” means that, by removing
suitable small “round” disks with centres at the cone point§,ofie find S” which is bi-
Lipschitz homeomorphic té”, by a homeomorphism close to an isometry. It follows that
for any fixed compact subsét of H7, there is an open subs&l (possibly empty) of
Ts, which satisfies the first statement of the proposition.

To prove the second statement, it is enough to show that, for anyfixexbefore, there
are cone surface$ close toF in the above sense. Fix a geodesic ideal triangulaficf
F (i.e., a “relaxed” triangulation of’ by ideal hyperbolic triangles). For each<0u < 1
consider the horocycles of lengtharound the cusps af. Associate to each edge of the
triangulation the length of the subarc determined by the horocycles. Consider the cone
surfaceS obtained accordingly with the construction after Proposition 2.2, by using the
same7 as topological ideal triangulation cﬂ’é and those lengths as edge-lengths:. i§
small enoughs is close toF. S is not close enough to a cuspg&dwhen, at a qualitative
level, the masses are not big enough or the particles are too close each other on a given
level surface of the CTF of the corresponding Minkowskian suspension. In such a case
the basic trouble consists in the fact that the shortest length representative of an essential
isotopy class of simple closed curves §hmight be a broken geodesic passing through
some cone points or even it might not exist as a simple curve.

The third statement is clear from the above discussion.
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To achieve the last statement it is enough to showl}%ﬁ is of dimension 12 — 12+
4r; we are going to argue it without any assumption on the spacetime type, [«],).

The degrees of freedom ofTsGR. Fix a marked spacetim&/ of type § and a relati-

vely compact globally hyperbolic open neighbourhdaddf the Cauchy surface image

of F, x {0}. Let p:n(Fg/,) — ISO"(2,1) be its holonomy. As:r(Fg/,) is a free group,

a deformation ofp is simply obtained by modifyingp on a set of 2 —2+4+r +1

free generators. If a deformatigsi is small enough, then, by the stability property of
holonomiesy’ is still the holonomy of a spacetime structure on the interiot/ofvith r
gravitating particles. So, as the holonomy is defined only up to conjugation, the dimension
of the set of all these spacetimes “close”# is 12¢ — 12 + 6r. In order to impose

that the spacetimes have the specific cone angles prescribgdigyhave to imposer2

(that is(6 — d)r, whered is the dimension of the conjugation orbit of a “rotation”) more
independent conditions, and we finally get the required number of degrees of freedom
12¢ —12+4r. O

5. Patchworking of Minkowskian suspensions

A simple variation of the construction of the distinguished modification of hyperbolic
suspensions, based on multicurves, that we have described in the previous section, will
produce interesting new examples of spacetimes.

Let M(S, F) be as in the previous section. Assume that we have a finite union of simple
closed geodesic of which aredisjoint from F. For simplicity, assume that there is a
single geodesi@ of lengtha. Let (F,q) be a Riemann surface with a meromorphic
quadratic differentialy, with at most simple poles. Le¥ (F, q) be the corresponding
Yr-Minkowskian suspension (see Section 3). Assume thattherizontal foliation on
F contains a simple closed leafof lengtha. Then we can construct new spacetimes as
follows: cut-openM (S, F) along the suspension ef and M (F, g) along the suspension
of ¢; then glue, pairwise, pieces af/ (S, F) with pieces of M (F,q) along isometric
boundary components in the natural way. Note that there is, in general, a finite number
of possible combinations, and the resulting Lorentz manifolds may be not connected, so
we can take each connected component as a new spacetima/ C8llF, o], [F, g, c])
any spacetime obtained in this way. By construction, it is fibred by space-like surfaces
(made by rescaled pieces Sfand by “stretched” pieces af) which actually are the
level surfaces of the CTF @ ([S, F, o], [F, ¢, c]). Note also that the construction can be
iterated starting from suitablé/ ([ S, F, o], [F, g, c]); SO one can produce a wide class of
new examples. Thipatchworkingis peculiar of spacetimes with gravitating particles; in
fact if we formally apply it to matter-free spacetimes we get nothing else than distinguished
deformations of hyperbolic suspensions.

In particular, let us use &, ¢g) the orbifolds of type

(R2,0,4[1/2]) = (R?,0, (1/2,1/2,1/2,1/2))
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with the horizontal and vertical foliations gf (with 4 simple poles) parallel to the edges

of the “fundamental” rectangle. It is not hard to construct by the patchworking procedure
types of the forms = (g, [@],) = (g, [«]» U 2k[1/2]), 2h + r’ = r, which were also
realizable by Minkowskian suspension of some hyperbolic cone surface. On the other
hand, these new spacetimes do not belonB ) because, for instance, the level surfaces

of the respective CTF are not isometric as they have cone points of conerangta

no isometric neighbourhoods. Other differences manifest themselves by studying the past
asymptotic states of the respective CTF. By small perturbation of the holonomy of these
examples one could produce examples oub@f’) for any[«],. close to[«],.

6. Final questions and considerations

We are going to conclude with some questions, problems and, sometimes, with a guess
about them.

(1) Is T°R connecte@

The answer could depend on the type. We guess that the above examples not belonging
to D(8), actually do not even belong to the same connected component of any element of
D(3).

(2) Does any spacetime satisfy the Gauss—Bonnet conspajht— «;) > 2 — 2g?

We guess that by suitable small perturbations of the holonomy of static Minkowskian
suspensions (which satisfy the Gauss—Bomugiality) one could obtain spacetimes with
Yil—w)<2-2g.

We note that all the examples of spacetime that we have produced starting from non
static Minkowskian suspensions have the following property:

Each particle line of universe has a neighbourhood isometric to the set of points of
spatial distance< bt, for some positivéy, from ther-axis in the model(z, ¢), |z|] < 1,

t > O} with metricdo, , (see Section 3).

(3) Does the same property hold for any spacetime with tame — see [4] — CTF with
values ontg0, co)?

It would be interesting to find, if any, examples where the linear fundiiomust be
replaced by some positive functigi(z) going faster to 0 when— 0.

(4) Find an intrinsic characterization of hyperbolic cone surfaces belongirigsto

One expects that it could be expressed in terms of inequalities involving the cone angle,
the genus and the distances between the cone points.

(5) DescribeW, . In particular, doesn(g, r) exist, withl > m(g, r) > 0, such that
for any$ € W, - and for any mass:; associated t@, one hasn; > m(g,r)?

For example, beside the “rigid” cage, r) = (0, 3), the very peculiar casg, ) = (0, 4)
hasWg,4) which coincides with the whole space @, 4)-types; moreover, for each type
8 € W(0,4), Us coincides withTs, so thatD () = T x R2. On the other hand, we guess, for
example, that for eact®, ), r > 4, the last question has negative answer.

(6) Is D(5) always of dimensios 6g — 6+ 2r?
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Here one is asking whether there are always non trivial distinguished deformations. We
guess that wheg > 2 and the masses are all positive, the(s) contains at leasTs x
R8—6: in other words one expects that there is at least the same “amount” of distinguished
deformations of the matter-free case of the same genus.

(7) Let C be any closed subsetdf. Is p~1(C) C Us x R%~6+2" closed inTCR?

Finally, we note that in several instances of the present paper we have seen how very
natural perturbations of a given spaceti@ not preserve the typgsee for instance
the constructions of Section 2 or the argument at the end of Section 4). This would
suggest that the study of (2 1)-gravity (coupled to particles) “type by type”, or even
“space-genus by space-genus”, could be misleading. Spacetimes should be considered “all
together” and it becomes quite demanding to figure out the structure of the corresponding
(infinite dimensional) parameter space. We guess that Grothendieck theory of “Teichmdller
Towers” could play an important role.
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