4º Compitino di MD

A.A. 2012/13 – 28 maggio 2013

Cognome e nome:		 	 	 	 	
Numero di matricola	a:	 	 	 	 	
Corso e Aula:						

<u>IMPORTANTE:</u> Non si possono consultare libri e appunti. Non si possono usare calcolatrici, computer o altri dispositivi elettronici. Non saranno valutate risposte prive di motivazioni, o con motivazioni non chiare. Non si può scrivere con il lapis.

Esercizio 1. Fattorizzare il polinomio

$$x^6 - 3$$

come prodotto di polinomi irriducibili in $\mathbb{C}[x]$, $\mathbb{R}[x]$, $\mathbb{Q}[x]$, $\mathbb{Z}_2[x]$.

Esercizio 2. Sia $T_a: \mathbb{R}^3 \to \mathbb{R}^3$ un endomorfismo che, rispetto alla base standard, è rappresentato dalla matrice

$$[T_a] = \begin{pmatrix} 0 & 2a & a \\ 0 & a+2 & 0 \\ a & -2 & a^2 - 1 \end{pmatrix}$$

- a) Determinare i valori del parametro $a \in \mathbb{R}$ per i quali l'endomorfismo T_a è diagonalizzabile.
- b) Determinare i valori del parametro reale a per i quali l'endomorfismo T_a è invertibile.

Esercizio 3. Sia V lo spazio vettoriale delle matrici $n \times n$ sul campo \mathbb{R} . Sia $\mathcal{S} = \{M \in V \mid M = M^t\}$ il sottospazio delle matrici simmetriche di V e $\mathcal{A} = \{M \in V \mid M = -M^t\}$ il sottospazio delle matrici antisimmetriche.

- a) Dimostrare che $V = \mathcal{S} \oplus \mathcal{A}$.
- b) Sia $\varphi: V \to V$ l'applicazione lineare definita da

$$\varphi(M) = M + M^t$$
.

Dire se φ è diagonalizzabile e se lo è determinare una base di autovettori.