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2.8 Lemma If a limit ordinal o is not a cardinal, then cf(c) < . O
As a corollary, we have, for all limit ordinals a,

cf(a) = o if and only if a is a regular cardinal.
2.9 Lemma For every limit ordinal , cf(cf(a)) = cf(c).

Proof. Let ¥ = cf(a). Clearly, ¥ is a limit ordinal, and cf(d) < 9. We
have to show that cf(1) is not smaller than ¥. If v = cf(¥) < ¢, then there
exists an increasing sequence of ordinals (v¢ | £ < ) such that lime ., ve = 9.
Since ¥ = cf(a), there exists an increasing sequence of ordinals (a, | v < V)
such that lim,_,9 @, = a. Then the sequence (o, | £ < 7) has length v and
limg_.y oy, = . But v < 4, and we reached a contradiction, since ¥ is supposed

to be the least length of an increasing sequence with limit c. O
2.10 Corollary For every limit ordinal o, cf(a) is a regular cardinal. ]
Exercises

2.1 cf(Ry) = cfRow) = w.

2.2 cf(R,,) = wq, cf(R,,) = wa.

2.3 Let o be the cardinal number defined in the proof of Lemma 2.6. Show
that cf(a) = w.

2.4 Show that cf(c) is the least y such that « is the union of v sets of
cardinality less than |a|.

2.5 Let R, be a limit cardinal, & > 0. Show that there is an increasing
sequence of alephs of length c¢f(Ny) with limit N,.

2.6 Let « be a limit cardinal, and let A < & be a regular infinite cardinal.
Show that there is an increasing sequence (o, | v < cf(x)) of cardinals
such that lim, () o = & and cf(e,) = A for all v.

3. Exponentiation of Cardinals

While addition and multiplication of cardinals are simple (due to the fact that
Ry + Rg = Ry - Rg = the greater of the two), the evaluation of cardinal expo-
nentiation is rather complicated. Here, we do not give a complete set of rules
(in fact, in a sense, the general problem of evaluation of &> is still open), but
prove only the basic properties of the operation x*. It turns out that there is a
difference between regular and singular cardinals.

First, we investigate the operation 28=. By Cantor’s Theorem, 2% > R,; in
other words,

2 1\ R S N L.
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Let us recall that Cantor’s Continuum Hypothesis is the conjecture that
2R — N;. A generalization of this conjecture is the Generalized Continuum
Hypothestis:

e = Ryyg  for all o

As we show, the Generalized Continuum Hypothesis greatly simplifies the
cardinal exponentiation; in fact, the operation k* can then be evaluated by very

simple rules.
The Generalized Continuum Hypothesis can be neither proved nor refuted
from the axioms of set theory. (See the discussion of this subject in Chapter

15.)
Without assuming the Generalized Continuum Hypothesis, there is not much

one can prove about 28> except (3.1) and the trivial property:
(3.2) 2R < 2™ whenever o <.

The following fact is a consequence of K6nig’s Theorem.

3.3 Lemma For every a,
(3.4) cf(2%) > R,
Thus 28 cannot be R, since cf(28~) = Rg, but the lemma does not prevent

2% from being R,,. Similarly, 2% cannot be either N, or R, or R, 1., etc.

Proof  Let ¥ = cf(2%); ¥ is a cardinal. Thus 2% is the limit of an
increasing sequence of length ¥, and it follows (see the proof of Lemma 2.3 for
details) that

Me = Z Ky,
24}

where each &, is a cardinal smaller than 2%, By Konig’s Theorem (where we
let \, = 2%« for all v < ¥), we have

Zm,, < H 2R

v< P v<y
and hence 28 < (2%«)?. Now if 9 were less than or equal to R,, we would get
oRa (zNa)'@ < (2Nu)Na = RaBa 2Na,

a contradiction. O

The inequalities (3.1), (3.2), and (3.4) are the only properties that can be
proved for the operation 2%« if the cardinal R, is regular. If X, is singular, then
various additional rules restraining the behavior of 2%+ are known. We prove
one such theorem here (Theorem 3.5); in Chapter 11 we prove Silver’s Theorem
(Theorem 4.1): If R, is a singular cardinal of cofinality cf(Ne) = Ny, and if
AN IS r

EL R PR TR =Y « O XY
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3.5 Theorem Let R, be a singular cardinal. Let us assume that the value of
2%¢ 4s the same for all € < a, say 2% = Ng. Then 2%« = Ng.

Note that it is implicit in the theorem that Ng is greater than R,. For
instance, if we know that 2% = 8,5 for all n < w, then 2% = N, 5.

Proof.  Since N, is singular, there exists, by Lemma 2.3, a collection (x; |
i € I) of cardinals such that x; < R, for all i € I, and |I| = R, is a cardinal
less than R, and Ry = 3 ,c; k;. By the assumption, we have 2% = Rg for all

i € I, and also 2% = Rg, so
2N"‘ = QEiel ki — H2K’i = HNﬁ = Ngv = (2N’7)N‘7 = 2“"’ = Ng
i€l i€l
a
We now approach the problem of evaluating Ng”, where N, and RNg are
arbitrary infinite cardinals. First, we make the following observation.

3.6 Lemma If a < §, then NN = oNa,

Proof.  Clearly, 2% < ®5. Since Ng < 2%, we also have
fo/’ < (QNL,)N/s — 9Ra Ry _ 9Ry
because Ng = max{Rq, Ng}. |
When trying to evaluate Ry for o > 3, we find the following useful.

3.7 Lemma Let o > 3 and let S be the set of all subsets X C wq such that
|X| = Rg. Then |S|=Ny".

Proof. We first show that NE” < |S|. Let S be the set of all subsets
X C wg X wq such that | X| = Ng. Since ¥g - Ny = Ny, we have |S'| = |S|. Now
every function f : wg — w, is & member of the set S’ and hence wa” C S
Therefore, RN < |S].

Conversely, if X € S, then there exists a function f on wg such that X is the
range of f. We pick one f for each X € S and let f = F(X). Clearly, if X #Y
and f = F(X)and g = F(Y), we have X =ranf and Y =rang, and so f # g.
Thus F is a one-to-one mapping of S into wi”, and therefore |S| < NN O

‘We are now in a position to evaluate Ng” for regular cardinals X,,, under the
assumption of the Generalized Continuum Hypothesis.

3.8 Theorem Let us assume the Generalized Continuum Hypothesis. If R, is
a regular cardinal, then

Ny _ {Na ifB<a,
@ Nai1 ZfB > o
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Proof. If B > a, then R = 2% = Rg.; by Lemma 3.6. Solet 8 < &
and let S = {X C wa | |X| = Rg}. By Lemma 3.7, |S| = R&*. By Theorem

2.2(a), every X € S is a bounded subset of w,. Thus, let B = {J;.,, P(d) be
the collection of all bounded subsets of w,. We will show that |B| < R,; as

S C B, it then follows that R = R,,.
Since B = s, P(d), we have

1Bl < Y 2

S<wey

However, for every cardinal R, < Rgo, we have 2% = R, 41 < R, and so 291 <R,
for every § < wq, and we get

IBl< > 27 < ) Ra=NaRo =Ra.

O<wey S<wyy

O

We prove a similar (but a little more complicated) formula. for singular X,
but first we need a generalization of Lemma 3.3.

3.9 Lemma For every cardinal k > 1 and every o, cf(s%=) > R,

Proof.  Exactly like the proof of Lemma 3.3, except that 2%- is replaced
by &Re. 0

3.10 Theorem Let us assume the Generalized Continuum Hypothesis. If R
s a singular cardinal, then

R,  if Ng < cf(Ry,),
Nzﬁ = Na+1 Zfo(Na) S Nﬂ < NOU
Ng+1 4fRg 2 Ra.

Proof. If B > «, then Ry = 2N = Rpp1. If Rg < cf(R,), then every
subset X C w, such that |X| = Ng is a bounded subset, and we get Ng” = R,

by exactly the same argument as in the case of regular R,.
Thus let us assume that cf(Ry) < Ng < R,. On the one hand, we have

N
No < Ro < NJo =28 = Royy.

On the other hand, cf(Nzﬁ) > Ng by Lemma 3.9, and since Rg > cf(Ny), we

have cf(Rh") # cf(R,), and therefore NN # Rq. Thus necessarily Ra* = Ngp1.
0

If we do not assume the Generalized Continuum Hypothesis, the situation
hecomes miich more comnlicated. We onlv prove the following theorem.
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3.11 Hausdorff’s Formula  For every o and every £,

Ry Ry
RN R R

Proof. If>a+1,then R4, = 28, RE¥ = 2% and Roqp < N < 28,
hence the formula holds. Thus let us assume that 8 < «. Since N, R < NN”
and Nay1 < Na—!-l’ it suffices to show that Nzﬁ’rl < w7 Nos1.

Each function f : wg — we41 is bounded; i.e., there is v < wg41 such that

F(€) < v for all £ < wg (this is because wq1 is regular and wp < wa41). Hence,

L‘)ﬁ
Wot1 = U 7

Y<Wet1

Now every 4 < wg41 has cardinality |y| < Rg, and we have (by Exercise 1.6)
lU’y<wu+1 8| < Z'y<wu+1 |v|"#. Thus

R R R
Nozf;—l S z I’YlNﬂ S Z Naﬁ = Naﬁ N Na+1-

Y<Wet1 Y<Wa+t1

O

This theorem enables us to evaluate some simple cases of N7 (see Exercise
3.5).

An infinite cardinal X, is a strong limit cardinal if 2% < R, for all 3 < a.

Clearly, a strong limit cardinal is a limit cardinal, since if Ry = N,11, then
28y > R,. Not every limit cardinal is necessarily a strong limit cardinal: If 2%
is greater than R,, then X, is a counterexample. However, if we assume the
Generalized Continuum Hypothesis, then every limit cardinal is a strong limit
cardinal.

3.12 Theorem If R, is a strong limit cardinal and if k and X\ are infinite
cardinals such that k < Rg and A < Rg, then & < Ry,

Proof. k* < (k- A)®* =252 <R, . 0

An uncountable cardinal number & is strongly inaccessible if it is regular
and a strong limit cardinal. (Thus every strongly inaccessible cardinal is weakly
inaccessible, and, if we assume the Generalized Continuum Hypothesis, every
weakly inaccessible cardinal is strongly inaccessible.) The reason why such
cardmal numbers are called inaccessible is that they cannot be obtained by the

3 11 1. 1
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3.13 Theorem Let k be a strongly inaccessible cardinal.

(o) If X has cardinality < &, then P(X) has cardinality < &.

(b) If each X € S has cardinality < k and |S| < k, then \J S has cardinality
< K.

(c) If [ X| <k and f: X — &, then sup f[X] < &

Proof.
(a) k is a strong limit cardinal.
(b) Let A = |S| and p = sup{|X|| X € S}. Then (by Theorem 2.2(a)) p < &
because & is regular, and |[|JS] < A pu < &,
(¢) By Theorem 2.2(b).
0

Exercises

3.1 If 2% >N, then NNH = 9Rs

3.2 Verify this generalization of Exercise 3.1: If there is ¥ < « such that
NN” > R,, say N:fﬁ = Ny, then RN = ;.

3.3 Let a be a limit ordinal and let Rg < c¢f(Ry). Show that if N;" < R for
all £ < , then Ro” = Ry, [Hint: If X C w, is such that |X| = R, then
X C we for some € < ]

3.4 If N, is strongly inaccessible and 8 < «, then Ry = N,. [Hint: Use
Exercise 3.3.]

3.5 If n < w, then NE = R, -2%. [Hint: Apply Hausdorff’s formula n times.]

3.6 Prove that ], Rn = X%, [Hint: Let 4; (i < w) be mutually disjoint
infinite subsets of w. Then

n<w i<w nEA; i<w nEA; i<w

Ry

The other direction is easy.]
3.7 Prove that
N = g,

[Hint: Ngl = (2n<w N")Nl S (Hn<w NH)NI = Hn<w Ngl Hn<w(N
2R1) = (Hn<w Nn) . <2N1)N0 = Nﬁn . ZNI_]



