Compito di MD

5 novembre 2014

Cognome e nome: .	 •	
Numero di matricola	 so e Aula:	

<u>IMPORTANTE:</u> Non si possono consultare libri e appunti. Non si possono usare calcolatrici, computer o altri dispositivi elettronici. Non si può scrivere con il lapis. Motivare in modo chiaro le risposte. I testi degli esercizi sono su fogli separati su cui vanno scritte le rispettive soluzioni: **scrivere il nome su ciascun foglio**. Mettere entro un riquadro bene evidenziato la soluzione, e nel resto del foglio lo svolgimento.

Esercizio 1.

Trovare il più piccolo valore $n_0 \in \mathbb{N}$ tale che, per ogni $n \geq n_0$, valga

$$\sum_{i=0}^{n} i^3 \le \frac{1}{2} n^4.$$

Cognome e nome:		 	 	 						 	 	 		 	
Numero di matricola	a:	 	 	 . C	ors	so e	e A	ul	a:		 	 	 	 	

Esercizio 2. Sia $\mathbb{N}_{100} = \{1, 2, ..., 100\}.$

- a) Quanti sono i sottoinsiemi A di 3 elementi di \mathbb{N}_{100} tali che la somma degli elementi di A sia pari?
- b) Quanti sono i sottoinsiemi di \mathbb{N}_{100} che contengono almeno 3 numeri pari?
- c) Quanti sono i sottoinsiemi di \mathbb{N}_{100} che contengono esattamente 3 numeri pari ed esattamente un multiplo di 5 ?
- d) Quante sono le terne ordinate (n,m,u) di elementi di \mathbb{N}_{100} il cui prodotto fa 100?

Esercizio 3. Consideriamo i due seguenti sottoinsiemi di \mathbb{R}^3 :

$$C = \left\{ \begin{pmatrix} 2\\3\\3 \end{pmatrix}; \begin{pmatrix} 1\\2\\3 \end{pmatrix}; \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$

$$\mathcal{B} = \left\{ \begin{pmatrix} 3\\1\\1 \end{pmatrix}; \begin{pmatrix} 0\\1\\1 \end{pmatrix}; \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$

Data l'applicazione lineare $L: \mathbb{R}^3 \to \mathbb{R}^3$ definita da L(x,y,z) = (x+y,x+z,x+z) trovare una base di Ker L e Im L e scrivere la matrice $[L]_{\mathcal{C}}^{\mathcal{B}}$ associata alla base \mathcal{C} in partenza e alla base \mathcal{B} in arrivo.