Compito di Algebra

A.A. 2014/15 - 9 aprile 2015

Cognome e nome:		 	
Numero di matricol	a:	 	
Corso e Aula:		 	

IMPORTANTE: Non si possono consultare libri e appunti. Non si possono usare calcolatrici, computer o altri dispositivi elettronici. Non saranno valutate risposte prive di motivazioni, o con motivazioni non chiare. Non si può scrivere con la matita.

Esercizio 1. Si consideri in \mathbb{R}^4 il sottospazio V generato dai vettori

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 3 \\ 1 \\ 0 \end{pmatrix}.$$

- a) Verificare che V ha dimensione 2 ed estendere $\{v_1, v_2\}$ ad una base
- di \mathbb{R}^4 (cioè trovare v_3 , v_4 tali che $\{v_1, v_2, v_3, v_4\}$ è una base di \mathbb{R}^4). b) Esiste una applicazione lineare $T: \mathbb{R}^4 \to \mathbb{R}^4$ tale che Ker T=Imm T = V? Se non esiste spiegare il motivo, se esiste scegliere una base dello spazio \mathbb{R}^4 (in partenza e in arrivo) e scrivere una matrice che rappresenta tale applicazione rispetto alla base scelta.

Esercizio 2. Sia V il sottospazio di \mathbb{R}^4 descritto nell'esercizio precedente. Sia W il sottospazio di \mathbb{R}^4 dato dalle soluzioni del sistema lineare

neare
$$\begin{cases} x_1+x_2 & +2x_4 & =0,\\ 2x_1+x_2-x_3 & =0. \end{cases}$$
 Trovare una base di $V\cap W$ e una base di $V+W$.

Esercizio 3. Determinare i valori del parametro reale k per i quali la matrice

$$M = \begin{pmatrix} 1 & 0 & k^2 \\ 0 & k & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

è diagonalizzabile. Per tali valori determinare anche una base di autovettori.