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Abstract. We generalize Turaev’s definition of torsion invariants of péMs &), whereM

is a 3-dimensional manifold anglis an Euler structure on (a non-singular vector field

up to homotopy relative t6 M and modifications supported in a ball contained ir{ ).
Namely, we allowM to have arbitrary boundary agdo have simple (convex and/or concave)
tangency circles to the boundary. We prove that Turay&\)-equivariance formula holds

also in our generalized context. Using branched standard spines to encode vector fields we
show how to explicitly invert Turaev’s reconstruction map from combinatorial to smooth Eu-
ler structures, thus making the computation of torsions a more effective one. Euler structures
of the sort we consider naturally arise in the study of pseudo-Legendrian kmotepts
transversal to a given vector field), and hence of Legendrian knots in contact 3-manifolds.
We show that torsion, as an absolute invariant, contains a lifting to pseudo-Legendrian knots
of the classical Alexander invariant. We also precisely analyze the information carried by
torsion as a relative invariant of pseudo-Legendrian knots which are framed-isotopic.

0. Introduction

Reidemeister torsion is a classical yet very vital topic in 3-dimensional topology,
and it was recently used in a variety of important developments. To mention a few,
torsion is a fundamental ingredient of the Casson—-Walker—Lescop invariants (see
e.g. [8]). Relations have been pointed out between torsion and hyperbolic geome-
try [13]. Turaev’s torsion of Euler structures [16] has been recognized by Turaev
himself ([17,18]) to have deep connections with the Seiberg—Witten invariants of
Spirf-structures on 3-manifolds, after the proof of Meng and Taubes [10] that a
suitable combination of these invariants can be identified with the classical Milnor
torsion.

0.1. Review of known results

Turaev's theory [16] actually exists in all dimensions. We quickly review it before
proceeding. Amooth Euler structure& on a compact oriented manifold, possibly
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with 9M = @, is a non-singular vector field o viewed up to arbitrary modifica-

tions supported in a closed ball contained in MY and homotopy relative toM .
Orientability of M is not strictly necessary, but we find it convenient to assume it.
Turaev only considers the case where the field is transversal to the boundary, so the
boundary components are “monochromatldagk if the field points outwards, and
white if it points inwards). This implies the constraint thatM, W) = 0, where

W is the white portion 0d M, butin [17] and [18] Turaev only focuses on the more
specialized case wherd is 3-dimensional and closed or bounded by black tori.

In all dimensions, the set EiiM, W) of smooth Euler structures compatible with

(M, W) is an affine space ovet1(M; Z). The two main ingredients of Turaev’s
theory are as follows. First, he defines a certain set of 1-chains, called the space
Eulf(M, W) of combinatorial Euler structures compatible witth, W), he shows

that this is again affine oveiy(M; Z), and he describes dify (M ; Z)-equivariant
bijectionW : Eul°(M, W) — EulS(M, W) called thereconstruction map. Second,

for & € Eul(M, W) and for any representatignof 71 (M) into the units of a suit-

able ringA he defines a torsion invarianf (M, &), or more generally? (M, &, b),

as explained below in Sect. 2, with valuekin(A) /(£1), whereK; (A) denotes the
Whitehead group ol. This invariant satisfies thd, (M ; Z)-equivariance formula

(M £, h) = (M. & b) - 9E &) )

where¢’ — & € H1(M; Z) andg is naturally induced by. In additiont? (M, &)

is by definition a lifting of the classical Reidemeister torsion (see [A4A(M, W) €

K1 (A) /(£ (1, (M))). For € € EuF(M, W) one definest? (M, &) as
(M, W~1(¢)), and theH,(M; Z)-equivariance of the reconstruction m&gm-

plies that formula (1) holds also for smooth structures. We emphasize that the
definition of ¥ is based on an explicit geometric construction, but its bijectivity
is only established througH1(M; Z)-equivariance. This makes the definition of
torsion for smooth structures somewhat implicit.

0.2. Aims of the paper

In [3] we have provided a combinatorial encoding of non-singular vector fields up
to homotopy (also called “combings”) in terms of branched standard spines, and
the initial aim of this paper was to use this encoding in order to find a geometric
description of the ma@ —1, and hence to turn the computation of Turaev’s torsion
into a more effective procedure. The use of branched standard spines naturally leads
to considering Euler structures on 3-manifoltds (without restrictions orf M)

with simple tangency circles t@M of concave type (see Fig. 1 below). This type

of generalized Euler structure also arises in the study of a Legendriarkkimoa
contact structuré, and more generally when one considers a “pseudo-Legendrian”
pair (v, K), consisting of a knoK transversal to a non-singular vector fieldA
pair (v, K) is viewed up to the natural relation of ‘pseudo-Legendrian isotopy’ (see
Sect. 5), and, taking the restriction«fit defines a concave Euler structure on the
exteriorE (K) of K, with two parallel concave tangency linesal(K ) determined

by the framing induced by on K. On the other hand it turns out that, to define
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torsion, the natural objects to deal with are Euler structures euitkiex tangency
circles. It is a fortunate fact, peculiar of dimension 3, that there is a canonical way
to associate a convex field to asiynple (i.e. mixed concave and convex) one. This
allows to define torsion for all smooth simple Euler structures.

0.3. Summary — general theory

Let us now summarize the contents of this paper. In Sect. 1, extending Turaev’s
theory, we set the foundations of the theory of smooth and combinatorial Euler
structures in the context of structures with simple tangency to the boundary. In
particular we describe the obstruction to the existence of such a structure (Propo-
sition 1.1) and we describe the reconstruction maTheorem 1.4). This part
follows the same scheme as [16] and relies on some technical results of Turaev.
Our main contribution here is the proof that there exists a natural transformation
of a simple structure into a convex one both at the smooth and at the combinatorial
level, and that these transformations actually correspond to each other under the
reconstruction map (Theorem 1.7). In Sect. 2 we introduce torsion and state the
equivariance property. In Sect. 3 we show thaPifs a branched standard spine
andé is the Euler structure (with concave boundary tangency) carrie#, likien

P allows to explicitly find a representative @~1(¢), namely the combinatorial
counterpart of (Theorem 3.7). In Sect. 4 we carry out a specific computation of
torsion using the technology of Sect. 3.

0.4. Summary — pseudo-Legendrian knots

In Sects. 5 and 6 we concentrate on the application of the theory of torsion devel-
oped in Sects. 1 and 2 to pseudo-Legendrian knots. In Sect. 5 we analyze torsion as
an absolute invariant, and we show in particular that, when the ambient manifold

is a homology sphere, torsion contains (in a suitable sense) a lifting to pseudo-
Legendrian knots of the classical Alexander invariant. In Sect. 6 we turn to the
information carried by torsion asralative invariant, and we show that it is capa-

ble of distinguishing knots which are framed isotopic but not pseudo-Legendrian-
isotopic. A delicate point which emerges here is that, given pseudo-Legendrian
pairs (vg, Ko) and (v1, K1) such that(vg, v1) are homotopic to each other and
(Ko, K1) are framed-isotopic to each other, torsion does not provide in general
a single-valued relative invariant 6o, Ko) and (v1, K1), because the action of

a certain mapping class group (which depends on the framed isotopy class only)
must be taken into account. This phenomenon is carefully described in Sect. 6,
where we introduce and study the notion of ‘good’ framed knot, for which the
action is trivial. We show that many knots are good (for instance, all knots in a
homology sphere are good, and most knots with hyperbolic complement are good).
In the special case of knots in a homology sphere we also prove that the relative
torsion of two knots essentially coincides with the difference of their rotation num-
bers (Maslov indices), so torsion basically detects whether the knots are isotopic
through pseudo-Legendrian immersions. In the more general case of a good knot
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in a manifold which may not be a homology sphere, we analyze the effect on tor-
sion of the framed first Reidemeister move (which does not change the framing
but locally changes the winding number #). Combining this analysis with the

fact (proved in [4]) that framed isotopy is generated by pseudo-Legendrian isotopy
and the framed first Reidemeister move, we are able to give an interpretation of
torsion, as a relative invariant of knots, by means of a well-defined “relative wind-
ing number”. For homology spheres the relation between the winding number and
the Maslov index is clear, but we emphasize that the definition of relative winding
number works in more general situations.

Our results on good knots and the relative winding number allow to single
out several situations in which torsion actually can detect pseudo-Legendrian iso-
topy. For instance we can show the followiregnsider pseudo-Legendrian knots
(vo, Ko) and (v1, K1) which areisotopic as framed knots. Assume that K¢ is good
and that the meridian of Kg hasinfinite order in H1(E(Ko); Z). Then theknotsare
pseudo-Legendrian-isotopic if and only if they have trivial relative torsion invari-
ants.

In Sects. 1 and 3 proofs which are long and require the introduction of ideas
and techniques not used elsewhere are omitted. Section 7 contains all these proofs.

1. Euler structures

In this section we define smooth and combinatorial Euler structures and illustrate
their correspondence. We fix once and for ever a compact oriented 3-manifold
M, possibly withaM = @. Using theHauptvermutung, we will always freely
intermingle the differentiable, piecewise linear and topological viewpoints. Home-
omorphisms will always respect orientations. All vector fields mentioned in this
paper will be non-singular unless the contrary is explicitly stated, and they will be
termed jusfields for the sake of brevity.

1.1. Smooth and combinatorial Euler structures

We will call boundary pattern on M a partition = (W, B, V, C) of M whereV

andC are finite unions of disjoint circles, aiddV = 9B = V UC. In particular,Ww

and B are interiors of compact surfaces embeddeélih Even if P can actually

be determined by less datag. the pair(W, V), we will find it convenient to

refer toP as a quadruple. Points &F, B, V and C will be calledwhite, black,
convex andconcave respectively. We define the set @hooth Euler structures on

M compatible withP, denoted by E&{ M, P), as the set of equivalence classes of
fields onM which point insideM on W, point outsideM on B, and have simple
tangency td M of convex type alongV andconcave type alongC, as shown in a
cross-sectionin Fig. 1. Two such fields are equivalent if they are obtained from each
other by homotopy through fields of the same type and modifications supported into
closed interior balls (namely, replacements of a fieltyy another one’ such that

v — v’ vanishes outside a ball contained in(lift)). The following variation on the
Hopf—Poincaré theorem is established in Sect. 7:
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Fig. 1. Convex (left) and concave (right) tangency to the boundary

<

Proposition 1.1. Eul3(M, P) is non-empty if and only if x (W) = x (M).

We remark here thag (W) = x(W), x(B) = x(B), x(V) = x(C) = 0 and
xW)+x(B) = x(0M) = 2x (M), so there are various ways to rewrite the relation
x (W) = x (M), the mostintrinsic of which is actually(M) — (x (W) —x(C)) = 0
(see the discussion before Lemma 1.2 for the reason).

Itis a standard fact of obstruction theory that, given fieldsmduv’ compatible
with a pattern” on d M, the first obstruction t@’ being homotopic ta through
fields compatible withP is given by a homology clasg®(v, v') € Hi(M; Z).
The same theory also shows thaandv’ represent the same Euler structére
EuB(M, P)ifand only ifaS(v, v') = 0. It follows that ifé andé’ in EulS(M, P) are
represented by fieldsandv’ thenaS(&, &) is unambiguously defined a$(v, v').
Moreover

a®: EuB(M; P) x EuB(M; P) — Hiy(M; Z)

gives to EU¥(M; P) the structure of an affine space ovér(M; Z). All these facts
are carefully stated in Sect. 5 of [16] for the case whére: V = ¢ and bothw
and B are unions of tori, but they extengrbatim to our situation. See also the
discussion in Sect. 6.2 of [3] for the case of closed manifolds.

A (finite) cellularizatiorC of M is calledsuitedto P if VUC is a subcomplex, so
W andB are unions of cells. Here and in the sequel by “cell” we will always mean
anopen one. Let such & be given. Fow € C define indo) = (—1)4M@) We
define EUt(M, P) as the set of equivalence classes of integer singular 1-chains
in M such that

dz= Y ind(o)- po 2

o CM\(WUV)

where p, € o for all o. Two chainsz andz’ with 3z = ) ind(o) - p, and
9z’ =) ind(o) - p.. are defined to be equivalent if there eXist: ([0, 1], 0, 1) —
(0, ps, pl) such that

=7+ ) ind(o)-s,
cCM\(WUV)

represents 0 inH1(M; Z). Elements of Ef(M, P)c are calledcombinatorial
Euler structures relative to? andC, and their representatives are calleder
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chains. The definition implies that, fay, £’ € Eul(M, P)¢, their difference — &’

can be defined as an elemesSté, £') of Hy(M: Z). SinceW = W U V U C and

C is closed, the total algebraic number of points appearing in the right-hand side
of (2) can be written as

X(M) = x(W\ C) = x(M) = (x (W) = x(C)).
Considering thag (C) = 0 and thatM is connected, we easily get:

Lemma 1.2. Eul°(M, P)¢ isnon-empty if and only if x (W) = x (M), and in this
case o turnsit into an affine space over Hy(M; Z).

This discussion also explains why the most meaningful way to write the relation
x(W) = x(M) is x(M) — (x(W) — x(C)) = 0. From now on we will always
assume that this relation holds. Turaev only considers the case Wher€ = ¢,

soW = W andB = B, and our relation takes the usual fosM, W) = 0. The
following result was established by Turaev in Section 3 of [16] in his setting, but
again the proof extends directly to our context, so we omit it. Only the first assertion
is hard. We state the other two because we will use them.

Proposition 1.3. 1. If " is a subdivision of a cellularization C then there exists a
canonical Hy(M; Z)-isomorphism Eul(M, P)¢c — EUlS(M, P)¢:. In particu-
lar Eul(M; Z) is canonically defined up to H1(M; Z)-isomor phism indepen-
dently of the cellularization.

2.1f C is a cellularization of M suited to P and xo € M is an assigned point,
any element of Eul°(M, P) can be represented, with respect to C, as a sum
ZacM\(WU‘,) ind(o) - B, With 8, : ([0, 1], 0,1) — (M, xo, o).

3.1f T is a triangulation of M suited to P, any element of Eul®(M, P) can be
represented, with respect to 7, as a simplicial 1-chain in the first barycentric
subdivision of 7.

A chain as in point 2 of this proposition will be later referred to as a (connected)
spider with head at xg. Our first main result, proved in Sect. 7, is the extension to
the case under consideration of Turaev’s correspondence betweemBE uf.

Theorem 1.4. There exists a canonical H1(M; Z)-equivariant isomorphism
U : Eul(M, P) — EuP(M, P).

The definition of¥ is based on an explicit geometric construction, but its bijec-
tivity is only established througH1(M; Z)-equivariance. As already mentioned in
the introduction, this makes in general a very difficult task to determine the inverse
of W. One of the features of this paper is the descriptiowof in terms of the
encoding of fields by means of branched spines (Theorem 3.7). In this theorem we
will actually describel — only in the special case wheReis concave, but we will
see in Remark 1.8 that there is an effective and geometric method to pass from a
general simple structure to a concave structure.

In view of Theorem 1.4, when no confusion risks to arise, we shortly write
Eul(M, P) for either Eu¥(M, P) or EUF(M, P), anda for the map giving the
affine H1(M; Z)-structure on this space.
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Fig. 2. Turning a concave tangency circjeinto a convex one: the apparent singularity
in the cross-section is removed by adding a small bell-shaped field directed paradlel to
i.e. orthogonal to the cross-section

1.2. Convex Euler structure associated to an arbitrary one

Let M andP = (W, B, V, C) be as in the definition of EuM, P). The pattern
0(P) = (W, B,V UC,{) is a convex one canonically associatedtoNe define
a map

O3 : EuP(M, P) — Eul(M, 6(P))

according to the following procedure:

1. For each componemt of C, we orienty as a component of the boundary of
B, which is oriented as a subset of the boundaryof

2. Neary we choose coordinat¢s-1, 0], x [—1, 1], x S,l on M such thaf0} x
[—1,1] x §* ¢ 9M, andy = {0} x {0} x S* with orientation;

3. Wechoose arepresentativef &£ suchthateachrectanglel, 0] x[—1, 1] x {r}
is a union of orbits ob, and therefore appears as in Fig. 2-left;

4. Within each rectangle-1, 0] x [—1, 1] x {¢} we replacev by a singular field
w having a saddle point at-1/2, 0, t) and a tangency of convex type to
{0} x [—1, 1] x {¢} at(0, O, ¢), as in Fig. 2-centre; (of course it would be easy to
write explicit analytic expressions, but we do not think this would be of much
use);

5. Wedefina'(x, y,t) = w(x, y, 1)+ f(x, y)-(3/3r), wheref is a bell-shaped
function attaining its maximum 1 &-1/2, 0) and vanishing except very close
to this point (see Fig. 2-right).

Lemma 1.5. ®% iswell-defined, Hy(M; Z)-equivariant, and bijective.

Proof of Lemma 1.5. The first two properties are easy and imply the third property.
The inverse of9S may actually be described by a direct procedure very similar to
the one used fo®S, but we will not use it. O

We define now a combinatorial version &F. Consider a cellularizatiod
suited toP, and denote by, ..., y, the 1-cells contained i@’. We choose the
parameterizationg; : (0, 1) — C so that they respect the natural orientatior€of
already discussed above, and we extend/the [0, 1], without changing notation.
Now let z be an Euler chain relative t8 such that the points of appearing in
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9z are precisely the; (0)'s (with positive sign), and the;(1/2)’s (with negative
sign). Thene — > v; |[1/2 1y is an Euler chain relative ©(7). Setting

n
O = 2= ¥iluoy
j=l

we get a ma@®° : Eul°(M, P) — Eul(M, 6(P)).

Lemma 1.6. ©¢ iswell-defined, H1(M; Z)-equivariant, and bijective.

Proof of Lemma 1.6. Again, the first two properties are easy and imply the third
one. O

In Sect. 7 we will see the following:

Theorem 1.7. If W is the reconstruction map of Theorem 1.4 then the following
diagramis commutative:

EuCM.P) -2 EuEM, 0(P))

v LW
EUS(M.P) -2 EuB(M.0(P)).

Using this result we will sometimes just wrie : Eul(M, P) — Eul(M, 6(P)).

Remark 1.8. In the previous pages we have concentrated on the transformation of
a simple field into a convex one, because we will later see that torsion is naturally
defined only for convex fields. However one could easily provide an explicit pro-
cedure (very similar to that described in Fig. 2) to turn a simple field ictmeave

one. As already mentioned, this is one of the ingredients of a general geometric
description of the mag@—1. See Remark 3.9 for the complete recipe.

1.3. Pseudo-Legendrian knots

We spell out in this paragraph the fact, already mentioned in the introduction,
that Euler structures with concave boundary pattern naturally arise in the study of
pseudo-Legendrian knots. We actually refer here to the more general dages of
(rather than knots), but later, when analyzing torsion, we will restrict to knots only.
As above, fix a compact oriented manifdfiand a boundary pattef on M. The
boundary ofM may be empty or not. I is a vector field onv andL is a link in
Int(M), we definedL to be pseudo-Legendrian {1, v) if v is transversal td..
We will also call(v, L) a pseudo-Legendrian pair. Having fix@d we will only
consider fields compatible withP.

For a link L in M we consider a closed tubular neighbourhddd) of L
in M and we defineE(L) as the closure of the complement Gf(L). If F is
a framing onL we extend the boundary pattefn previously fixed onM to a
boundary patterrP(L) on E(L), by splitting dU (L) into a white and a black
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longitudinal annuli, the longitude being the one defined by the franfings a
direct application of Proposition 1.1 one sees that EqL), P(L)) is non-empty
(assuming EulM, P) to be non-empty).

A convenient way to think o (L) is as follows. The framing” determines
a transversal vector field alorlg If we extend this field neak and choosé/ (L)
small enough then the pattern we seedd@n(L) is exactly as required. With this
picture in mind, it is clear that if. is pseudo-Legendrian iV, v), wherev is
compatible withP, then the restriction of to £ (L) defines an element

£(v, L) € EUl(E(L), P(L™)).

Pseudo-Legendrignots and their torsion invariants will be extensively studied in
Sections 5 and 6 (see also [4] for related facts).

2. Torsion of an Euler structure

In this section we define torsion. We set up the usual algebraic environment [11]
in which torsion can be defined, fixing a rimg with unit, with the property that
if n andm are distinct positive integers thex’ and A™ are not isomorphic as-
modules. The Whitehead groufa (A) is defined as the Abelianization of GI(A),
andK 1(A) is the quotient oK1 (A) under the action 01 € GL1(A) = A,.

We will directly define torsion only for aonvex Euler structure, but the defini-
tion easily extends to any Euler structgravith simple boundary tangency, taking
the torsion of the “convexified” structur@ (&) discussed in Theorem 1.7. So, we
fix a manifold M, aconvex boundary patter®® = (W, B, V, %) on M, a cellular-
izationC suited toP and a representatian: 71(M) — A,. We will denote byy
again the extensiofi[r1(M)] — A (a ring homomorphism).

We consider now the universal cover M — M and the twisted chain complex
Cl(M, WuV),where ¢ (M, WUV) s defined as\ ®, C®(M, gL (WU V); Z),
and the boundary operator is induced from the ordinary boundary. The homology
of this complex is denoted b§f{ (M, W U V) and called the-twisted homology.
We assume that eadlii,.")(M, W U V) is afreeA-module and fix a basis;.

Remark 2.1. 1. To have a completely formal definition &/ (M, W U V), one
should fix from the beginning a basepoit € M for 71(M), and consider a
pointed universal cover, because such a cover, and the actiqiiMf on it, are
canonically defined only for pointed spaces.

2. TodefineH! (M, WU V) we have used in an essential way the fact WiatV =
W is closed, because the cellular theory of homology can only be employed in
the relative case for paifX, Y) whereX is a complex and is a subcomplex, so
itis closed as a subset. Namely, ¥fis merely a union of cells and®®(x, v; Z)
is defined as th&-module generated hi¢cells lying in X \ Y, the boundary
operator naturally defined oﬁge”(X, Y; Z) does not turn it into an algebraic
complex.

3. The A-module (f(M, W U V) is always a free one, and eaZhr1(M)]-basis

of Cf(M, g~X(W U V); Z) determines a\-basis of ¢ (M, W U V).
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4. If we composep with the projectionA, — K1(A) we get a homomorphism
of 1(M) into anAbelian group, so we get a homomorphigm Hi(M; Z) —
Ki(A).

Now let§ € Eul(M, P) and choose a representativeofs in point 2 of
Proposition 1.3, namely

Z ind(o) - Bo

oeC, aCM\(WUV)

with B, (0) = xq for all o, xg being a fixed point o (such a representative was
above called a spider with headxa)). We chooseig € ¢ ~1(xo) and consider the
liftings B, which start atig. Foro c M \ (W U V) we select its preimagé
which contaings, (1), and defingy(¢) as the collection of all thes&. Arranging
thei-dimensional elements gf&) in any order, by Remark 2.1(3) we gehabasis
g; (&) of CY (M, WU V). We consider a séf; of elements of (M, W U V) which
project to the fixed basis; of H (M, W U V).

Now note that, given a fre&-moduleL and two finite bases = (b;), b’ = /)
of M, the assumption made @nguarantees thatandb’ have the same number of
elements, so there exists an invertible square m(a?tfj)(such thab, =), Azbh.
We will denote by{b’/b] the image ofA%) in K1(A).

Proposition 2.2. Choosea set b; C Cf(M, W U V) such that 9b; isa A-basis of
d(CY(M, W U V)). Then (3b;41) - b; - b; isa A-basisof C¥ (M, W U V), and

o, 7.6, =+ [ [(0brs0 - bi-) /0] ™ e Facw)
i=0

isindependent of all choices made. Moreover

(M, P, Eh) =M, P, & b) - p°E, §). ®)

Proof of Proposition 2.2. The first assertion and independence oftthigis purely
algebraic and classical, see [11]. Now note thatEul®(M, P) was used to select
the baseg; (£). Theg; (§)’s are of course not uniquely determined themselves, but
we can show that different choices lead to the same valaé .of

First of all, the arbitrary ordering in thg (§)’s is inessential because torsion
is only regarded up to sign. Second, consider the effect of choosing a different
representative of. This leads to a new famil§’ of cells. If 6" = a(o) - &, with
a(o) € m1(M), anda (o) isthe image ofi(o) in H1(M; Z), we automatically have

Y ind(o)-a(o) =0e Hy(M: Z),
oCM\WUV

which allows to conclude that also the representative chosen is inessential. The
choice of the liftingxg can be shown to be inessential either in the spirit of Re-
mark 2.1(1), or by showing that a simultaneautranslation of allg, for a €
w1(M), multiplies the torsion by (a)x M —x(WUV) — 1,
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Formula (3) is readily established by choosing representajivasd(c) - B,
and)_ind(o) - B, of & and¢’ such that = g, forall o butone. o

Since the above construction uses the cellularizafion a way which may
appear to be essential, we add a subs€riptthe torsion we have defined. The next
result, which can be established following Turaev [16], shows that dependence on
C is actually inessential.

Proposition 2.3. Let C and C’ be cellularizations suited to P. Assume that C’ sub-
divides C, and consider the bijection Si¢ ¢y : Eul®(M, P)¢ — EUl°(M, P)¢: of
Proposition 1.3, and the canonical isomorphism jcr.¢y @ HY (M, W U V)¢ —
HY(M, W U V)¢ . Then, with obvious meaning of symbols, we have:

6 (M, P, &, b) =t5(M, P, Sc.c)6). Jc.c)().

Itis maybe appropriate here to remark that the choice of a ba$is,’ (M, WU
V) and the definition ofc?(M, P, &, ) implicitly assume a description of the
universal cover oM, which is typically not doable in practical cases. However, if
one starts from a representationmf(M) into the units of acommutative ring A,
i.e. a representation which factors through onéffM; Z), one can use from the
very beginning the maximal Abelian rather than the universal cover, which makes
computations more feasible.

Remark 2.4. Turaev [15] has shown that a homological orientation yields a sign-
refinement of torsion,e. a lifting from K 1(A) to K1(A). This refinement extends

with minor modifications to our setting of boundary tangency. This sign-refinement,

in the closed and monochromatic case, is often an essential component of the theory
(for instance, it is crucial for the relation with the 3-dimensional Seiberg—Witten
invariants [17,18] and for the definition of the Casson invariant [8]), but we will
not address it in the present paper.

2.1. Computation of torsion via disconnected spiders

In this subsection we show that to determine the family of lifted cells necessary to
define torsion one can use representatives of Euler structures more general than the
(connected) spiders used above. This is a technical point which we will use below
to compute torsions using branched spines (Sect. 3).

We fix M, P, C andg as above, ané € Eul(M, P). Letg(§) = {5} be the
family of liftings of the cells lying inM \ (W U V) determined by a connected
spider as explained above. Note thaj'it= {5’} is any other family of liftings we
haves’ = a(o) - 6 for somea(o) € 71 (M), and we can define

W@, eg@)= )Y  indo)- alo) e HuM; 7).
o CM\(WUV)
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Proposition 2.5. Assume there exists a partition C1 U - - - U Ci of the set of cells
lyingin M \ (W U V), and let & € Eul®(M, P) have a representative of the form

k
=y ( Y. indo)- yé”)
j=1 \oeCj\lo;}

whereo; € C; and yéj) :([0,11,0,1) — (M, po;, ps)- Choose any lifting Po; of

Po; lift y(ij) to )7§j) starting from p,;, let 6" be thelifting of o containing )7§j>(1),

and let g’ be the family of all these liftings. Then A (g', g(¢)) = 0 € Hi(M; Z). In
particular g’ can be used to compute t¢ (M, P, &, b).

Proof of Proposition 2.5. Note first that the coefficient qf,; in 9z is exactly
- > ind(e).
CTECj\{(Tj}

On the other hand this coefficient must be equal tgdangl Summing up we deduce
that}", ¢, ind(o) = 0.
Now choosexp € M ands" : ([0,1],0,1) — (M, xo, po;). Foro € C;
define
_ s if o =0
778D otherwise,

so thatg, : ([0,1],0,1) — (M, xo, ps), Whencew = ZacM\(WUV) Bs is an
Euler chain. Moreover:

k
w—z= Z (Z ind(a)) 8Y) =0e Hi(M; Z),

j=1 UEC_,‘

so[w] = £. Now choosexo overxo, lift the 8U) andp, starting fromxo, and let
a') € m1(M) be such thap,, = a/) - §)(1). Then

k
(g, €)=Y (Z ind(a)) -a¥ =0e Hi(M; Z),

Jj=1 \oeC;
and the proof is complete.o

The next result follows directly from the definition, but it is worth stating be-
cause it shows how torsions may be used to distinguish triplesP, &) from each
other.

Proposition 2.6. Let f : M — M'beahomeomorphism, consider £ € Eul(M, P),
¢ :m1(M) - A, anda A-basish of HY (M, W). Then

LM, fu(P)., fu(®). fu(0) = (M, P.E.1).
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Fig. 3. Convention on screw-orientations, compatibility at vertices, and geometric interpre-
tation of branching

3. Branched spinesand inversion of the reconstruction map

In this section we show how to geometrically invert the reconstruction ¥ap

and how to compute torsions starting from an encoding of vector fields based on
branched spines. Later in Sect. 4 we will provide an explicit example of computa-
tion. We first review the theory developed in [3]. See the beginning of Sect. 1 for our
conventions on manifolds, maps, and fields. (We remind the reader in particular that
our “fields” are non-singular by default.) In addition to the terminology introduced
there, we will need the notion dfaversing field on a manifoldM, defined as a

field whose orbits eventually interselcM transversely in both directions (in other
words, orbits are compact intervals).

3.1. Sandard spines

A simplepolyhedronp is afinite, connected, purely 2-dimensional polyhedron with
singularity of stable nature (triple lines and points where six non-singular compo-
nents meet; a regular neighbourhood of such a point is isomorphic to the cone
over the 1-skeleton of a tetrahedron). Sudh is calledstandard if all the compo-
nents of the natural stratification given by singularity are open cells. Depending on
dimension, we will call the componentertices, edges andregions.

A standard spine of a 3-manifoldM with M # ¢ is a standard polyhedron
P embedded in IntM) so thatM collapses ontd®. Standard spines of oriented 3-
manifolds are characterized among standard polyhedra by the property of carrying
anorientation, defined (see Definition 2.1.1 in [3]) as a “screw-orientation” along
the edges (as in the left-hand-side of Fig. 3), with the constraint that when the
neighbourhood of a vertex is embedded in 3-space then the four initial portions
of edge at the vertex should carry screw-orientations which are compatible in 3-
space (as in the centre of Fig. 3). It is the starting point of the theory of standard
spines that every oriented 3-manifaldl with 9M # ¢ has an oriented standard
spine, and can be reconstructed (uniquely up to homeomorphism) from any of its
oriented standard spines. See [5] for the non-oriented version of this result and [2]
or Proposition 2.1.2 in [3] for the (slight) oriented refinement.
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Fig. 4. Manifold and field associated to a branched spine.

3.2. Branched spines

A branching on a standard spin® of an orientable manifold/ is a collection

of one orientation for each region @f, such that no edge is induced the same
orientation three times. As explained in [3, 8. 3.1] and illustrated in Fig. 3-right,
a branching can be used to consistently smoothen the singularRysofto turn

it into a branched surface, see [19] and also [6]. Namely, the embeddihgafh

be isotoped so that an oriented tangent plane is defined at each point, even along
the topological singularity, and all the regions are smoothly immersdétliman
orientation-preserving way. A standard spiRewith a certain branching will be
called abranched spine of M. We will never use specific notations for the extra
structures orP (i.e. the screw-orientation and the branching). These structures will
be viewed as parts dt itself. The following result, proved as Theorem 4.1.9in [3],
is the starting point of our constructions.

Proposition 3.1. To every branched spine P there corresponds a manifold M (P)
with non-empty boundary and a concave traversing field v(P) on M (P). The pair
(M(P), v(P)) iswell-defined up to diffeomorphism. Moreover an embedding i of
P asatransversely oriented branched surfacein Int(M (P)) is defined, and it has
the property that v(P) is positively transversal to i (P).

The topological construction which underlies this proposition is actually quite
simple, and it is illustrated in Fig. 4.

3.3. The encoding of combings via branched spines

Let v be a concave field on a manifold. We denote byStzriv any sphere i M
which is split by the tangency line ofto d M into two discs. Now, notice thattzriv
is also the boundary of the closed 3-ball with constant vertical field, denoted by
B2,,. This shows that we can cap off eve§$, by attaching a copy aB2,,, getting
a non-singular vector field on the resulting manifold. This vector field is however
well-defined only up to homotopy.

We will denote by Comb the set of all pai(3/, v), whereM is a compact
oriented manifold and is a concave field on, viewed up to diffeomorphism of

M and homotopy ob through concave fields. A clagd?, v] € Comb is called a
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combing on the diffeomorphism class of the manifald. Note that the boundary
pattern ona M evolves isotopically during a homotopy of so a pair(M, P),
viewed up to diffeomorphism o7, can be associated to eaglf, v] € Comb.
In particular, Comb naturally splits as the disjoint union of subsets Comep),
consisting of combings oM compatible withP.

For a technical reason we actually rule out from Comb the set of those classes
(M, v] such that the corresponding boundary pattern contains components of the
type S2,,. This is actually not a serious restriction, because efghcomponent
can be capped off byamv as explained above, and the result is well-defined up to
homotopy. Note that we do accept paird, v) with closedM, and pairs in which
v has no tangency at all @V.

Let us denote now bys the set of all branched spinds (up to orientation-
preserving PL isomorphism) suchthatthe boundary pafém) of v(P) onM (P)
contains onIy one mv Such aP being given, we can cap oﬂtznv by attaching a
copy of BZ,,, getting M(P) endowed with a concave field(P), and the pair
(M(P) D(P)) gives rise to a well-defined element of Comb, which we denote by
@ (P). The following is proved in [4]:

Theorem 3.2. Themap @ : B — Combis surjective.

Thistheorem generalizes the main achievement of [3, Theorems 1.4.1and 5.2.1],
where itis proved in the special case of clogédTl he assumption thatM contains
no S2,, component has a purely technical nature, and has been inserted here only to
make the statement simpler. The complete statement includes also the description
of afinite set of local moves on branched spines generating the equivalence relation
induced by®. We will not need the moves in this paper. The following geometric

interpretation of the theorem may however be of some interest.

Remark 3.3. In general, the dynamics of a field, even a concave one, can be com-
plicated, whereas the dynamics of a traversing field (in particBﬁy) is simple.
Theorem 3.2 means that for any (complicated) concave field there exists a sphere
52 which splits the field into two (simple) pieces: a stand&|, and a concave
traversing field.

Back to the case of our fixed manifald with boundary patterf?, we note that
we have a projectionS : Coml(M, P) — EulS(M, P). Our aim is now to define,
using branched spines, another projectién Comh(M, P) — Eul®(M, P) such
thatns = WonC.

3.4. Spinesand ideal triangulations

We remind the reader that aeal triangulation of a manifoldM with non-empty
boundary is a partitioff of Int(M) into open cells of dimensions 1, 2 and 3, induced
by a triangulatiori/” of the space&d (M), where:

1. Q(M) is obtained fromM by collapsing each component®#/ to a point;
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lﬂ
Fig. 5. Duality between standard spines and ideal triangulations

2. T’ is atriangulation only in a loose sense, namely self-adjacencies and multiple
adjacencies of tetrahedra are allowed;

3. The vertices off” are precisely the points @ (M) which correspond to the
collapsed components 6.

Itturns out (see for instance [9]) that there exists a natural bijection between standard
spines and ideal triangulations of a 3-manifold. Given an ideal triangulation, the
corresponding standard spine is just the 2-skeleton of the dual cellularization, as
illustrated in Figure 5. The inverse of this correspondence will be denot&dby
T(P).

We can now give a dual interpretation, usihgP), of a branching orP. Since
the ambient manifold is oriented, an orientation for a regioR id the same as an
orientation forthe dual edge @f(P), and it turns out that a collection of orientations
on the edges of (P) defines a branching if and only if on each tetrahedron of
T (P) exactly one of the vertices is a sink and one is a source. Moreovehis
a branching, the oriented edgesjofP) are precisely oriented orbits of P), and
the 2-faces are unions of such orbits.

Remark 3.4. It turns out that ifP is a branched spine, not only the edges, but also
the faces and the tetrahedra’fP) have natural orientations. For tetrahedra, we
just restrict the orientation aff (P). For faces, we first note that the edge#dfave

a natural orientation (the prevailing orientation induced by the incident regions).
Now, we orient a face of (P) so that the algebraic intersectioni(P) with the

dual edge is positive.

3.5. Euler chain defined by a branched spine

We fix in this paragraph a standard spih@nd consider its manifoltf = M (P).

We start by noting that the ideal triangulatién= 7 (P) defined byP can be inter-
preted as a realization of Il/) by face-pairings on a finite set of tetrahedra with
vertices removed. If, instead of removing vertices, we remove open conic neigh-
bourhoods of the vertices, thus gettingncated tetrahedra, after the face-pairings
we obtainM itself. This shows thaP determines a cellularizatioh = 7 (P) of
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Fig. 6. Truncated tetrahedra and subdivision of the triangles on the boundary

M with vertices only oM and 2-faces which are either triangles contained in
dM or hexagons contained in k#), with edges contained alternatingly aa/
and in In{M).

Now assume thak is branched and that contains only ong2, component,
soM = M(P)isdefined, together with the concave boundary paffesa P(P) =
(W, B, %, C) on M. Note that¥ can be thought of as the space obtained fildm
by contracting?tzriv to a point, so a projection : M — M is defined, andr (7)
is a cellularization ofd. Next, we modifyz(7) by subdividing each triangle
on dM into 3 “kites” (quadrilaterals having two “short” and two “long” edges)
as shown in Fig. 6. We do this to get a cellularization suited to the boundary
pattern: the tangency lin€ is now a union of short edges of kites. The result is a
cellularizationT = ?(P) of M. Note again thal on aM consists of kites, with
long edges coming from tetrahedra and short edges coming from subdivision. Note
also that7 has exactly one vertexg in Int(A7I), and that the cells contained in
Int(M), exceptyp, are the duals to the cells of the natural cellularizatioa U/ (P)
of P. Foru € U we denote byi its dual and byp, = p; the point where: andu
intersect, called theentre of both.

We will now use the field = v(P) to construct a combinatorial Euler chain
on M with respect to7. It is actually convenient to consider, insteadmfthe
field v = 7 (v), which coincides withy except neaxg, where it has a (removable)
singularity. Foru € U4 we denote by, the arc obtained by integrating P) in the
positive direction, starting frorp,,, until the boundary or the singularity is reached.
We define:

s(P) =Y ind() - Bu.

ueld

(We remind the reader that ifwd) = (—1)dim(“>.) Our aim is now to use this chain
s(P) to define a combinatorial Euler structure, and then show that the smooth com-
panion of this structure is indeed the structure represent@&d®). Note however
thatds(P) contains, besides the centres of the cells iGAAL, only the centres of
the cells ofr (7)) which lieentirelyin B, but B is not a union of cells ofr (T): this
is precisely the reason why we have subdivigg) into 7. So we will need to
add something te(P).

If pis a vertex ofr(7) contained inB, we define its star $p) as the sum
of the straight segments going fromto the centres of all the kites containipg
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Fig. 7. The star Stp) centred at a vertey contained inB and the bi-arrow B& ) based at
the midpoint of an edge contained inB

minus the sum of the straight segments going froto the centres of all the long
edges containing. If o is an edge ofr(7) contained inB we define its bi-arrow
Ba(o) as the sum of the two straight segments going from the cegtd o to the
centres of the two short kite-edges containjng A star and a bi-arrow are shown
in Fig. 7. We define:

s'(P) = s(P) + > stp)+ > Ba(o).

pen (MO, peB oen(TD, scB

Lemma 3.5. s'( P) defines an element of Eul(M, 6(P)).

Proof of Lemma 3.5. Recall that@(ﬁ) = (W, B, C, ), i.e. the concave lin& is
turned into a convex one. So by definition we have to showdk'@®) contains,
with the right sign, the centres of all cells Bfexcept those o U C.

It will be convenient to analyze first the natural lifting ofP) to M, denoted
by s(P) =3, ind(n) - B, with obvious meaning of symbols. So

95(P) =Y —ind(u) - B (0) + Y _ ind(u) - B (D). (4)

ueld ueld

Since the cellularizatio” of M is dual tol/, the first half of (4) gives the
centres of the cells contained in (M), with right sign. One easily sees that the
second half gives exactly the centres of the cells/(ptontained inB, also with
right sign.

When we project ta and considebs(P), the first half of (4) again provides
(with right sign) the centres of the all cells contained in MY, except the special
vertexxo obtained by collapsmgmv We can further split the points of the second
half of (4) into those which lie or§2,, and those which do not. The points of
the first type project tag, and the resulting coefficient ab is x (B N S, rlv) but
BN Stznv is an open 2-disc, so the coefficientis 1. (We are here using the very special
property of dimension 2 thgt can be computed using a finite cellularization of an
open manifold, because the boundary of the closurechasd.) The points of the
second type faithfully project i, giving the centres of the simplices contained in
B of the trlangulat|0m(7')|aM However7 ondM is a subdivision ofr(T), and
this is the reason why we have added the stars and the bi-arraw# Ya@etting
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s"(P). Tﬁe following computation of the coefficientsdn’ ( P) of the centres of the
cells of 7 contained inB concludes the proof.

0. Cells of dimension 0 are listed as follows:
(a) Centres of triangles of(7), which receive coefficient-1 from ds(P);
(b) Midpoints of edges af (7), which receive coefficient 1 from ds(P) and
+2 from the bi-arrows they determine;
(c) Vertices ofr (T), which receive+1 from ds(P) and (algebraically) O from
the star they determine;
1. Cells of dimension 1 are:
(a) Short edges of kites, whose midpoints receilefrom the bi-arrows;
(b) Long edges of kites, whose midpoints receiEfrom the stars;
2. Cells of dimension 2 are kites, and their centres receil/érom the stars. O

Now we denote by, : (0,1) — C, for j =1,...,n, orientation-preserving
parameterizations of the 1-cellsdfcontained inC, and we extend thg; to [0, 1],
without changing notation. We define

n
S"(P)=5'"(PY+ Y ¥iliaay
j:l

Lemma 3.6. s” (P) defines an element of Eulc(M, P), and

[s(P)] = ©%([s"(P)]) € EU(M, 6(P)).

Proof of Lemma 3.6. At the level of representatives, the second assertion is a direct
consequence of the definition &€, and it implies the first assertiono

We defer to Sect. 7 the proof of the next result, which shows that the map
P — [s"(P)] € Eul°(M, P) allows, using branched spines, to explicitly find the
inverse of the reconstruction mapof Theorem 1.4.

Theorem 3.7. ¥ ([s”(P)]) = [0(P)] € EUS(M, P).

Recall now that we have defined torsions directly only for convex patterns,
and we have extended the definition to concave patterns via the@m#s a
consequence of Lemma 3.6 and Theorem 3.7, and by direct inspectionPof
we have the following result which summarizes our investigations on the relation
between spines, Euler structures, and torsion:

Theorem 3.8. If P isabranched spinewhich representsamanifold M with concave
boundary pattern P = (W, B, 9, C) in the sense of Theorem 3.2, then for any
representation ¢ : m1(M) — A, andany A-basish of H (M, W UC), thetorsion
(M, P, [5(M)], h) can be computed using (in the sense of Proposition 2.5) the
lifting to the universal cover of M of the chain s'(P) defined above. In particular,
s’(P) can be used directly, without replacing it by a connected spider.

In the next section we will illustrate an explicit example of torsion computation
carried out using the last assertion of the previous result.
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Remark 3.9. We can now be more explicit about how to compute the torsion of an
Euler structures represented by a given smooth vector figldn M. The first step

is to turnw into a concave field), in the spirit of Remark 1.8. Now we need a
branched spine® of v, and we only need to note that the proof of Theorem 3.2
given in [4] has a constructive nature. The constructios’ @) starting fromP

is of course an effective one, and the previous theorem shows' ttfatallows to
compute the torsion of the originél

We mention here that in [1] we have developed a different extension of Turaev’s
theory of torsion, by considering combed manifolds with completely arbitrary con-
figurations on the boundary. The torsion defined in [1] coincides with Turaev’s one
(and hence with that considered in the present paper) only when the manifold is
closed. One point worth remarking is thatin [1] the proof that torsion is well-defined
andHi-equivariant is completely self-contained, it does not depend on Turaev’s
sophisticated results on subdivisions of cellularizations. Instead, it is based on a
combinatorial analysis of the elementary catastrophes associated to the moves of
the calculus of branched spines.

4. An example of torsion computation

As an example of application of Theorem 3.8, we are going to work out in this
section a specific computation of torsion. The example is simple enough to be
treated by hand, but the method we describe extends to the general case. The
present section may be skipped by the readers mainly interested in applications of
torsion to pseudo-Legendrian knots.

4.1. Boundary operators

To actually apply Theorem 3.8 in order to compute torsion starting from a branched
spineP, besides describing the universal (or maximal Abelian) covef ef M(P)

and determining the preferred liftings of the ceIIsA'Th\ (W U C), one needs to
compute the boundary operators in the twisted chain compfg/CW U C).

These operators are of course twisted liftings of the corresponding operators in the
cellular chain complex ofM, W U C), with respect td . We briefly describe here

the form of the latter operators. Recall first thiatonsists of a special vertex,

the kites (with their vertices and edges)ﬁn and the duals of the cells @&f. On

3 M the situation is easily described, so we consider the internal cells.

1. If R is aregion ofP, the ends of its dual edge are either or vertices obM
contained only in long edges of kites.

2. If eis an edge oP thendé is given byR1 + R2 — Ro plus 3 long edges of kites,
whererg, r1, r2 are the regions incident tg numbered so that andr; induce
one the same orientation. Herg, r1, ro need not be different from each other.
The 3 long edges of kites must be given an appropriate sign, and some of them
may actually be collapsed to the pokat Note that we have only 3 kite-edges,
out of the 6 which geometrically appear 8&, because the other 3 are white.
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Fig. 8. The abalone, and altknot on it

3. If v is a vertex ofP thend is given bye; + é2 — e3 — é4 plus 6 kites, where
e1, ez are the edges which (with respect to the natural orientation) are leayving
andes, e4 are those which are reaching it. Again, there could be repetitions in
thee;’s. The kites all have coefficiert1, and again some of them may actually
be collapsed tag. As above, we have only 6 kites because the other 6 are white.

4.2. Smplified cellularization

To define the celluIarizatioﬁ'(P) associated to a spine we have decided to subdi-
vide all the triangles ofr (7) on dM into 3 kites, but when doing actual computa-
tions this is not necessary and impractical. The only triangles which we really need
to subdivide are those intersected®@ybecause we need the cellularization to be
suited to the pattern. If we consider the 4 triangles corresponding to the ends of a
certain tetrahedron, and in each of them we count the number of black kites and the
number of white kites, we get respectivgB; 0), (2, 1), (1, 2), (0, 3). So, the first

and last triangles do not have to be subdivided, and the other two can be subdivided
using one segment only. Summing up, for each verteR @fe only need to add

two segments on the boundary. Before projectiigP) to M(P) one sees that the
number of cells, with respect t6(P), is increased in all dimensions 0, 1 and 2 by
twice the number of vertices df. When projecting ta (P) the cells lying inStZriV

get collapsed tag.

4.3. The example

Figure 8 shows a neighbourhood of the singular set of the so-called abalone, a
branched standard spine $, which we denote byl. Note that4 has one vertex,

two edges and two regions. The figure on the left is easier to understand, but it
does not represent the genuine embeddingl o 2, which is instead shown

in the centre (hint: compute linking numbers). On the right we show (using the
easier picture) a knok on A. Of coursek is transversal to the field carried

by A, so (v, K) is a pseudo-Legendrian pair (see the end of Sect. 1). Moreover,
using the genuine picture of, one sees thak is actually trivial in S, and its
framing is+1. So the knot exterioE (K) is a solid torus, with an induced Euler
structuret, and the white annulu® C dE(K) is a longitudinal one. Let us now
take the representatian : 71(E(K)) — Q(Z[t*1]) which maps the generator

to r (here, as usualp stands for the field of fractions). It is not hard to see that
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Fig. 9. How to dig a tunnel in a spine

Fig. 10. Truncated ideal triangulation of the knot exterior

HY(E(K), W) =0, so we can computef (E(K), £). We describe the method to
be followed, skipping several details and all explicit formulae.

4.4. Sine of a knot complement

We first note that a branched standard spinef E(K) can be easily constructed
by digging a tunnel through alongkK , as suggested by Fig. 9. By construction the
field carried byP on E(K) is precisely the restriction t& (K') of the original field

v carried by the abalone o§f. Now P is easily recognized to have 5 vertices (de-
notedvy, ..., vs), 10 edges (denoted, ..., eg) and 6 regions (denoted, . . .rg).
Figure 10 shows the truncated ideal triangulation dua? ton the figure the hat
denotes duality as usual. We have writte#} instead ofe; wheng; lies ond; but

the natural orientation of; is not induced by the orientation of. The lettersS
andT refer to the boundary sphere and torus respectivelghould actually be
collapsed to one pointg, but the picture is easier to understand before collapse).
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Recall that the algebraic complex of which we must compute the torsion has one
generator for each cell in the cellularization®fK ) arising fromP, excluding the
white cells and the tangency circles on the boundary. From Fig. 10 we can see how
many such cells there will be in each dimension, namely 3 in dimensiog &d
two vertices orl'), 14 in dimension 1 (thé’s and 8 edges off), 16 in dimension
2 (thee;'s and the 6 black kites off) and 5 in dimension 3 (thé;’s). We can
also easily describe the 1-chaifiP) which will be used to find the preferred cell
liftings: besides the orbits of the field there are only one star and one bi-arrow; the
support ofs’(P) has 3 connected components (one spider with 19 legs and head at
xo, the star union the second half/f and the bi-arrow union a segment contained
in 23).

To actually determine the preferred liftings we need an effective description
of the lifting of the cellularization to the universal covBXK) — E(K). Since
71(E(K)) = Z, each celk will have liftings ¢™ for n e Z, wherec® is then-th
translate of(@. The choice of @ itself is of course arbitrary, but to understand the
cover we must express th€¢(@’s in terms of the othed™’s. To do this we start
with a lifting Xg of the basepointy and we lift the other cells one after each other,
taking into account the relations iy (E(K)) and making sure that the union of
cells already lifted is always connected. When a cé&lreached for the first time,
its lifting is chosen arbitrarily and declared to&&, but its boundary will involve
in generald™’s with n # 0. Once the lifted cellularization is known, it is a simple
matter to determine preferred cell liftings: since the supporst @) consists of 3
spiders, we only need to choose liftings of the 3 heads and then lift the legs.

Carrying out the computations we have explicitly found the algebraic complex
with coefficients inQ (Z[t*1]), and the preferred generators of the 4 moduli ap-
pearing. Then, using Maple, we have checked that indeed the complex is acyclic,
and we have computed its torsion as follows:

TP(E(K), &) =+t % (5)

5. Torsion of pseudo-L egendrian knots and the Alexander invariant

In this section and in the next one we apply the general theory we have developed to
the study of pseudo-Legendrian (and hence of Legendrian) knots. We fix a compact
oriented manifoldy and a boundary pattefd on M. The boundary o/ may be
empty or not. Recall that if is a vector field onM andK is a knot in In{M), we
have defined to be pseudo-Legendrian{®, v) if v is transversal t& . We will
also call(v, K) a pseudo-Legendrian pair. Having fix&j we will only consider
fieldsv compatible withP. Some of the results we will establish hold also for links,
but we will stick to knots for the sake of simplicity. First, we need to spell out the
equivalence relation on pseudo-Legendrian pairs which we consider.

Let vg, v1 be compatible withP and let Ko, K1 be pseudo-Legendrian in
(M, vg) and (M, v1) respectively. We definévg, Ko) to be pseudo-Legendrian-
isotopic to (v1, K1) if there exist a homotopy, );<[o,17 through fields compatible
with P and an isotopyK);<[o,1 such thaik; is transversal to, forall z. If vo = v
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then Ko and K are calledstrongly pseudo-Legendrian-isotopic if the homotopy
(v;) can be chosen to be constant.

Remark 5.1. Of course strong pseudo-Legendrian isotopy implies pseudo- Legen-
drian isotopy. The latter relation is the natural one to consider on pseudo-Legendrian
pairs (v, K), while the former is natural for pseudo-Legendrian knots in a fixed
(M, v). A classical Legendrian isotopy of a Legendrian knot in a contact struc-
ture & is a strong pseudo-Legendrian isotopy with respect to any vectorifield
orthogonal tc;. See [4] for further discussion on these notions.

Before proceeding recall thatk is pseudo-Legendrian i@, v) thenv turns
K into a framed knot, which we denote /"), and the framed-isotopy class of
K@ is of course invariant under pseudo-Legendrian isotopy. We also know that,
given a boundary pattefon M, we have a well-defined pattef( K ) on E(K).
Moreover, ifv is compatible withP, then the restriction of to E(K) defines an
element
£(v, K) € EUl(E(K), P(K™)),

so the theory of torsion applies. In the rest of this section we will discuss torsion
as amabsolute invariant of (v, K), showing in particular that in a homology sphere
it lifts the classical Alexander invariant & . The relation between torsion and the
Alexander invariant is however more complicated than in Turaev’s situation ([15]
and [16]), because here two different algebraic complexes will be involved at the
same time. In the next section we will discuss the extent to which torsion can be
employed as a relative invariang. as an obstruction to pseudo-Legendrian isotopy
of pairs(vo, Ko) and(v1, K1).

For the sake of simplicity we only consider, in the present section and in the
next one, representations of the fundamental group obtained from representations
of the first homology group.

5.1. Turaev'slifting of Milnor torsion

Let us first recall again in what sense Turaev’s torsion lifts the classical one. Let
M be a manifold which is closed or bounded by tori, and take a representation
¢ : Hi(M;Z) — A, whereA is as usual. The classical theory [11] allows to
define an invariant

T (M) € K1(A) [ (ko (Hy(M: 2),

usually stipulated to be 1 if the-twisted homology oM does not vanish,e., using
the above notation, if the comple®? (M) = A ®, CS®(M; Z) is not acyclic,
whereM — M is the maximal Abelian cover. Whenis an Euler structure on
M with monochromatic boundary components, Turaev [16] shows that his torsion
(M, £) € K1(A) is a lifting of % (M) with respect to the obvious projection of
K1(A)/ £ @(H1(M: Z) onto K 1(A).

In the special case whereis the field of fractions obtained from the group ring
of H1(M; Z) modulo torsion, an@ : H1(M;Z) — A is the natural projection,
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the invariantt¥ (M) is called Milnor torsion, and its sign-refinement provided by
Turaev in [15] has been shown to be equivalent to the classical Alexander invariant.
So Turaev’'s torsion for Euler structures contains a lifting of the Alexander invariant.
We will discuss in the rest of this subsection the extent to what the same holds when
the Euler structure arises from a pseudo-Legendrian knot. What we will say applies
to any allowed representatign: H1(M; Z) — A, but we keep in mind that the
relation with the Alexander invariant emerges for a special choigeadid A . Since

we will also drop the condition that the involved complexes be acyclic, we note
that torsion is only defined when the resulting homology is free. This is not true in
general, but it is for instance whenis a field.

5.2. Torsion of a knot complement

Let us restrict to the case of a closed manifafd and let us consider a pseudo-
Legendrian paifv, K) in M and a representatign: Hy(E(K); Z) — A as usual.
We would like to interpret the torsion of the Euler structéite, K) on E(K) with
respectt@ as alifting oft? (E (K)), but a difficulty immediately emerges, because
the algebraic complexes used to compute these torsions do not coincide.

To be more specific, let us first spell out how the torsiog@f K) is defined.
Let P(K™) = (B, W, @, C) be the boundary pattern defined 8K ). Then we
definet?(M, v, K, ) ast?(M,0(P(K™)), ®(&(v, K)), h). More specifically,
t¥(M, v, K, b) is the torsion of the complex? (E (K ), W), whereW is the (open)
white annulus o E(K), as above the maximal Abelian cover®{K) is used to
define the complex, the preferred cell lifting is obtained using an Euler chain for
the convexified structur® (¢ (v, K)), andp is a basis of the twisted homology of
E(K) relative tow.

Now, ¢ (E (K)) is the torsion olCY (E(K)), and this complex can be radically
different from the previous one. For instance, whiéris a homology sphere, the
absolute complex is always acyclic, while the complex relatiw& tahich depends
only on the framed knok ™, in general is not. We will see how to overcome this
difficulty using the fundamental multiplicativity properties of torsion.

5.3. How to turn a torusinto black

We will describe in this paragraph two explicit methods for modifyig, K)
to an Euler structurg (v, K) such thatdo E(K) becomes monochromatic black.
These methods are respectively a geometric and an algebraic one. The fact that
they actually lead to the same result is true but not very important, so we will omit
the proof. Both methods involve the choice of an orientatiok ot he first method
is explained in a cross-section in Fig. 11. The cross-section is transverkal to
and the apparent singularity of the modified field is removed by summing a field
parallel toK and supported near the singularity. Fig. 2, where a similar method
was used).

To describe the algebraic constructionffrecall that ifz is a 1-chain repre-
sentingg (v, K) thendz contains, with the appropriate sign, the centres of all cells
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Fig. 11. Black field on a knot complement

>

Fig. 12. A 1-chain on the annulu®@

in E(K) \ W.Knowing the subdivision rule for Euler chains (Proposition 1.3) we
can also assume that the cellularizationWdrhas a particularly simple shape. We
assume it consists of rectangles as in Fig. 12 (left), where we also show a 1-chain
zw having the property thatzy contains the centres of all cells Wi. We can now
defineB(v, K) as the Euler structure carried byt zw. The boundary off (K)

is completely black with respect to this structure, becaset zy) contains the
centres of all cells oE (K).

One easily sees from both our descriptiong tfiat it is canonically defined and
Hj-equivariant. Since we will need these properties, we spell out their meaning,
starting from an oriented framed kn#&t” rather than a pseudo-Legendrian knot.
Let (W, B, ¥, C) be the concave boundary pattern determined’lon E (K ): then
B : EU(E(K),(W,B,%,C)) - EUI(E(K), W,JdE(K),?,?)) is well-defined
(depending ork ' only) andH1(E (K); Z)-equivariant.

Remark 5.2. If —K denotes the same knft with reversed orientation then
a(B(v, K), B(v, —K)) =[A] € HI(E(K); Z)
where} is the longitude o E (K) determined by the framing .

A geometric interpretation of the chaify entering in the second description of
B is possible and used below. We have mentioned that a theory of Euler structures
exists in all dimensions. While the case> 4 requires some technicalities, the
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reader can easily work out the case- 2 using the case = 3 treated in the present
paper. And one readily sees that is just an Euler chain of the inward-pointing
Reeb fieldy onW shown in Fig. 12 (right). Moreovesy can be canonically turned
into an outward-pointing fiel® (rw ), which of course is the outward-pointing Reeb
field (but the core spins in the opposite direction). So a torstofW, © (ry)) can

be computed (possibly with a basis of the twisted homology added to the data).

5.4. Knot torsion as a lifting of Milnor’storsion

Let as abovev, K) be pseudo-Legendrian and tet: H1(E(K); Z) — A be a
representation. if : W — E(K) is the inilusion, we sety = ¢ oi,. Considering
the twisted homology of the pafi& (K), W) we get an exact sequence

= ( — H" (W) — HY(E(K)) —> Hf(E(K), W)
— H™M (W) — )

We choose basds b, andb” respectively forHY (E(K); W), HY (E(K)) and

HYY (W), so we can computer?(M, v, K, ), t¢(E(K), B(v, K), ) and

™% (W, O(rw), b”). In addition we can compute(#, b, ', h”). The following
result is a refinement of Theorem 3.2 in [11], and a proof can be given imitating
the argument given in [17] (where a special case of the result is established).

Proposition 5.3. The following equality holds:

t?(E(K), B(v, K), b
= T(p(Mv v, Kv b) : ‘C(pW(Ws ®(VW)7 b//) : T(H9 bv b/v b//)' (6)

The following remarks and corollary of the previous proposition eventually explain
in what sense our torsion can be viewed as a lifting of the classical torsion (in
particular, Milnor torsion and the Alexander invariant).

Remark 5.4. In equation (6) the term?(E(K), B(v, K), §’) is one of Turaev's
torsion, so it is indeed a lifting of the classical torsion. The teftoM, v, K, )

is the torsion for pseudo-Legendrian knots introduced in this paper, while
™ (W, O(rw), b)) andz(H, b, b, ) can be viewed as normalizing terms. One
can for instance choose homology bases so tliat, b, §’, §”) = 1, and note
thatz¢¥ (W, ©(rw), h”) depends only on the framed knkit”, not on the Euler
structure.

Remark 5.5. The factorr ¢V (W, © (rw), h”) may be understood quite easily. Denot-
ing by 1 the generator a1 (W; Z), the result only depends gfy (1). If ow (1) = 1
then thepy -twisted homology oW is not twisted at all, so it is non-zero and free,
and we can choosg sothat?" (W, ®(rw), h”) = 1. Onthe contrary, iby (1)—1

is invertible, then they -twisted homology is zero, and’V (W, © (rw)) is com-
puted to belgw (1) — 1)~L. In the intermediate cases wherg (1) — 1 is neither
zero nor a unit, which can only occur whenis not a field,7¢% (W, ® (rw)) is
likely not to be defined.
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We can further specialize the understanding &f (W, © (rw), ") when M
is a homology sphere angd : H1(E(K);Z) — A is the representation which
gives the Milnor torsion. In this case we recall tiat= Q(Z[t*1]), the generator
of H1(E(K); Z) is mapped ta by ¢, and HY (E(K)) = 0. It follows that the
generator off1(W; Z) is mapped ta” by gw, wheren € Z is the framing ofK .
So the complexC?" (W) is only acyclic whem # 0. If indeedn # 0 then the
torsion of C" (W) is computed to b&”" — 1)~1, and from the exact sequence we
deduce thaH? (E(K), W) = 0. Ifinsteadn = 0 thenH?" (W) is non-zero, and
canonically isomorphic t#{ (E(K), W). We deduce the following result which
summarizes the relations between our torsion and the Alexander invariant:

Corollary 5.6. Let (v, K) be a pseudo-Legendrian pair in a homology sphere M,
and let n € Z betheframing on K defined by v.

o Ifn # Othen
T (E(K), B(v, K)) = (M, v, K) - (" = 1)}

e If n = 0 and we choose the same basis h for HYY (W) and HY (E(K), W) under
their natural isomorphism, then

t(E(K), Bv, K)) = ¥(M, v, K, b) - ¥ (W, ©(rw), b).

6. Torsion asa relativeinvariant of knots

We study in this section how torsion can be employed to distinguish pseudo-
Legendrian knots from each other. We first show that as a relative invariant torsion
is only well-defined as a multi-valued function, the ambiguity being given by the
action of a suitable group. Then we concentrate on the knots (called ‘good’ below)
for which this action is trivial, and we interpret the relative information carried by
torsion as a relative winding numbers.

6.1. Group action on Euler structures

Consider a knoK and a self-diffeomorphisni of E(K) which is the identity near
dE(K). Thenf extends to a self-diffeomorphisyhof M, Whereﬂ UK = idy (k)-
We defineG (K) as the group of all suclfi’s with the property thayf is isotopic
to the identity onM. Elements ofG(K) are regarded up to isotopy relative to
0E(K). If F is a framing onK then the pull-forward of vector fields induces an
action of G(K) on EuKE(K), P(K™)). We will now see that an obstruction to
pseudo-Legendrian isotopy can be expressed in terms of this group action.

Let (vo, Ko) and(v1, K1) be pseudo-Legendrian pairs M, and assume that
K(()”") is framed-isotopic td({”l) under a diffeomorphisnf relative tod M. Using
the restriction off and the pull-back of vector fields we get a bijection

£* 1 EU(E (K1), P(K™)) — EU(E(Ko), P(KS™)).
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Proposition 6.1. Under the current assumptions, if (vg, Kg) and (vy, K1) are
pseudo-Legendrian-isotopic to each other then f*(£(v1, K1)) belongs to the
G (Ko)-orbit of &(vo, Ko) in EU(E(Ko), P(K™)).

Proof of Proposition 6.1. By assumptionKo, K1 andvg, v1 embed in continuous
families (K;)sefo,17 and (vr)seq0,13, Wherew, is transversal tX, for all . Now
(K,(”’))tg[o,l] is a framed-isotopy, so there exists a continuous fa@iy;c[o,1; of
diffeomorphisms oM fixed ond M and such thago = id s andg, (K'®) = K.
So we get a map

[0,1] 5 t = a(&(vo. Ko), & (€ (vr, K1) € HI(E(Ko); Z).

SinceH1(E(Ko); Z) is discrete and the map is continuous, we deduce that the map
is identically 0. Sz (£ (v1, K1)) = &(vo, Ko). Now

FHEW1, K1) = (f* o (g1)x 0 85 (E 1, K1) = (f Lo g1)x(£(vo, Ko))

and the conclusion follows becauge?! . g1 defines an element & (Kp). O

The groupG(K) is in general rather difficult to understand (see [7]), so we
introduce a special terminology for the case where its action can be neglected. We
will say that a framed knakt £ isgoodif G(K) actstrivially on EW(E (K), P(KT)).

If K is good for all framingsF, we will say thatk itself is good. The following
are easy examples of good knots:

e M is $% andK is the trivial knot;
e M is a lens spacé.(p, g) and K is the core of one of the handlebodies of a
genus-one Heegaard splitting &f.

The reason is that in both casg$K) is a solid torus, and we know that an au-
tomorphism of the solid torus which is the identity on the boundary is isotopic to
the identity relatively to the boundary, €&K) is trivial. The next three results
show that on one han@(K) is very seldom trivial, but on the other hand many
knots are good. We will give proofs in the sequel, after introducing some extra nota-
tion. In the statements, byE‘(K) is hyperbolic” we mean “IntE (K)) is complete,
finite-volume hyperbolic”.

Proposition 6.2. If M isclosed and E(K) is hyperbolic then G(K) ishon-trivial.

Theorem 6.3. If M is closed, E(K) is hyperbolic and either Out(r1(E(K))) is
trivial or H1(E(K); Z) istorsion-free then K is good.

Theorem 6.4. If M isa homology sphere then every knot in M is good.

The next result, which follows directly from Proposition 6.1, the definition of
goodness, and Proposition 2.6, shows that for good knots torsion can be used as an
obstruction to pseudo-Legendrian isotopy (and hence to strong pseudo-Legendrian
isotopy).
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Proposition 6.5. Let (vg, Ko) and (v1, K1) be pseudo-Legendrian pairsin M, and
assumethat Ké”‘)) isframed-isotopic to K {”1) under a diffeomorphism f relativeto
oM. Supposethat K év") isgood, and that for somerepresentationg : 71(E(Kp)) —

A and some A-basist of HY (E(Kop), W(P(KSUO)))) we have

t(E(Ko), P(K"™), £(vo, Ko), b)
# 12 F T (E(Ky), P(KPY), £(ua, K1), (D). (7)

Then (v, Ko) and (v1, K1) are not pseudo-Legendrian-isotopic.

Remark 6.6. 1. The right-hand side of equation (7) actually equals

t9(E(Ko), P(KS™), f*(&(v1, K1), b)
= ga(vo, f*(v1)) - T(E(Ko), P(K™), £(vo, Ko), b).

This shows that the most torsion can capture as a relative invaridng,afo)
and (v1, K1) is a(vo, f*(v1)). We will show below that in some cases torsion
indeed allows to determire(vg, f*(v1)) completely.
2. By definition of goodness the homology classg, f*(v1)) just considered is
actually independent aof . We will denote it byx ((vo, Ko), (v1, K1)).
3. For non-good knots the relative invariant is an orbit of the actio@ @o). So
an obstruction in terms of torsion could be given also for non-good knots, but
the statement would become awkward, and we have refrained from giving it.
4. If equation (7) holds for some bagjghen it holds for any basis.

To conclude this paragraph we note that using the technology of Turaev [16],
one can actually see that the action on Euler structures of an automorphism is
invariant undehomotopy (not only isotopy) relative to the boundary. We will not
use this fact.

6.2. Good knots

We introduce now some notation needed for the proofs of Proposition 6.2 and
Theorem 6.3 (for Theorem 6.4 we will use a different approach, see below). Recall
that (M, P) is fixed for the whole section. We temporarily fix also a framed knot
K% in M, a regular neighbourhootl of K, and we denote by the boundary
torus of U. On T we consider 1-periodic coordinatés, y) such thatc — (x, 0)

is a meridian oV andy — (0, y) is a longitude compatible witly. We denote a
collarof T in E(K) by V and parametriz& asT x [0, 1], whereT = T x {0}. We
consider orf0, 1] a coordinata. For p, g € Z we define automorphisni®, , of

E(K) as follows. EaclD, 4 is supported ir¥/, and onV, using the coordinates
just described, it is given by

D)X, y,9) =& +p-s,y+q-s,s).
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We will call such a map &ehntwist. Itis easy to verify that the extensionDdf,, ,)
to M is isotopic to the identity of/. Note thatD,, . is actually not smooth on
T x {1}, but we can consider some smoothing and ideriify ;) to an element of
G (K), because the equivalence class is independent of the smoothing.

Proof of Proposition 6.2. We show thaD, . is non-trivial inG (K) forall (p, g) #

(0, 0). Fix the basepointy = (0,0) € T for the fundamental groups @f and

E(K). ThenD, 4 acts onm1(E(K), ap) as the conjugation by (p, ¢), where
i : T — E(K)is the inclusion andp, q) € Z x Z = n1(T, ag). If D(,q) is

trivial in G(K), i.e. it is isotopic to the identity relatively té E(K), in particular
it acts trivially on1(E(K), ag). This implies thati,(p, g) is in the centre of
w1(E(K), ag). Now it follows from hyperbolicity that this centre is trivial angis

injective, whence the conclusiono

The proof of Theorem 6.3 will rely on properties of hyperbolic manifolds and
on the following fact, which we consider to be quite remarkable (note that the 2-
dimensional analogue, which may be stated quite easily, is false). Remark that the
result applies in particular to Dehn twists.

Proposition 6.7. If [ f] € G(K) and f issupportedinthecollar V of 90U then [ f]
actstrivially on EUl(E(K), P(KF)).

Proof of Proposition 6.7. Consider a vector field on E(K) compatible with
P(KT). Sincev and £, (v) differ only onV, their difference belongs to the image
of H1(V;Z) in H1(E(K); Z). So we may as well assume thatK) = V,i.e M

is the solid torug/ U V.

By contradiction, let e Eul(V, P(KT)) be such that(, (Dp,g))«(&)) is
non-zero inHy(V; Z), so itis given byt - [y] for somek € Z\ {0} and some simple
closed curver onT x {1} C aV. Let us now take another simple closed cuiham
T x {1} which intersecty transversely at one point. Let us defisi@s the manifold
obtained by attaching the solid torus YoalongT x {1}, in such a way that the
meridian of the solid torus gets identified withNote thatV is again a solid torus
and that the homology class efin H1(N; Z) = Z is a generator. Now we can
apply Proposition 1.1 to extergdto an Euler structuréy on N. Moreover we can
extendf to an automorphisrg of N which is the identity od® N = T x {0}. Now
by constructiorx(éy, g«(En)) equalsk - [y]in Hi(N; Z) = Z, so it is non-zero.
But g is isotopic to the identity oV relatively to the boundary a¥, so we have a
contradiction. O

For the proof of Theorem 6.3 we will also need the following easy fact.

Lemma6.8. Let f be an automorphism of M relative to d M, and consider the
induced automorphisms of H1(M; Z) and Eul(M, P), both denoted by f.. Then:

a(f«(0), fx(61) = fi(a(50.£1)),  Véo, &1 € EUl(M, P).

Proof of Theorem 6.3. Consider[f] € G(K). It follows from the work of Jo-
hansson (see [7]) that, under the assumption #@&) is hyperbolic, the group
generated by Dehn twists has finite index in the mapping class groufi £
relative to the boundary. More precisely, the quotient group can be identified to a
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subgroup of Outr1(E (K)), which is finite as a consequence of Mostow’s rigidity.
If Out(r1(E(K)) is trivial then[ ] is equivalent to a Dehn twist, sbacts trivially
on EUKE(K), P(KT)) by Proposition 6.7.

We are left to deal with the case whef& (E(K); Z) is torsion-free. By
Johansson’s result, there exists an integesuch that " acts trivially on
Eul(E(K), P(KF)). Consider nowt¢ e Eul(E(K),P(KF)), and seta =
a(&, fx(&)). We must show thatr = 0. We denote byx the image ofa in
Hi(M; Z), and byfthe extension off to M. Sincefis isotopic to the iden-
tity, we haveﬁ(?x‘) = a. If we take an oriented 1-manifold representing: and
disjoint from aU (K), this means that there exists an oriented surface M
such thatoX = a U (—f(a)). Up to isotopy we can assume thatintersects
aU(K) transversely in a union of circles. This shows thfate) = o + k - u,
whereu is the meridian off'. Note thatf, (1) = u, so for all integersn we have
S (o) = o +m - k- . Now, using Lemma 6.8, we have:

n—1
O=a. f1E) =) a(fI"®. &)
m=0
n—1 n—1 n—1
=Y @ LEN =Y M) =) (a+m-k-p)
m=0 m=0 m=0
=n~a+n(n_1) e

2

This shows that 2o + (n — 1) - k - u is a torsion element aff1 (E(K); Z), sO itis
null by assumption. S@L — n) - k- © = 2 - «. If we apply f, to both sides of this
equality we getl — n) - k - fiu(n) = 2- fix(a). Using the equality again and the
relationsf, (1) = n and fy (@) = o + k - 1 we get

A-n)-k-u=2-a+2-k-u=A-n)-k-u+2-k-pu.

Thereforek - n is a torsion element, and hence null. But2= (1 — n) - k - u, SO
alsox isnull. O

6.3. Rotation number, and goodness of knots in homology spheres

We will show in this paragraph that in a homology sphere the rotation number
of a pseudo-Legendrian knot can be (defined and) expressed in terms of an Euler
structure on its exterior. This will lead us to a simple interpretation of torsion as a
relative invariant of knots, and it will allow us to show that in a homology sphere
all knots are good (Theorem 6.4).

To begin, we note that the notion of rotation number, classically defined in the
contact case, actually extends to the situation we are considering. Since we will
need this definition, we recall it. Lé be a homology sphere, letbe a field on
M and letK be an oriented pseudo-Legendrian knotM, v). Take a plane field
n transversal t@ and tangent t& , and a Seifert surfacgfor K. Up to isotopy of
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S we can assume thatis tangent taS only at isolated points. Then rgtK) is the

sum of a contribution for each of these tangency pointBefine qp) to be+1

if n, =T,Sand-1ifn, = —T,S.If p € 0§ = K thenp contributes just with
o(p). If p € Int(S) we can consider neara section ofy N 7S which vanishes gp

only, and denote by(p) its index. Therp contributes to rqt(K) with o(p) - i(p).

It is quite easy to see that the resulting number is indeed independent from

n and S. Moreover rot(K) is unchanged under homotopieswofelative to K,

and local modifications away fromf, so we can actually define gatk’) where

£ =£(v, K) € EU(E(K), P(KW).

Proposition 6.9. Let M be a homology sphere, let v be a field on M and let Ko
and K1 be oriented pseudo-Legendrian knotsin (M, v). Assume that there existsa
framed-isotopy f which maps K. to Ké”). Identify Hy(E(Ko); Z) to Z using a
meridian. Then:

rot, (K1) = rot,(Ko) + 2a(f«(§(v, K1)), §(v, Ko)).

Proof of Proposition 6.9. Let K := Kg, vp := v andv;y := f,(v). Note thatvg and
v1 coincide alongk . Of course rof(K1) = rot,, (K). We are left to show that

rOtvl(K) = rOtvo(K) + 20 (&E(v1, K)), E(vg, K)).

We can now homotop® andv1 away fromk until they differ only in the neighbour-
hoodW (L) of an oriented link_, and within this neighbourhood they differ exactly
by a “Pontrjagin move”, as defined for instance in [3]. Namedyuns parallel td.

in W (L), while v1 runs opposite td. on L and has non-positive radial component
on W (L) (see below for a picture). Note thatrepresents (£ (v1, K)), £(vo, K)).

Let us choose now a Seifert surfagdor K and a Riemannian metric oW,
and define); = v;-, fori = 0, 1. Sinceno|, = 11/, the contributions along
to rot,,(K) and rot,, (K) are the same. Up to isotopirfgwe may assume thdt is
transversal but never orthogonalfoAt the points wherey is tangent ta alson;
is tangent t&, and the contributions are the same. Sg,I@ ) — rot,,(K) is given
by the sum of the contributions of the tangency pointgpfo S within W(L).

We will show that each point of N S gives rise to exactly two tangency points,
which both contribute with+-1 or —1 according to the sign of the intersection
of L and S at the point. This will show that ref(K) — rot,,(K) is twice the
algebraic intersection df andS. This algebraic intersection is exactly the value of
[L] = a(&(v1, K)), £(vo, K)) as a multiple ofm], so the local analysis dt N S
will imply the desired conclusion.

For the sake of simplicity we only examine a positive intersection poitt of
andS. This is done in a cross-section in Fig. 13, which shows the local effect of the
Pontrjagin move. Both the fields have a rotational symmetry ardyradiggested
in the figure. The two tangency points which arise with the move are a positive
focus (on the right) and a negative saddle (on the left), so the local contribution is
indeed+2, and the proof is complete.n

Remark 6.10. The definition of rotation number and Proposition 6.9 easily extend
to the case of manifolds which are not homology spheres, by restricting to homo-
logically trivial knots and choosing a relative homology class in the exterior.
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Fig. 13. Effect of the Pontrjagin move

We can now prove that in a homology sphere all knots are good.

Proof of Theorem 6.4. Consider[f] € G(K), a framingF on K and¢ €
Eul(E(K), P(KF)). We must show thaif,(§) = &. Let £ = [v] and denote
by v the obvious extension afto M. As above, Iegfbe the extension of to M.
During the proof of Proposition 6.9 we have shown that

rotf(A)(K) —rotp(K) = 20(fi(v), v).

But rotz ) (K) is actually equal to ret K), becausg‘ is the identity neak .
Thereforef*(v) andv differ by a torsion element off1(E(K); Z) = Z, so they
are equal. By definitiory, (¢§) = [ f«(v)] and& = [v], and the proof is complete.
|

Theorems 6.3 and 6.4 provide a partial answer to the problem of determining
which knots are good. The general problem does not appear to be straight-forward,
and we leave it for further investigation. We will only show below an example of
knot which is not good.

6.4. Curlsand the winding number

We show in this paragraph the relation between the relative invaridng, Ko),
(v1, K1)) of two pseudo-Legendrian knots (when this invariant is well-defined) and
arelative analogue of the winding number (the invariant which allows to distinguish
framed-isotopic planar link diagrams which are not equivalent under the second and
third of Reidemeister's moves, see [14]).

Consider the local modification of pseudo-Legendrian pairs which is shown in
Fig. 14. Here we consider a fieldon a manifoldM and a portion oM on whichv
can be identified to the vertical field &°; we consider oriented kno#ég and K 11
which are transversal toand differ only within the chosen portion 8f, as shown
in the figure. We say that the two pseudo-Legendrian knots differ for a positive or
a negative double curl. We state now a result proved in [4].

Proposition 6.11. Let (vg, Kp) and (v1, K1) be pseudo-Legendrian in M, assume
that vo and v1 are homotopic fields, and that Ké“") and K" are isotopic as
framed knots. Then (v, Ko) and (v1, K1) become pseudo-Legendrian-isotopic up
to addition of a finite number of positive or negative double curls.
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Fig. 14. Knots which differ for a positive or a negative double curl

- —

Fig. 15. Differently curled tubes in the vertical field.

We show now the effect om((vg, Ko), (v1, K1)) of a double curl.

Proposition 6.12. Wth the notations of Fig. 14 choose the positive meridian m of
Ko, asalso shown in the figure. Let f be an isotopy which maps Kf_j’l) to K(()”) and
is supported in a tubular neighbourhood of Kg. Then:

a(§(v, Ko), f+(6(v, K+1))) = £[m] € Hi(E(Ko); Z).

Proof of Proposition 6.12. Let us first note that (¢ (v, Ko), f«(&(v, K+1))), which

we must show to be-[m], is independent of by Proposition 6.7. Note also that
this comparison class can be factorized through the inclusion of a coldat @)

in M, and on this collar certainly it is an integer multiple [@t], sayk - [m].
Moreoverk is independent of the ambient manifdlt¥, v) and of the knotk . By
symmetry, we will also have that(& (v, Ko), f«(&(v, K_1))) = —k - [m]. SO we

can takeM to be 3. In particular[m] has infinite order. Using either the classical
machinery of obstruction theory or the techniques developed in [4], one can see
that there exists another pseudo-Legendrian Kfidh (S3, v), framed isotopic to

K, such thate(§(v, K), £(v, K')) = [m], where by simplicity we are omitting the
framed-isotopies necessary to compare these classes. Using Proposition 6.11 we
know that, up to pseudo-Legendrian isotofy, differs from K only for a finite
number of transformations of the forf — K; or K — K_1. This shows that
[m]is a multiple ofk - [m], sok = £1.

To check that actually = +1, instead of comparing a “straight” knot with one
with two curls, we compare two knots with one curl, chosen so that the framing is
the same but the (local) winding number is different. This is of course equivalent.
The two knots are shown in Fig. 15 as thick tubes, together with one specific orbit
of the field they are immersed in. The resulting pattern on the boundary of the tubes
is also outlined. To compare the curls we isotope the tubes to the same straight tube,
and we show how the boundary patterns and the orbits of the field are transformed
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Fig. 16. Straightened curls

under this isotopy. This is done in Fig. 16. Also from this very partial picture it is
quite evident that the resulting fields wind in opposite directions around the tube,
in accordance with the sign rule stated in the propositian.

Remark 6.13. In the above proof we have referred to Proposition 6.11, but with

a little care one could actually use only Trace’s [14] well-known version of this
proposition forplanar knot diagrams. For instance, one could cho&sand K’

to be represented by diagrams on the “smaller” disc of the abalone (the branched
spine of$2 used in the example of Sect. 4).

Proposition 6.11 shows that framed-isotopic non-pseudo-Legendrian-isotopic
knots differ at most by double curls. The next result will imply that, under certain
additional assumptions, the converse hol@sframed-isotopic knots which differ
by double curls are not pseudo-Legendrian-isotopic.

Proposition 6.14. Let (v, Kg) be a pseudo-Legendrian pair in M, and denote by
[m] € H1(E(Kp); Z) the homology class of the meridian of U (Kp). Assume either
that K((,“) isgood and [m] # 0 or that E(Kp) is hyperbolic and [m] has infinite
order. Let K1 beaknot obtained from Ko asin Fig. 14. Then (v, Ko) and (v, K11)
are not pseudo-Legendrian-isotopic.

Proof of Proposition 6.14. By contradiction, using Propositions 6.1 and 6.12, we
would get elementsg, &1 of EUl(E(Kp), P(K((,”)) such thatx (&, &1) = [m] and

&1 = f«(&) for some[f] € G(Kp). If K(()”) is good and[m] # O this is a
contradiction. Assume now thd(Kg) is hyperbolic andm] has infinite order.
Since fi([m]) = [m], using Lemma 6.8 we easily see thdto, fX(£0)) = k - [m]

for all k. Proposition 6.7 and the result of Johansson already used in the proof of
Theorem 6.3 now imply thag® acts trivially on EW(E (Ko), P(Ké”)) for somek,
whence the contradiction.o

Back to the situation considered in Proposition 6.11 of pseudo-Legendrian pairs
(vo, Ko) and(vy, K1) with vg homotopic tovy andK(()”") framed-isotopic td({”l),
one would be tempted to define an invariani(m, Ko), (v1, K1)) € Z as the
algebraic number of double curls which one has to addvo Ko) to make it
pseudo-Legendrian-isotopic o1, K1). However to define this algebraic number
we need a (coherent) orientation &g and K1, and the sign changes if we change
orientation. As a second attempt one could then try to define as an invariant the

product W (vo, Ko), (v1, K1)) - [mo] € H1(E(Ko); Z), wheremg is the meridian
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of Ko. This product is now independent of the orientation, but again it is not well-
defined in general. However Propositions 6.11 and 6.12 easily imply the following
results:

Corollary 6.15. If Ké”") isgood, so a((vo, Ko), (v1, K1)) iswell-defined, then
a((vo, Ko), (v1, K1)) = W((vo, Ko), (v1, K1)) - [mo] € H1(E(Ko); Z).

In particular, the invariant on the right-hand side is al so well-defined.

Corollary 6.16. If K§* isgood and [mo] hasinfinite order in Hy(E (Ko); Z) then
W((vo, Ko), (v1, K1)) € Z is awell-defined relative invariant of oriented pseudo-
Legendrian pairs, which we call the relative winding number

Remark 6.17. Let M be a homology sphere with a field and letKg and K11 be
related as in Fig. 14. Then, using Propositions 6.9 and 6.12, we deduce that

rot,(K+1) — rot, (Kg) = £2. (8)

On the other hand one could prove formula (8) directly¥be= $° and deduce an
alternative proof of Proposition 6.12 using Proposition 6.9 only.

The next proposition implies, in particular, the result stated at the end of the
introduction.

Proposition 6.18. Under the assumptions of Proposition 6.11, assume that Ké“O)

isgood and that [mg] has infinite order in Hy(E (Kop); 7). The following facts are
pairwise equivalent:

1. The relative winding number of (vg, Ko) and (v1, K1) vanishes;
2. All relative torsion invariants of (vg, Kg) and (vy, K1) aretrivial;
3. (vo, Kp) and (v1, K1) are pseudo-Legendrian-isotopic.

Proof of Proposition 6.18. Equivalence of (6.18) and (6.18) comes from the previous
discussion and from the fact that a positive double curl and a negative double
curl cancel via pseudo-Legendrian isotopy. To show that (6.18) and (6.18) are
equivalent we only need to consider torsion with respect to a represengation
H1(E(Kp); Z) — A such thatp([mo]) has infinite order. O

Corollary 6.19. Under the assumptions of Proposition 6.11, assume that M is a
homology sphere. Then the facts (1), (2), and (3) of Proposition 6.18 are also
equivalent to the following:

4. (v, Ko) and (v1, K1) have the same rotation number.

Proof of Corollary 6.19. Equivalence of (6.18) and (6.19) comes from the previous
discussion and Proposition 6.120

Since in ahomology sphere two pseudo-Legendrian knots which are homotopic
through pseudo-Legendrian immersions certainly have the same Maslov index, the
previous corollary seems to suggest that all torsion can capture inahomology sphere
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is the homotopy class through immersions. We believe that it would be interesting
to check if also for a general manifoM, under the assumptions of Corollary 6.15,
homotopy through pseudo-Legendrian immersions impligsyy Ko), (v1, K1)) -

[mo] = 0. We conclude by informing the reader that in [4] we have discussed the
extent to which the category of pseudo-Legendrian knots can be represented by the
category of genuine Legendrian knots in overtwisted contact structures.

6.5. Non-good knots

As another application of Proposition 6.12, we can show that there exist knots which
are not good. Conside? x [0, 1] with vector field parallel to th¢0, 1] factor. Let

Ko be the equator of? x {1/2}, and letk ; be obtained fronk by the modification
described in Fig. 14. Using Proposition 6.12, if we choose a framed-isgtaby

Kf’) onto Ké”) supported i/ (Kp), we have
a(€(v, Ko), (8] g x,)+ €W, K1) = [m],

where[m] is a generator of{1(E(Ko); Z) = 7Z. On the other handk is strongly
pseudo-Legendrian-isotopickgyin (M, v) (the winding number only exists &7,
not ons2). So there exists an isotopyof Ki“) onto K(()”) through links transversal
to v, and we have

(€. Ko). (h] )4 (E . K1) = 0.

This implies that o g
PKS)).

"D p ko) aCts non-trivially oré (v, Ko) € EUE(Ko),

7. Main proofs

In this section we provide the proofs which we have omitted in Sects. 1 and 3. We
will always refer to the statements for notation.

Proof of Proposition 1.1. Let us first recall the classical Hopf—Poincaré theorem,
according to which ib is a vector field with isolated singularities on a manifafd

v is transverse té M and points outward&/ (i.e. 9 M is black), then the sum of the
indices of all singularities ig (M). For the proof of this fact, and for the definitions
of the notions involved, we address the reader to [12]. Assume nowthas
isolated singularities and @nV it is compatible with a patter® = (W, B, V, C).

We claim that ifC is a cellularization of\f suited toP we have:

Z indy (v) = x (M) — Z ind(o). (9)

xe€Sing(v) oeC, cCWUV

This formula is enough to prove the statement: if a non-singularfielsmpatible
with P exists then the left-hand side of (9) vanishes, and the right-hand side of (9)
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Fig. 17. Extension of the field to the collared manifold: dimension 2

Fig. 18. Extension of the field te- x [0, 1] for o C V and fore C C.

equals the obstruction of the statement. On the other hand, if the obstruction van-
ishes, then one can first consider a singular field compatible&yithen group up
the singularities in a ball, and remove them.

To prove (9) we consider the manifod’ obtained by attaching a collans x
[0, 1] to M alongdM = M x {0}. Of courseM’ = M. We will now extendv to a
field v on M’ with the property that” points outwards oAM’, and indM x (0, 1)
the fieldv” has exactly one singularity for each cellc W U V, with index indo).
An application of the classical Hopf—Poincaré theorem then implies the conclusion.
The construction of’ is done cell by cell. We first show how the construction goes
in dimension 2, see Fig. 17.

For the 3-dimensional case, we choose a cellularizafiasf special type.
Namely, we require thatB]aM on a neighbourhood of U V consists of rect-
angles, and each rectangle has exactly one eddé orC. We describe now the
extension ofv’ first ono x [0, 1] for o € C|8M and dimio) < 1. Wheno is not
contained inC U V the rules are exactly the same as in the 2-dimensional case,
see Fig. 17. When C C U V the rules are given in Fig. 18. Concerning the rule
wheno is an edge contained iW, note thatv’ is only tangent tar x [0, 1] on
o x [1/2, 1], and Fig. 18-left shows how it is constructed. To give a precise rule
ono x [0, 1/2] we choose local coordinatés 1, 1], x [—1, 1], ondM such that
[-1,0) x [-1,1] ¢ W, (0,1] x [-1,1] € Bando = {0} x [-1,1] C V. Then
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Fig. 19. Extension of the field neas, x [0, 1] for dim(c) = 2

Ay

wv
=

Fig. 20. Computation of the index of a singularity

we define:

d . d . ad
V'(0,y,1) =coqm - 1) - — +SiN(—m - y) - — +SiN(=2m - 1) —.
ox ay ot

For dim(c) = 2 we note that’ is already defined ofo) x [0, 1]. We next
definev’ near p, x [0, 1], where p, is the centre ofr, as shown in Fig. 19.
Now in o x [0, 1], at all heights € [0, 1], we extendv’ radially from p,, to 3o,
using convex combinations. The fact that such a radial extension is indeed possible
without introducing further singularities is a direct consequence of the previous
choices, and the precise way the extension is made is actually immaterial.

The verification that indices of singularitiesifare as required is now a routine
matter. We only do this in the hardest case, namely,ak {1/2} foroc C V and
dim(o) = 1. Using the coordinates already introduced above and Figs. 18 and 19,
we see that' is a positive multiple ob/dr near(0, 0, 1/2) only at points of the
form (0,0,1/2 + ¢) for smallr > 0. Moreover the field’ can be written as
vV(x,y,1/2+1t) = (x, —y,t) forr > 0 (compare with the cross-sections shown
in Fig. 20). Taking the normalized field/||v’|| and(0, 0, 1) as a regular value, we
readily see that the index isl, as required. O
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Fig. 21. The fundamental singular fiekds on a 2-simplex

Proof of Theorem 1.4. Our proof follows the scheme given by Turaev in [16], with
some technical simplifications and some extra difficulties due to the tangency cir-
cles. We first recall that it is possible to associate to any smooth trianguiatiba
manifold N a singular vector fieldvs on N called thefundamental field of S. This
field has the property of having one singularity of indexg= (—1)4M©) at the
barycentre of each simplexof S. Qualitativelyws can be defined by the require-
ments that: (1) each simplex is a union of orbits; (2) the singularities are exactly the
barycentres of the simplices; (3) barycentres of higher dimensional simplices are
more attractive that those of lower dimensional simplices. More precisely, each or-
bit (asymptotically) goes from a barycenisg to a barycentre,., wheres C o’.
See Fig. 21 for a description afs on a 2-simplex ofS and [16], page 642, for an
explicit formula in barycentric coordinates.

Let us consider now a triangulatignof M, and let us choose a representative
z of the givené € Eul®(M, P) as in Proposition 1.3(3). We consider now the
manifold M’ obtained by attachingM x [0, co) to M alongdM = aM x {0}.
Note thatM’ = Int(M). Moreover7 extends to a “triangulatior7” of M’, where
onM x [0, co) we have simplices with exactly one ideal vertex, obtained by taking
cones over the simplices i and then removing the cone vertex. Eveffifis
not strictly speaking a triangulation, the constructiomegf makes sense, because
the missing vertex at infinity would be a repulsive singularity anyway. We arrange
things in such a way that & C dM then the singularity ir x (0, co) is at height
1,s0itisp, x {1}.

We will define now a smooth functioh : dM — (0, c0) and setM;, =
MU {(x,1) € M x [0,00) : t < h(x)}, in such a way that 7 is non-singular
on aMj, and, modulo the natural homeomorphigth= M, it induces o M,
the desired boundary pattefh Later we will show how to use to remove the
singularities ofwy on Mj,.

To define the function we consider a (very thin) left half-colldr of V ono M
and aright half-collar of C. Here “left” and “right” refer to the natural orientations
of aM and ofV andC. Note thatL. ¢ B andR C W. Now we selh}B\L =1/2,

andh | W\R = 2. Figures 22 and 23 respectively show that away ftomC indeed

the pattern ofv+ on d My, is as required. Now we identiff to V x [—1, 0] and
R to C x [0, 1], and we definéi(x,s) = f(s) for (x,s) € V x [-1,0] and
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Fig. 22. Whereh = 1/2 the field points outwards

Fig. 23. Whereh = 2 the field points inwards

h(x,s) = f(s — 1) for (x,s) € C x [0, 1], wheref : [-1,0] — [1/2,2]is a
smooth monotonic function with all the derivatives vanishing-atand 0. Instead
of describingf explicitly we picture it and show that also néldru C the pattern
is as required. This is done nedrandC respectively in Figg. 24 and 25. In both
pictures we have only considered a special configuration for the triangulation on
oaM, and we have refrained from picturing the orbits of the field in the 3-dimensional
figure. Instead, we have separately shown the orbits on the vertical simplices on
which the value of: changes.

The conclusion is now exactly as in Turaev’'s argument (Section 6.6 of [16]),
so we only give a sketch. The chosen representatves € Eul®(M, P) can be
described as an integer linear combination of orbiteef, which we can describe
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Fig. 24. On V the field has convex tangency

as segmentfp,, p,]1 With o C o’. Now we consider the chain

d=z— ) ind()-p, x [0, 1]. (10)

oCWUV

By definition of » we have that’ is a 1-chain inM;,, anddz’ consists exactly of

the singularities ofv7~ contained inMj,, each with its index. For each segment
which appears in’ we first modifywy~ to a field which is “constant” on a tube

T arounds, and then we modify the field again withify in a way which depends

on the coefficient of in z’. The resulting field has the same singularitiesuas,

but one checks that these singularities can be removed by a further modification
supported within small balls centred at the singular points. We défigeto be the

class in Eul(M, P) of this final field. Turaev’s proof tha¥ is indeed well-defined

and H1(M; Z)-equivariant applies without essential modificationsl

Remark 7.1. In the previous proof we have defingdusing triangulations, in order

to apply directly Turaev’s technical results (in particular, invariance under subdivi-
sion). However the geometric construction makes sense also for cellularizétions

more general than triangulations, the key point being the possibility of defining a
field we satisfying the same properties as the field defined for triangulations. This
is certainly true, for instance, for cellularizatiof®f M induced by realizations of
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Fig. 25. OnC the field has concave tangency

M by face-pairings on a finite number of polyhedra, assuming that the projection
of each polyhedron ta/ is smooth.

Proof of Theorem 1.7. For the reader’s convenience, we first outline the scheme of
the proof:

1. ByidentifyingM to a collared copy of itself, we choose a representativithe
givené e Eul°(M, P) such that the extra terms added to def#fg¢s) cancel
with terms already appearing in

2. We apply Remark 7.1 and choose a cellularizatiaW @ which itis particularly
easy to construck (§) andW¥ (©°(£)) using the representatives obtained above,
and to show tha®S(¥ (£)) = W (O°(§)).

We consider a cellularizatiofi of M satisfying the same assumptions aWf
as those considered in the proof of Proposition 1.1, narfielyV is surrounded
on both sides by a row of rectangular tiles. We denotedy. ., y, the arcs inC,
oriented a<”.

Let us consider a representativeelative toC of the giverg € Eul®(M, P). We
construct a new copyf1 of M by attachingM x [—1, 0]to M alongoM = IM x
{—1}, and we extend to C1 by taking the product cellularization @/ x [—1, 0].
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Fig. 26. Local difference nea€ between’ (left) andz; (right)

We define a new chain as

a=z+ Y ind©) ps x[-1/2.0]— > ind(o) - ps x [-1,—1/2]

oCB GCWUV
n
+) (Vj|[1/2,1] < {=1/2} = yjlj1 00y ¥ {0})'
j=1

Note thatzy is an Euler chain inM; with respect toC1. Consider the natural
homeomorphisny : M — M and the class

a = a®(fu(§), [z1]) € Hi(M1; Z)

which may or not be zero. Since the inclusionMfinto M1 is an isomorphism at
the Hi-level, a can be represented by a 1-chainMh) soz; can be replaced by a
new Euler chain such thalz;] = fi(§) andz; differs fromz; only on M.

RenamingV1 by M andz; by z we have found a representatiyef & such that
z2=129+ Z?:l Vi |[1/2!1], wherezg is a sum of simplices contained BU Int M.
Note that of cours®®(&) = [z4]. To conclude the proof we will now apply the
reconstruction map usingandzy, thus gettingd (§) and¥ (0¢(£)), and then we
will analyze the smooth convexificati@d®(¥ (£)) to show that it actually coincides
with W(®C€(&)). By construction®@S(¥ (£)) and W (®¢(£)) only differ nearC, so
we concentrate on one componentind show that the desired equality holds
near it.

To understandl (¢§) and W (®°¢(¢)) we follow the steps of the proof of The-
orem 1.4 applied ta andzy respectively. The first step consists in choosing the
height function: (respectivelyfy) and replacing the chain(respectivelyzy) by
a chainz’ (respectivelyzy) as in formula (10). This is done in Fig. 26 where only
the difference between the chains is shown.

The next step is to modify the fundamental fiedd of the cellularization on
a neighbourhood of the support gfandz;, to get representatives &f(¢) and
W (®°(§)) on the modified versions diif called M;, and M}, respectively. This is
done in Figs. 27 and 28 respectively, where, for the sake of simplicity, the field is
only shown onC x [0, c0), where the essential modification takes place.

To conclude our description of (§) and ¥ (®¢(¢)) we must now bring the
modified manifoldsM;, and M, back to the originalf. This is done in Figs. 29
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Fig. 27. Construction of' (£) on C x [0, 00). On the left we show and the zones where
it must be modified, on the right we show the desingularized field.

/
| v Y
gV
v
Y v
v
v
v
v
v
)
>
>
>
L ¥V va o " E ¥ v 4 oa

Fig. 29. A cross-section of a representativedfs).
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Fig. 30. A cross-section of a representative®{®°(&)).
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Fig. 31. Smooth convexification and homotopy with the smoothening of the combinatorial
convexification

and 30 respectively, where a cross-section transvergalgshown; in Fig. 30 the

field is parallel to the cross-sectioine. its C-component vanishes, and the same
holds in Fig. 29 except near the apparent singularity, where the field has a positive
C-component.

Now that¥ (£) and¥ (®°(¢)) have been described completely, we can construct
OS(W¥(£)) and show it equal¥ (©¢(§)). This is done in Fig. 31, which shows: (1)
The representative of (¢) described above; (2) The representativeddt¥ (£))
constructed as in Fig. 2; (3) An alternative representativeSof (£)), obtained by
adding a positiveC-component to the field in the whole region encircled by a thick
dashed line; (4) The representativedof®¢(£)) obtained above. The fields shown
in (3) and (4) are nowhere opposite to each other, so they are homotopic, and the
proof is complete. O

Proof of Theorem 3.7. We fix P and ses” = s”(P), v = v(P). Using Remark 7.1

we see that the construction®{[s"]) explamed in the proof of Theorem 1.4 can be
directly applied to the cellularizatioh = 7 (P) of M. Recall that this construction
requires identifying/ to a collared copy of itself, and extendingto a chains”’
whose boundary consists precisely of the singularities of the fundamentabfield

w7 of the cellularizatior? . (Heres” plays the role of in the proof of Theorem 1.4,
ands” plays the role of’.) A representative of ([s”]) is then obtained by applying

to w a certain desingularization procedure. This desingularization is supported in
a neighborhood of”’, and one can easily check that each connected component
of the support ofs” is actually contractible, so its regular neighbourhood is a
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Fig. 32. The fieldv on a hexagon

Fig. 33. The fieldw and the trace of on a hexagon

ball. Since we already know that such a desingularization is indeed possible, and
by definition an Euler structure is unaffected by a modification within a ball, the
conclusion is readily deduced from the following claitime set of pointswherew is
antipodal tov'is contained in the support of s””. We will show our claim neglecting
the contraction of2,, which mapsM onto M. (The desired result actually holds
at the level ofM, and it easily implies the result fad.)

To prove the claim, we denote the suppori’6foy S and note that the cells dual
to those ofP are unions of orbits of boty andv. Therefore we can analyze cells
separately. We do this explicitly only for 2-dimensional cells, leaving to the reader
the other cases. In Fig. 32 we describén the left-hand side of Fig. 33 we describe
w on the collared hexagon. In the right-hand side of the same figure we only show
the singularities ofv on the hexagon brought back to its original position, and the
intersection ofS with the hexagon. In this figure the 7 short segments come from
s"" — s the other bits of§ have been labeled by ‘Or’, ‘St’, ‘Ba’ or ‘He'to indicate
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that they come from orbits af, stars, bi-arrows or half-edges. Since indaeand
v are only antipodal of§, the proof is complete. O
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