A canonical thickening of \mathbb{Q} and the dynamics of continued fractions

Carlo Carminati
Dipartimento di Matematica
Università di Pisa

May 2010
Joint work with Giulio Tiozzo (Harvard PhD student)
Credits

Joint work with Giulio Tiozzo (Harvard PhD student)

the images are generated from numerical data computed by Alessandro Profeti for a previous numerical study
Joint work with Giulio Tiozzo (Harvard PhD student)

the images are generated from numerical data computed by Alessandro Profeti for a previous numerical study

C.C., S.Marmi, A.Profeti, G.Tiozzo: The entropy of alpha-contined fractions: numerical results
arXiv:0912.2379v1 [math.DS]
Regular continued fraction (RCF) expansions and the Gauss map

If $x \in]0, 1]$ we can write
If $x \in]0, 1]$ we can write

$$x = \cfrac{1}{c_1 + \cfrac{1}{c_2 + \cdots}}$$
Regular continued fraction (RCF) expansions and the Gauss map

If $x \in]0, 1]$ we can write

$$x = \frac{1}{c_1 + \frac{1}{c_2 + \ldots}}$$

Features of RCF expansion:

- the expansion is not unique for some special values
Regular continued fraction (RCF) expansions and the Gauss map

If \(x \in]0, 1] \) we can write

\[x = \frac{1}{c_1 + \frac{1}{c_2 + \ldots}} \]

Features of RCF expansion:
- the expansion is not unique for some special values (\(\mathbb{Q} \));
Regular continued fraction (RCF) expansions and the Gauss map

If \(x \in]0, 1] \) we can write

\[
x = \cfrac{1}{c_1 + \cfrac{1}{c_2 + \cdots}}
\]

Features of RCF expansion:

- the expansion is not unique for some special values (\(\mathbb{Q} \));
- there is a countable set of values with eventually periodic expansion
Regular continued fraction (RCF) expansions and the Gauss map

If $x \in]0, 1]$ we can write

$$x = \cfrac{1}{c_1 + \cfrac{1}{c_2 + \cfrac{1}{\ldots}}}$$

Features of RCF expansion:

- the expansion is not unique for some special values (\mathbb{Q});
- there is a countable set of values with eventually periodic expansion (quadratic surds);
Regular continued fraction (RCF) expansions and the Gauss map

If $x \in]0, 1]$ we can write

$$x = \frac{1}{c_1 + \frac{1}{c_2 + \cdots}}$$

Features of RCF expansion:

- the expansion is not unique for some special values (\mathbb{Q});
- there is a countable set of values with eventually periodic expansion (quadratic surds);
The Gauss map $T : [0, 1] \rightarrow [0, 1]$ is defined by
The Gauss map

The Gauss map $T : [0, 1] \to [0, 1]$ is defined by

$$T : x \mapsto \frac{1}{x} - c(x), \quad c(x) = \lfloor \frac{1}{x} \rfloor \quad c_k = c(T^{k-1}(x)).$$
The Gauss map

The Gauss map $T : [0, 1] \rightarrow [0, 1]$ is defined by

$$T : x \mapsto \frac{1}{x} - c(x), \quad c(x) = \left\lfloor \frac{1}{x} \right\rfloor \quad c_k = c(T^{k-1}(x)).$$
The Gauss map T has the following properties

- it has an invariant measure $\mu(x) := \frac{1}{(1+x)\log(2)}$;
Ergodic properties of RCF

The Gauss map T has the following properties

- it has an invariant measure $\mu(x) := \frac{1}{(1+x)\log(2)}$;
- T is an exact map, hence it is ergodic;
Ergodic properties of RCF

The Gauss map T has the following properties

- it has an invariant measure $\mu(x) := \frac{1}{(1+x)\log(2)}$;
- T is an exact map, hence it is ergodic;
- For almost every $x \in [0, 1]$:

$$\lim_{n \to +\infty} \frac{2}{n} \log q_n = h(T)$$

where p_n/q_n is the n-th convergent of x and $h(T)$ is the entropy of T.
Ergodic properties of RCF

The Gauss map T has the following properties

- it has an invariant measure $\mu(x) := \frac{1}{(1+x) \log(2)}$;
- T is an exact map, hence it is ergodic;
- For almost every $x \in [0, 1]$:

$$\lim_{n \to +\infty} \frac{2}{n} \log q_n = h(T)$$

where p_n/q_n is the n-th convergent of x and $h(T)$ is the entropy of T.
- $h(T) = \frac{\pi^2}{6 \log 2}$
The maps T_α

T_α for $\alpha = 1$
The maps T_α

T_α for $\alpha = 1$
The maps T_α

T_α for $\alpha = (\sqrt{5} - 1)/2$
The maps T_α

T_α for $\alpha = 1/2$
The maps T_α

T_α for $\alpha = \sqrt{2} - 1$
The maps T_α

T_α for $0 < \alpha << 1$
The maps T_α

T_α for $\alpha = 0$
--continued fractions and the maps T_α

The maps $T_\alpha : [\alpha - 1, \alpha] \to [\alpha - 1, \alpha]$ are defined as follows:
\(\alpha \)-continued fractions and the maps \(T_\alpha \)

The maps \(T_\alpha : [\alpha - 1, \alpha] \to [\alpha - 1, \alpha] \) are defined as follows:

\[
T_\alpha(x) := \frac{1}{|x|} - c_\alpha(x),
\]
continued fractions and the maps T_α

The maps $T_\alpha : [\alpha - 1, \alpha] \rightarrow [\alpha - 1, \alpha]$ are defined as follows:

$$T_\alpha(x) := \frac{1}{|x|} - c_\alpha(x), \quad c_\alpha(x) := \lfloor \frac{1}{|x|} + 1 - \alpha \rfloor.$$
The maps $T_\alpha : [\alpha - 1, \alpha] \to [\alpha - 1, \alpha]$ are defined as follows:

$$T_\alpha(x) := \frac{1}{|x|} - c_\alpha(x), \quad c_\alpha(x) := \lfloor \frac{1}{|x|} + 1 - \alpha \rfloor.$$

Inverting the first equation above we get
\(\alpha\)-continued fractions and the maps \(T_\alpha\)

The maps \(T_\alpha : [\alpha - 1, \alpha] \to [\alpha - 1, \alpha]\) are defined as follows:

\[
T_\alpha(x) := \frac{1}{|x|} - c_\alpha(x), \quad c_\alpha(x) := \lfloor \frac{1}{|x|} + 1 - \alpha \rfloor.
\]

Inverting the first equation above we get

\[
x = \frac{\epsilon(x)}{c_\alpha(x) + T_\alpha(x)}, \quad \epsilon(x) = \text{sign}(x)
\]
\(\alpha\)-continued fractions and the maps \(T_\alpha\)

The maps \(T_\alpha : [\alpha - 1, \alpha] \rightarrow [\alpha - 1, \alpha]\) are defined as follows:

\[
T_\alpha(x) := \frac{1}{|x|} - c_\alpha(x), \quad c_\alpha(x) := \lfloor \frac{1}{|x|} + 1 - \alpha \rfloor.
\]

Inverting the first equation above we get

\[
x = \frac{\epsilon(x)}{c_\alpha(x) + T_\alpha(x)}, \quad \epsilon(x) = \text{sign}(x)
\]

Iterating this procedure we recover the infinite \(\alpha\)-continued fractional expansion:
\(\alpha\)-continued fractions and the maps \(T_\alpha\)

The maps \(T_\alpha : [\alpha - 1, \alpha] \rightarrow [\alpha - 1, \alpha]\) are defined as follows:

\[
T_\alpha(x) := \frac{1}{|x|} - c_\alpha(x), \quad c_\alpha(x) := \left\lfloor \frac{1}{|x|} + 1 - \alpha \right\rfloor.
\]

Inverting the first equation above we get

\[
x = \frac{\epsilon(x)}{c_\alpha(x) + T_\alpha(x)}, \quad \epsilon(x) = \text{sign}(x)
\]

Iterating this procedure we recover the infinite \(\alpha\)-continued fractional expansion:

\[
x = \frac{\epsilon_{1,\alpha}}{c_{1,\alpha} + \frac{\epsilon_{2,\alpha}}{c_{2,\alpha} + \ldots}}
\]
α–continued fractions and the maps T_α

The maps $T_\alpha : [\alpha - 1, \alpha] \rightarrow [\alpha - 1, \alpha]$ are defined as follows:

$$T_\alpha(x) := \frac{1}{|x|} - c_\alpha(x), \quad c_\alpha(x) := \left\lfloor \frac{1}{|x|} + 1 - \alpha \right\rfloor.$$

Inverting the first equation above we get

$$x = \frac{\epsilon(x)}{c_\alpha(x) + T_\alpha(x)}, \quad \epsilon(x) = \text{sign}(x)$$

Iterating this procedure we recover the infinite α-continued fractional expansion:

$$x = \frac{\epsilon_{1,\alpha}}{c_{1,\alpha} + \frac{\epsilon_{2,\alpha}}{c_{2,\alpha} + \ldots}}$$

which is sometimes written as
\(\alpha \)-continued fractions and the maps \(T_\alpha \)

The maps \(T_\alpha : [\alpha - 1, \alpha] \to [\alpha - 1, \alpha] \) are defined as follows:

\[
T_\alpha(x) := \frac{1}{|x|} - c_\alpha(x), \quad c_\alpha(x) := \left\lfloor \frac{1}{|x|} + 1 - \alpha \right\rfloor.
\]

Inverting the first equation above we get

\[
x = \frac{\epsilon(x)}{c_\alpha(x) + T_\alpha(x)}, \quad \epsilon(x) = \text{sign}(x)
\]

Iterating this procedure we recover the infinite \(\alpha \)-continued fractional expansion:

\[
x = \left[0; \left(\epsilon_{\alpha,1}, c_{\alpha,1}\right), \left(\epsilon_{\alpha,2}, c_{\alpha,2}\right), \left(\epsilon_{\alpha,3}, c_{\alpha,3}\right), \ldots\right]
\]
α–continued fractions and the maps T_α

The maps $T_\alpha : [\alpha - 1, \alpha] \rightarrow [\alpha - 1, \alpha]$ are defined as follows:

$$T_\alpha(x) := \frac{1}{|x|} - c_\alpha(x), \quad c_\alpha(x) := \lfloor \frac{1}{|x|} + 1 - \alpha \rfloor.$$

Inverting the first equation above we get

$$x = \frac{\epsilon(x)}{c_\alpha(x) + T_\alpha(x)}, \quad \epsilon(x) = \text{sign}(x)$$

Iterating this procedure we recover the infinite α-continued fractional expansion:

$$x = \frac{\epsilon_{1,\alpha}}{c_{1,\alpha} + \frac{\epsilon_{2,\alpha}}{c_{2,\alpha} + \ldots}}$$

which is sometimes written as

$$x = [0; (\epsilon_{\alpha,1}, c_{\alpha,1}), (\epsilon_{\alpha,2}, c_{\alpha,2}), (\epsilon_{\alpha,3}, c_{\alpha,3}), \ldots]$$
Other features

Many arithmetical properties of RCF expansions transfer also to \(\alpha \)-expansions:
Other features

Many arithmetical properties of RCF expansions transfer also to α-expansions:

- the expansion is not unique for some special values
Other features

Many arithmetical properties of RCF expansions transfer also to α-expansions:

- the expansion is not unique for some special values (\mathbb{Q});
Other features

Many arithmetical properties of RCF expansions transfer also to α-expansions:

- the expansion is not unique for some special values (\mathbb{Q});
- there is a countable set of values with eventually periodic expansion.
Other features

Many arithmetical properties of RCF expansions transfer also to α-expansions:

- the expansion is not unique for some special values (\mathbb{Q});
- there is a countable set of values with eventually periodic expansion (quadratic surds).
Other features

Many arithmetical properties of RCF expansions transfer also to α-expansions:

- the expansion is not unique for some special values (\mathbb{Q});
- there is a countable set of values with eventually periodic expansion (quadratic surds).
Ergodic properties of T_α

The maps T_α ($\alpha > 0$) have the following properties

- T_α has an invariant probability measure $\mu_\alpha(x) := \rho(x)dx$
 with ρ of bounded variation;
Ergodic properties of T_α

The maps T_α ($\alpha > 0$) have the following properties

- T_α has an invariant probability measure $\mu_\alpha(x) := \rho(x) dx$ with ρ of bounded variation;
- T_α is an exact map, hence it is ergodic;
Ergodic properties of T_α

The maps $T_\alpha (\alpha > 0)$ have the following properties

- T_α has an invariant probability measure $\mu_\alpha(x) := \rho(x)dx$ with ρ of bounded variation;
- T_α is an exact map, hence it is ergodic;
- For almost every $x \in [0, 1]$:

$$\lim_{n \to +\infty} \frac{2}{n} \log q_n = h(T_\alpha)$$

where p_n/q_n is the n-th convergent of the α-expansion of x and $h(T_\alpha)$ is the entropy of T_α.
Ergodic properties of T_α

The maps T_α ($\alpha > 0$) have the following properties

- T_α has an invariant probability measure $\mu_\alpha(x) := \rho(x)dx$ with ρ of bounded variation;
- T_α is an exact map, hence it is ergodic;
- For almost every $x \in [0, 1]$:

$$\lim_{n \to +\infty} \frac{2}{n} \log q_n = h(T_\alpha)$$

where p_n/q_n is the n-th convergent of the α-expansion of x and $h(T_\alpha)$ is the entropy of T_α.

- The entropy $h(T_\alpha)$ can be computed using Rohlin formula:

$$h(T_\alpha) = \int_{\alpha-1}^{\alpha} \log |T_\alpha'(x)|d\mu_\alpha(x);$$
Ergodic properties of T_α

The maps T_α ($\alpha > 0$) have the following properties

- T_α has an invariant probability measure $\mu_\alpha(x) := \rho(x)dx$ with ρ of bounded variation;
- T_α is an exact map, hence it is ergodic;
- For almost every $x \in [0, 1]$:
 \[
 \lim_{n \to +\infty} \frac{2}{n} \log q_n = h(T_\alpha)
 \]
 where p_n/q_n is the n-th convergent of the α-expansion of x and $h(T_\alpha)$ is the entropy of T_α.

- The entropy $h(T_\alpha)$ can be computed using Rohlin formula:
 \[
 h(T_\alpha) = \int_{\alpha-1}^{\alpha} \log |T'_\alpha(x)|d\mu_\alpha(x);
 \]
- $h(T_\alpha) =$?
An historical account

An historical account

A. Cassa: *Dinamiche caotiche e misure invarianti* (1995) Tesi di Laurea (numerical results)
An historical account

Zooming in
Zooming in
Zooming in
Zooming in
Zooming in
Question 1.
Question 1.

Is the entropy really not monotone?
Question 1.

Is the entropy really not monotone? Yes!
Question 1.

Is the entropy really not monotone? Yes!
Is the entropy really not monotone? Yes!

Matching leads to monotonic behaviour (Thm. 2 in [NN])

Let $I \subset [0, 1]$ be an open interval satisfying the following properties:
Matching leads to monotonic behaviour (Thm. 2 in [NN])

Let $I \subset [0, 1]$ be an open interval satisfying the following properties:

- there exist $k_1, k_2 \in \mathbb{N}$ such that the matching condition $T^{k_1}(\alpha) = T^{k_2}(\alpha)$ holds for all $\alpha \in I$;
Matching leads to monotonic behaviour (Thm. 2 in [NN])

Let $I \subset [0, 1]$ be an open interval satisfying the following properties:

- there exist $k_1, k_2 \in \mathbb{N}$ such that the matching condition $T^{k_1}(\alpha) = T^{k_2}(\alpha)$ holds for all $\alpha \in I$;
- the pair (k_1, k_2) is minimal;
Matching leads to monotonic behaviour (Thm. 2 in [NN])

Let \(I \subset [0, 1] \) be an open interval satisfying the following properties:

- there exist \(k_1, k_2 \in \mathbb{N} \) such that the matching condition \(T^{k_1}(\alpha) = T^{k_2}(\alpha) \) holds for all \(\alpha \in I \);
- the pair \((k_1, k_2) \) is minimal;
- (+ some other technical conditions)
Matching leads to monotonic behaviour (Thm. 2 in [NN])

Let $I \subset [0, 1]$ be an open interval satisfying the following properties:

- there exist $k_1, k_2 \in \mathbb{N}$ such that the matching condition $T^{k_1}(\alpha) = T^{k_2}(\alpha)$ holds for all $\alpha \in I$;
- the pair (k_1, k_2) is minimal;
- (+ some other technical conditions)
Matching leads to monotonic behaviour (Thm. 2 in [NN])

Let $I \subset [0, 1]$ be an open interval satisfying the following properties:

- there exist $k_1, k_2 \in \mathbb{N}$ such that the matching condition $T^{k_1}(\alpha) = T^{k_2}(\alpha)$ holds for all $\alpha \in I$;
- the pair (k_1, k_2) is minimal;
- (+ some other technical conditions)

Then h is monotone on I; more precisely

- h is strictly increasing on I if $k_1 < k_2$;
Matching leads to monotonic behaviour (Thm. 2 in [NN])

Let $I \subset [0, 1]$ be an open interval satisfying the following properties:

- there exist $k_1, k_2 \in \mathbb{N}$ such that the matching condition $T^{k_1}(\alpha) = T^{k_2}(\alpha)$ holds for all $\alpha \in I$;
- the pair (k_1, k_2) is minimal;
- (+ some other technical conditions)

Then h is monotone on I; more precisely

i. h is strictly increasing on I if $k_1 < k_2$;

ii. h is constant on I if $k_1 = k_2$;
Matching leads to monotonic behaviour (Thm. 2 in [NN])

Let \(I \subset [0, 1] \) be an open interval satisfying the following properties:

- there exist \(k_1, k_2 \in \mathbb{N} \) such that the matching condition \(T^{k_1}(\alpha) = T^{k_2}(\alpha) \) holds for all \(\alpha \in I \);
- the pair \((k_1, k_2)\) is minimal;
- (+ some other technical conditions)

Then \(h \) is monotone on \(I \); more precisely

i. \(h \) is strictly increasing on \(I \) if \(k_1 < k_2 \);

ii. \(h \) is constant on \(I \) if \(k_1 = k_2 \);

iii. \(h \) is strictly decreasing on \(I \) if \(k_1 > k_2 \).
Some interesting issues
Some interesting issues

Nakada and Natsui proved that matching intervals exist, and this has interesting counterparts on the behaviour of the entropy.
Some interesting issues

Nakada and Natsui proved that matching intervals exist, and this has interesting counterparts on the behaviour of the entropy.
More precisely

- each of the cases (i), (ii) and (iii) takes place at least on one infinite family of disjoint matching intervals clustering at the origin ([NN], Thm. 3);
Some interesting issues

Nakada and Natsui proved that matching intervals exist, and this has interesting counterparts on the behaviour of the entropy.

More precisely

- each of the cases (i), (ii) and (iii) takes place at least on one infinite family of disjoint matching intervals clustering at the origin ([NN], Thm. 3);
- the matching conditions define a collection of open intervals (called matching intervals);
Some interesting issues

Nakada and Natsui proved that matching intervals exist, and this has interesting counterparts on the behaviour of the entropy. More precisely:

- each of the cases (i), (ii) and (iii) takes place at least on one infinite family of disjoint matching intervals clustering at the origin ([NN], Thm. 3);
- the matching conditions define a collection of open intervals (called matching intervals);
- the entropy is thus a non-monotonic function;
Some interesting issues

Nakada and Natsui proved that matching intervals exist, and this has interesting counterparts on the behaviour of the entropy.

More precisely

◮ each of the cases (i), (ii) and (iii) takes place at least on one infinite family of disjoint matching intervals clustering at the origin ([NN], Thm. 3);
◮ the matching conditions define a collection of open intervals (called matching intervals);
◮ the entropy is thus a non-monotonic function;
◮ **conjecture:** the union of all matching intervals is a dense, open subset of \([0, 1]\) with **full Lebesgue measure**.
Hierarchy of quadratic intervals
The set \mathcal{M}

$$\mathcal{M} = \bigcup_{a \in \mathbb{Q} \cap]0,1]} I_a.$$

► \mathcal{M} is an open neighbourhood of $\mathbb{Q} \cap]0,1]$;
The set \mathcal{M}

$\mathcal{M} = \bigcup_{a \in \mathbb{Q} \cap]0,1[} I_a$.

- \mathcal{M} is an open neighbourhood of $\mathbb{Q} \cap]0,1[$;
- the connected components of \mathcal{M} are quadratic intervals;
The set \mathcal{M}

$$\mathcal{M} = \bigcup_{a \in \mathbb{Q} \cap]0,1]} l_a.$$

- \mathcal{M} is an open neighbourhood of $\mathbb{Q} \cap]0,1]$;
- the connected components of \mathcal{M} are quadratic intervals;
- $|\mathcal{M}| = 1$;
The set \mathcal{M}

$$\mathcal{M} = \bigcup_{a \in \mathbb{Q} \cap]0,1[} I_a.$$

- \mathcal{M} is an open neighbourhood of $\mathbb{Q} \cap]0,1]$;
- the connected components of \mathcal{M} are quadratic intervals;
- $|\mathcal{M}| = 1$;
- $\dim_{\mathcal{H}}([0,1] \setminus \mathcal{M}) = 1$;
The set \mathcal{M}

$$\mathcal{M} = \bigcup_{a \in \mathbb{Q} \cap]0,1]} l_a.$$

- \mathcal{M} is an open neighbourhood of $\mathbb{Q} \cap]0,1]$;
- the connected components of \mathcal{M} are quadratic intervals;
- $|\mathcal{M}| = 1$;
- $\dim_H([0,1] \setminus \mathcal{M}) = 1$;
- the entropy function $\alpha \mapsto h(T_\alpha)$ is monotone on each connected component of \mathcal{M}.
Taking off quadratic intervals
Comparison with the critical case of (a,b)-continued fractions
Comparison with the critical case of (a,b)-continued fractions

![Graph showing comparison with critical case of (a,b)-continued fractions](zoom1.dat)
Question 2.
Question 2.

Is the entropy constant on intervals of the type \((\alpha_n^-, \alpha_n^+)\)?
Question 2.

Is the entropy constant on intervals of the type \((\alpha_n^-, \alpha_n^+)\)?

with \(\alpha_n^- := [0; n, n-1, 1], \quad \alpha_n^+ := [0; \bar{n}], \quad n \in \mathbb{N}\)
Question 2.

Is the entropy constant on intervals of the type \((\alpha_n^-, \alpha_n^+)\)?

with \(\alpha_n^- := [0; n, n-1, 1]\), \(\alpha_n^+ := [0; \bar{n}]\), \(n \in \mathbb{N}\)

Yes

[NN]
Is the entropy constant on intervals of the type (α_n^-, α_n^+)?

with $\alpha_n^- := [0; n, n - 1, 1]$, $\alpha_n^+ := [0; \bar{n}]$, $n \in \mathbb{N}$

Yes

[NN]
Question 3.
Question 3.

is the entropy linear on \((\beta_n^-, \beta_n^+)\)?
is the entropy linear on \((\beta_n^-, \beta_n^+)\)?

with \(\beta_n^- := [0; \bar{n}]\), \(\beta_n^+ := [0; n - 1, 1]\), \(n \in \mathbb{N}\)
Question 3.

is the entropy linear on \((\beta_n^-, \beta_n^+)\)?

with \(\beta_n^- := [0; \bar{n}], \: \beta_n^+ := [0; n - 1, 1], \: n \in \mathbb{N}\)

Probably not [CMPT].
Question 3.

is the entropy linear on (β_n^-, β_n^+)?

with $\beta_n^- := [0; \bar{n}]$, $\beta_n^+ := [0; n-1, 1]$, $n \in \mathbb{N}$

Probably not [CMPT].
Some more questions

What about the self similar structure? how is it generated?
Some more questions

What about the self similar structure? how is it generated?
Some more questions

What about the self similar structure? how is it generated?

See [CT]
Some more questions

What about the self similar structure? how is it generated?

See [CT]

What about natural extensions?
Some more questions

What about the self similar structure? how is it generated?

See [CT]

What about natural extensions?
Some more questions

What about the self similar structure? how is it generated?

See [CT]

What about natural extensions?

Who knows!?
The end